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1. The Basic Idea

We want to simulate a d-dimensional random vector X ∼ π (joint distribution)
and compute

µ = Eπ(h(X)) =

∫
Rd

h(x)π(x)dx.

1.1. Markov chain Monte Carlo

Generate a Markov chain x1, x2, · · · , xn by simulating xt ∼ p(·|xt−1), where
xt = (xt1, · · · , xtd), such that as n → ∞,

1. µ̂ = 1
n

n∑
t=1

h(xt) ≈ µ,

2. xn ∼ π.

Note that x1, x2, · · · , xn are correlated.

1.2. Transition kernel and stationary distribution

Denote the one-step transition kernel of a Markov chain (M.C.) on a general
state space (Rd) by K(x, y) := pXt|Xt−1

(y|x). This generalizes the one-step tran-
sition probabilities pij = P (Xt = j | Xt−1 = i) for discrete state Markov chains.
If a probability density π satisfies∫

π(x)K(x, y)dx = π(y) for all y, (1)

then π(x) is a stationary distribution of the Markov chain:

Xt ∼ π =⇒ Xt+1 ∼ π.

The definition in (1) is a natural generalization of the definition for discrete
case: ∑

i

πi · pij = πj for all j.

1.3. Simulating a Markov chain

Given initial state x0, transition kernel K(x, y), it is straightforward to simulate
an M.C. with the transition kernel for t = 1, 2, · · · , n by the following algrithm.
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For t = 1, 2, · · · , n,

Draw xt ∼ K(xt−1, •).

This is to draw from the conditional distribution [xt | xt−1]. Recall for discrete
case, we draw xt from a discrete distribution with probabilities P[xt−1, •], one
row in the transition matrix P.
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2. The Metropolis-Hastings Algorithm

Given a target distribution with density π(x), the Metropolis-Hastings (MH)
algorithm simulates a Markov chain with π as its stationary distribution. Let S
denote the support of π(x), i.e.,

S = {x : π(x) > 0}, (2)

which defines the state space for the Markov chain simulated by the MH algo-
rithm.

2.1. Algorithm

Algorithm 1 (The MH algorithm). Pick a random initial state x(0) ∈ S. Design
a proposal distribution q(x, y), which draws a random variable y given the value
of x, i.e. it defines a conditional distribution [y | x]. The proposal must satisfy
q(x, y) = 0 for any y /∈ S, i.e. the proposal only generates y such that π(y) > 0.

For t = 1, 2, · · · , n,

1. Draw y from the proposed distribution q(x(t−1), y);

2. Compute the MH ratio r(x(t−1), y) = min

[
1,

π(y)q(y, x(t−1))

π(x(t−1))q(x(t−1), y)

]
;

3. Draw u ∼ Unif(0, 1) and update

x(t) =

{
y, if u ≤ r(x(t−1), y);
x(t−1), otherwise.

First development: Metropolis et al. (1953) with q(x, y) = q(y, x) (symmetric
proposal), in which case the MH ratio simplifies:

r(x, y) = min

[
1,

π(y)

π(x)

]
=

 1, if π(y) ≥ π(x);
π(y)

π(x)
, if π(y) < π(x).

As an example, consider a simple proposal q(x, y) that draws

y | x ∼ Unif(x− δ, x+ δ).

Therefore, the proposal (conditional density)

q(x, y) = p(y | x) = 1

2δ
, if |y − x| < δ.
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As a bivariate function, q(x, y) is symmetric in x, y, i.e. q(y, x) = q(x, y):

q(y, x) =
1

2δ
, if |x− y| < δ.

Therefore, this is a symmetric proposal. Using this proposal, the main steps of
the MH algorithm are illustrated with the following figure. In the figure, both
a, b ∈ (x(t) − δ, x(t) + δ) and π(a) > π(x(t)) > π(b).

x

π(x)

x(t)
( )
a b

y | x(t) ∼ Unif(x(t) − δ, x(t) + δ);

r(x(t), y) = min

[
1,

π(y)

π(x(t))

]
.

• If y = a, then r(x(t), y) = 1 and x(t+1) = y.
• If y = b, then r(x(t), y) = π(b)/π(x(t)) < 1: x(t+1) = y with probability
π(b)/π(x(t)) and x(t+1) = x(t) with probability 1− π(b)/π(x(t)).

2.2. Examples

Example 1. Draw N (0, 1) by an MH algorithm using Unif(x − δ, x + δ) with
δ = 1 as the proposal.

# R code for this example

n=10000;

d=1;

X=numeric(n);

X[1]=0;

a=0;

for(t in 2:n)

{

Y=runif(1,X[t-1]-d,X[t-1]+d);

r=min(1,exp(-0.5*Y^2)/exp(-0.5*X[t-1]^2));

u=runif(1,0,1);

if(u<r){X[t]=Y;a=a+1}else{X[t]=X[t-1]};

}
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a/n # acceptance rate

[1] 0.805

#use the last 5000 iterations (X[5001:n]) as our samples from N(0,1)

mean(X[5001:n])

[1] -0.04334007

sd(X[5001:n])

[1] 0.9988046

hist(X[5001:n])
Histogram of X[5001:n]

X[5001:n]
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Some remarks:

• If an MH algorithm is irreducible and aperiodic, then the M.C. {x(t)}
converges to the stationary distribution π(x) and sampler averages ap-
proximate expectations:

1

n

∑
t

h(x(t))
a.s.−→Eπh(x). (3)

• Burn-in period. Run this example with different initial values x(0) = 5
(red) vs x(0) = −5 (blue). The plot shows that the M.C. converges (two
curves mix) after about 30 iterations (burn-in period). We usually use the
average over x(t) after the burn-in period for estimation in (3).
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Next, we demonstrate how to design a proposal q(x, y) such that y always stays
in S.

Example 2. Poisson Distribution.

π(x) =
e−λλx

x!
∝ λx

x!
, x = 0, 1, 2, · · · .

For the example, the state space S = {0, 1, · · · } (nonnegative integers). There-
fore, the proposal q(x, y) should only move in S. One possible design is

If x ≥ 1, then y =

{
x+ 1, with probability 1/2;
x− 1, with probability 1/2;

If x = 0, then y = 1 with probability 1.

The state transition diagram of q(x, y):

0 1 2 3 · · ·

q(0, 1) = 1 and q(x, y) = 1/2 if x ≥ 1 and y ∈ {x− 1, x+ 1}.

The ratio between target densities:
π(y)

π(x)
=

λy

λx

x!

y!
. (π(x) can be unnormalized.)

If x, y ≥ 1,
q(y, x)

q(x, y)
= 1: Symmetric.
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If x = 0, y = 1,
q(y, x)

q(x, y)
=

q(1, 0)

q(0, 1)
=

1
2

1
=

1

2
.

If x = 1, y = 0,
q(y, x)

q(x, y)
=

q(0, 1)

q(1, 0)
=

1
1
2

= 2.

2.3. Detail balance

In this section, we verify that π is indeed a stationary distribution of the Markov
chain simulated by the MH algorithm. That is, for any y ∈ S,∫

S
π(x)K(x, y)dx = π(y), or

∑
x∈S

π(x)K(x, y) = π(y)

for discrete state space, where K(x, y) is the one-step transition kernel of the
MH algorithm.

We consider a sufficient condition that is easy to check, called the detail balance
condition:

π(x)K(x, y) = π(y)K(y, x), for all x, y ∈ S. (4)

The key intuition behind the detail balance condition may be understood using
water flow between two tanks x and y as an analogy, illustrated in the following
figure. The volumes of water in the two tanks are π(x) and π(y), respectively.
Two pipes connect the tanks, one allowing water to flow from x to y and the
other from y to x. The flow rates are K(x, y) and K(y, x) per unit volume of
water. Thus, the flow rate from tank x to y is π(x)K(x, y), and π(y)K(y, x) in
the other direction. If the detail balance condition holds, then the amount of
water flow from x to y will match exactly that from y to x, and as a result, the
volumes π(x) and π(y) will stay constant over time.

x

π(x)

y

π(y)

K(x, y)

K(y, x)

Lemma 1. If the detail balance condition (4) holds, then π is a stationary
distribution of the Markov chain with K(x, y) as the one-step transition kernel.

Proof. Integrating over x on both sides of the detail balance condition, we have,
for any y,∫

π(x)K(x, y)dx =

∫
π(y)K(y, x)dx = π(y)

∫
K(y, x)dx = π(y),
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where the last equality is due to the fact that K(y, x) is a conditional density
for [x | y].

Theorem 1. The MH algorithm simulates a Markov chain for which π(x) is a
stationary distribution.

Proof. It suffices to show that the detail balance condition (4) is satisfied, i.e.
π(x)K(x, y) = π(y)K(y, x) for any x and y.

1. It is trivially true for x = y;
2. Suppose y ̸= x. Then the MH algorithm must propose y and accept it.

Therefore, the transition kernel

K(x, y) = q(x, y)min

[
1,

π(y)q(y, x)

π(x)q(x, y)

]
.

Now we have

π(x)K(x, y) = π(x)q(x, y)min

[
1,

π(y)q(y, x)

π(x)q(x, y)

]
= min[π(x)q(x, y), π(y)q(y, x)]

= min

[
π(x)q(x, y)

π(y)q(y, x)
, 1

]
· π(y)q(y, x)

= π(y)K(y, x).

2.4. Autocorrelation and efficiency

Consider the efficiency of MCMC for estimating

µh =

∫
h(x)π(x)dx = Eπ[h(X)].

Suppose x(1), x(2), · · · , x(m) is a Markov chain with π as its stationary and also

limiting distribution. Let hm = 1
m

m∑
i=1

h(x(i)).

Assume that x(0) ∼ π(x). If m is large, then

Var(hm) =
σ2

m

1 + 2

m−1∑
j=1

(
1− j

m

)
ρj

 ≈
σ2

m

1 + 2

∞∑
j=1

ρj

 , (5)
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where σ2 = Varπ[h(x)] and

ρj = cor(h(x(1)), h(x(1+j))) = cor(h(x(t)), h(x(t+j))), for any t = 1, 2, . . .

is the j-step autocorrelation.

Comparing (5) to an independent sample, x(i) ∼ π independently for i =
1, . . . ,m,

Var(hm) =
σ2

m
,

we define effective sample size of this Markov chain as

m

1 + 2
∑∞

j=1 ρj
.

Thus, the faster the autocorrelation ρj decays to zero, the more efficient the
estimation of µh by the MCMC algorithm.

In Example 1, we may change the value of δ in the proposal Unif(x− δ, x+ δ) to
see the change in autocorrelations, demonstrating different efficiency for different
proposals. The figures below show the autocorrelation plot, ρj for j = 0, . . . , 40,
generated by

acf(X)

for δ = 1 and δ = 5 and the corresponding acceptance rates Pa. The autocorre-
lation plots suggest that the choice of δ = 5 gives more efficient estimates. See
Section 5.1 for related discussion.
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3. Ising Model

3.1. MH Algorithm for 1-D Ising Model

We use the 1-D Ising model to demonstrate the MH algorithm for simulating
from a joint distribution.

Example 3 (1-D Ising Model). Consider a random vector x = (x1, · · · , xd) ∈
{1,−1}d, i.e. every xj ∈ {1,−1}. Define an energy function

U(x) = −
d−1∑
i=1

xixi+1.

At a given temperature T > 0, the Boltzmann distribution is specified by the
probability mass function

π(x) ∝ exp

[
−U(x)

T

]
= exp

[
µ

d−1∑
i=1

xixi+1

]
, (6)

where µ = 1/T > 0. Note that π(x) = π(x1, . . . , xd) is a joint distribution over d
binary random variables xi ∈ {±1}, i = 1, . . . , d. There are a total of 2d possible
combinations among the xi’s. We call each combination a configuration. This is
a simple model for a physical system consisting of d particles. The Boltzmann
distribution assign a probability π(x) for each configuration x.

We can use a graph to represent the joint distribution π(x). Each node in the
graph corresponds to a random variable and an edge exists if there is a product
term (xixi+1) in U(x):

x1 x2 x3 · · · xi−1 xi xi+1 · · · xd

Given a current configuration x(t) = (x
(t)
1 , · · · , x(t)

d ), one iteration of the MH
algorithm consists of:

1. Proposal: Randomly choose j from {1, . . . , d} and flip xj to its opposite:

y = (x
(t)
1 , · · · ,−x

(t)
j , · · · , x(t)

d ).

This is a symmetric proposal: q(x(t), y) = q(y, x(t)).
2. Thus, the MH ratio

r(x(t), y) = min

[
1,

π(y)

π(x(t))

]
,

π(y)

π(x(t))
= exp

{
−2µx

(t)
j

(
x
(t)
j−1 + x

(t)
j+1

)}
,

where x
(t)
0 = x

(t)
d+1 ≡ 0.
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The following R code implements this MH algorithm to simulate from π with
T = 1 and estimate Eπg(x) = Eπ(

∑
i xi). You may change the value of T

(temperature) to see its effect on the distribution and the expectation.

n=6000;

d=20;

X=matrix(0,n,d);

X[1,]=sample(c(-1,1),size=d,replace=TRUE);

g=numeric(n);

g[1]=sum(X[1,]);

T=1;

for(t in 2:n)

{

y=X[t-1,];

j=sample(1:d,size=1);

y[j]=-X[t-1,j];

if(j==1){

r=exp(-2*X[t-1,1]*X[t-1,2]/T);

}else if(j==d){

r=exp(-2*X[t-1,d-1]*X[t-1,d]/T);

}else{

r=exp(-2*X[t-1,j]*(X[t-1,j-1]+X[t-1,j+1])/T);

}

U=runif(1,0,1);

if(U<=min(r,1)){X[t,]=y}else{X[t,]=X[t-1,]};

g[t]=sum(X[t,]);

}

mean(g[1000:n])

3.2. Boltzmann Distribution

The Boltzmann distribution

PT (x) =
1

Z(T )
e−h(x)/T , (7)

where x ∈ [N ] :={1, . . . , N} is the configuration (state) of a physical system,
h(x) is the energy of state x; T > 0 is the temperature, and

Z(T ) =

N∑
x=1

e−h(x)/T
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is normalization constant (partition function). Important physical quantities,
such as energy and entropy, are defined via PT :

Energy UT = E(h(X)) =
∑
x
h(x)PT (x).

Entropy ST = −E[logPT (X)] = −
∑

x PT (x) logPT (x).

However, since the number of states N is typically very large, combinatorial in
the number of particles in a system, the above expectations cannot be calculated
exactly. For example, if the state x = (x1, . . . , xM ), each xi ∈ {±1} represent-
ing the state of a particle, then N = 2M . Thus, we usually use Monte Carlo
simulation to approximate them: Given h(x) and T > 0, draw x(i) ∼iid PT for
i ∈ [n] to estimate

ÛT =
1

n

n∑
i=1

h(x(i)), P̂T (x) =
1

n

n∑
i=1

I(x(i) = x),

and ŜT = −
∑

x P̂T (x) log P̂T (x).

Derivation of the Boltzmann distribution PT is based on two physical laws: (i)
maximum entropy and (ii) conservation of average energy. Put

p = (p1, . . . , pN ) = (px)1≤x≤N

and suppose the average energy is u (fixed). Then PT is the solution to

max
p

{
−
∑
x

px log px

}
subject to

∑
x

px = 1,
∑
x

pxh(x) = u.

Define the Lagrangian

L(p, β, λ) = −
∑
x

px log px − β

(∑
x

pxh(x)− U

)
− λ

(∑
x

px − 1

)
and set its derivatives to zero

∂L

∂px
= −{log px + 1 + βh(x) + λ} = 0

to get

px =
exp(−βh(x))

C(β)
, C(β) =

∑
x

exp(−βh(x)).

Moreover, β is determined by the average energy u, since∑
x

exp(−βh(x))

C(β)
h(x) = u.

Now letting T = 1/β and Z(T ) = C(1/T ), we arrive at the Boltzmann distri-
bution PT in (7).
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4. Simulated Annealing

For any π(x), let h(x) = − log(π(x)). For T > 0, define

π(x;T ) ∝ exp

[
−h(x)

T

]
,

where T is the temperature in the Boltzmann distribution (7) regarding h(x)
as the energy function. In particular, π(x) = π(x;T = 1). Denote the global
minimizer of h by

x∗ = argminh(x) = argmaxπ(x).

Varying the temperature T ∈ (0,∞), we can change the shape of the distribution
π(x;T ):

• T → ∞: for any x,

π(x;T )

π(x∗;T )
= exp

[
h(x∗)− h(x)

T

]
→ 1.

Thus, π(x;T ) ∝ 1, close to uniform distribution.
• T → 0: for any h(x) > h(x∗),

π(x;T )

π(x∗;T )
= exp

[
h(x∗)− h(x)

T

]
→ exp(−∞) = 0.

Thus, π(x;T ) is concentrated at x∗, i.e. a point mass at x∗.

The goal of simulated annealing is to find x∗, the global minimizer of h(x). This
method uses the MH algorithm to simulate from π(x;T ) with a non-increasing
sequence of T . It starts with a high temperature (large T ) and gradually de-
creases T to zero. At a high temperature, since π(x;T ) is pretty flat, the MH
algorithm has a decent chance to explore different local modes of the density.
Later on, as T decreases to 0, the samples will converge to x∗ with a high
probability.

The following figure illustrates the idea of simulated annealing, showing π(x;T )
for T = 20, 1, 0.1. The target density π(x) (black curve, T = 1) has two modes,
the global maximizer x∗ = 1 and another local maximizer at x = 2.5.
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Algorithm 2 (Simulated annealing). Choose T1 ≥ T2 ≥ · · · ≥ Tn → 0 and
pick x(0).

For t = 1, . . . , n:

• Set T = Tt.
• Draw x(t) given x(t−1) via one step of an MH algorithm targeting at
π(x;T ). That is, in step 2 of Algorithm 1, we replace π(x) and π(y) by
π(x;T ) and π(y;T ), respectively.
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5. Some Special Designs

5.1. Random-walk Metropolis

Consider π(x) defined on Rd (d-dimensional Euclidean Space). Use the addition
of a random perturbation (an error vector) as the proposal in the MH algorithm.

Given the current sample x(t), the proposal q(x(t), y) draws

y = x(t) + εt, εt ∼ gσ(ε), (8)

where gσ is a spherically symmetric distribution, i.e., gσ(a) = gσ(b) if ∥a∥ = ∥b∥
(Euclidean norm).

x1

x2

a

b

Examples of gσ(ε) include multi-variate GaussianNd(0, σ
2Id) and Unif(B(0, σ)),

where B(0, σ) is the ball centering at 0 with radius σ, i.e.

B(0, σ) :={x ∈ Rd : ∥x∥ ≤ σ}.

The proposal in (8) is symmetric, q(x(t), y) = q(y, x(t)), since gσ(ε) = gσ(−ε).

The random-walk Metropolis:

Given x(t),

1. Draw εt ∼ gσ(ε): spherically symmetric (σ can be controlled by the user),

set y = x(t) + εt, r(x
(t), y) = min

[
1,

π(y)

π(x(t))

]
;

2. Draw u ∼ Unif(0, 1) and update

x(t+1) =

{
y, if u ≤ r(x(t), y);
x(t), otherwise.

How to choose σ: maintain acceptance rate ∈ [0.25, 0.35]. See the autocorrelation
plots in Section 2.4.
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5.2. Metropolized independence sampler

In some problems, we may have ways to approximate the target distribution π
by a trial distribution g that we can simulate from. In these cases, we may choose
q(x, y) = g(y), which defines a proposal that is independent of x. An MH algo-
rithm with such an independent proposal is called a Metropolized independence
sampler:

Given x(t),

1. Draw y ∼ g(y),

r(x(t), y) = min

[
1,

π(y)

π(x(t))

g(x(t))

g(y)

]
= min

[
1,

w(y)

w(x(t))

]
,

where w(x) = π(x)/g(x) is the importance weight;
2. Draw u ∼ Unif (0, 1),

x(t+1) =

{
y, if u ≤ r(x(t), y);
x(t), otherwise.

Some remarks:

(a) This method is closely related to importance sampling and it uses importance
weights w(y)/w(x(t)) to calculate the MH ratio. Similar to importance sampling,
the efficiency of this MH algorithm depends on how close g(y) is to π(y). One
way to measure the closeness is by the variance of the importance weights:
Varg[w(x)] :=Vw. Small Vw suggests that g is close to π and usually leads to a
higher acceptance rate. If Varg(w(x)) = 0, then g = π and r(x, y) = 1 for all x, y.
Therefore, for a Metropolized independence sampler, the higher the acceptance
rate, the more efficient of the algorithm.

(b) To get robust performance and reduce the variance Vw, the trial distribution
g should have a heavier tail than π. For example, if π is a normal distribution
then g could be a t-distribution.

x

π(x)

g(x)
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Example 4 (Gamma distribution). Design a Metropolized independent sam-
pler to draw from Gamma(α, β), α > 1, β > 0,

π(x) =
βα

Γ(α)
xα−1e−βx, x > 0,

using Exp(λ) as the trial distribution. Let

w(x) =
xα−1e−βx

λe−λx
.

Choose λ to minimize Varg(w(x)).

Since Eg(w(x)) =
∫
xα−1e−βxdx = Γ(α)/βα is a constant independent of λ, it

is equivalent to minimizing Eg[w(x)
2] =

∫
w(x)2g(x)dx. Some calculation shows

that

Eg[w(x)
2] =

1

λ

∫ ∞

0

x2α−2e−(2β−λ)xdx.

Note that Eg[w(x)
2] < ∞ if and only if 2β − λ > 0. So we must choose

λ < 2β. (9)

Under this condition, the integrand is an unnormalized Gamma(2α− 1, 2β−λ)
and thus

Eg[w(x)
2] =

1

λ
· Γ(2α− 1)

(2β − λ)2α−1
.

Therefore, to minimize Eg[w(x)
2] we just need to maximize

f(λ) = λ(2β − λ)2α−1

over λ. Since the objective f(λ) > 0, we can equivalently

max
λ

[
log f(λ) = log λ+ (2α− 1) log(2β − λ)

]
of which the only maximizer is

λ∗ = β/α

by setting derivative to zero. Since α > 1, we have λ∗ < β satisfying the con-
straint (9). This also shows that the tail of g is heavier than that of π (Remark b):

lim
x→∞

π(x)

g(x)
= C lim

x→∞

xα−1

e(β−λ∗)x
= 0,

where C > 0 is a constant.

In fact, with λ∗ = β/α, g and π have the same mean (1/λ∗ = α/β). That is,
we have matched the expectations of the two distributions with this optimal
choice.
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5.3. Single-coordinate updating

This design is for multivariate distributions. For

x = (x1, · · · , xi−1, xi, xi+1 · · · , xd) ∈ Rd,

define

xi(y) :=(x1, · · · , xi−1, y, xi+1, · · · , xd) : x with y replacing xi;

x[−i] :=(x1, · · · , xi−1, xi+1, · · · , xd) : x with xi omitted.

Our target distribution is π(x).

To do single-coordinate update in the MH algorithm, the proposal q(x,y) has
two steps:

(a) Select a coordinate i, either cycling through 1 to d deterministically, or
randomly from {1, . . . , d}.

(b) Given i, draw y ∼ qi(xi, y), which proposes a scaler y from some univariate
distribution [y | xi], e.g. y ∼ N (xi, 1). Then put y = xi(y). That is, the
proposal only changes the ith coordinate of x.

The MH ratio is determined by

π(y)

π(x)

q(y,x)

q(x,y)
=

π(xi(y))

π(x)

qi(y, xi)

qi(xi, y)
. (10)

Let π(· | x[−i]) be the conditional density of [xi | x[−i]]. Then we have

π(x) = π(xi|x[−i]) · π(x[−i]),

π(xi(y)) = π(y|x[−i]) · π(x[−i]),

and consequently, the ratio in (10) simplifies to

π(y)

π(x)

q(y,x)

q(x,y)
=

π(y|x[−i])

π(xi|x[−i])

qi(y, xi)

qi(xi, y)
. (11)

This is the same as an MH algorithm with the conditional distribution π(· | x[−i])
as the target and qi(xi, y) as the proposal.

An important special case is to choose qi(xi, y) = π(y|x[−i]), i.e., we propose
y by sampling from the conditional distribution y ∼ π(·|x[−i]). Accordingly,
qi(y, xi) = π(xi|x[−i]). Then by (11) the MH ratio

r(x,y) = min

[
1,

π(y|x[−i])

π(xi|x[−i])
·
π(xi|x[−i])

π(y|x[−i])

]
≡ 1,

so y = xi(y) is always accepted. In other words, we just iteratively sample from
the conditional distribution π(·|x[−i]) for a chosen coordinate i ∈ {1, . . . , d}.
This is the Gibbs sampler.
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