Causal DAGs: Inference and Learning

Qing Zhou

UCLA Department of Statistics and Data Science

Stats 201C Advanced Modeling and Inference Lecture Notes

- 1 Causal DAGs and intervention
- 2 Linear structural equation models
- 3 Estimation of causal effect
- 4 Structure learning of DAGs

Causal DAGs and intervention

(Reference: Pearl (2000) §3.1 and §3.2; Pearl (1995)) Definition: A causal model among X_1, \ldots, X_p is defined by a DAG \mathcal{G} and a distribution $\mathbb{P}(\varepsilon) = \mathbb{P}(\varepsilon_1, \ldots, \varepsilon_p)$.

Each child-parent relationship in G, (X_j, PA_j), represents a functional relationship (structural equation model, SEM):

$$X_j = f_j(PA_j, \varepsilon_j), \qquad j = 1, \dots, p.$$
 (1)

The noise variables are jointly independent:

$$\mathbb{P}(\varepsilon_1,\ldots,\varepsilon_p) = \prod_j \mathbb{P}(\varepsilon_j).$$
(2)

(1) and (2) imply that P(X₁,..., X_p) is Markovian with respect to the DAG G:

$$\mathbb{P}(X_1,\ldots,X_p)=\prod_{j=1}^p\mathbb{P}(X_j\mid PA_j).$$
(3)

Causal effect defined via external intervention:

- Consider an atomic intervention that forces X_i to some fixed value x_i, which we denote by do(X_i = x_i) or do(x_i) for short.
- Effect of do(x_i): to replace the SEM for X_i by X_i = x_i and substitute X_i = x_i in the other SEMs.
- For two distinct sets of variables X and Y, the causal effect of X on Y is determined by the mapping

$$x \mapsto \mathbb{P}[Y \mid do(X = x)] \equiv \mathbb{P}(Y \mid do(x)).$$

Examples of causal effects.

1 linear SEM: Causal effect $\frac{\partial \mathbb{E}(Y \mid do(x))}{\partial x}$. 2 Treatment (X = 1) vs control (X = 0): Causal effect $\mathbb{E}(Y \mid do(X = 1)) - \mathbb{E}(Y \mid do(X = 0))$. Model interventions as variables:

- Treat intervention as additional variable in the DAG: F_j for intervention on X_j.
- SEM for X_j change to

$$X_{j} = h_{j}(PA_{j}, F_{j}, \varepsilon_{j}) = \begin{cases} f_{j}(PA_{j}, \varepsilon_{j}), & \text{if } F_{j} = idle\\ x, & \text{if } F_{j} = do(x). \end{cases}$$
(4)

• Augment the parents of X_j to $PA_j \cup \{F_j\}$:

$$\mathbb{P}(X_j = x_j \mid PA_j, F_j) = \begin{cases} \mathbb{P}(X_j = x_j \mid PA_j), & \text{if } F_j = idle\\ I(x_j = x), & \text{if } F_j = do(x), \end{cases}$$

assuming all X_j are *discrete* for convenience.

Causal DAGs and intervention

Computing causal effect (of interventions): To simplify notation, consider discrete X_j and write $\mathbb{P}(X = x) = P(x)$.

• Truncated factorization of $P(x_1, \ldots, x_p)$ given $do(X_i = x_i^*)$:

$$P(x_1,...,x_p \mid do(x_i^*)) = I(x_i = x_i^*) \prod_{j \neq i} P(x_j \mid pa_j), \quad (5)$$

where $pa_j = (x_k : k \in PA_j)$.

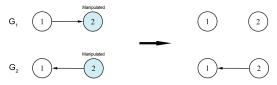
• Multiple interventions $do(X_S = \mathbf{x}^*)$, $S \subset \{1, \dots, p\}$:

$$P(x_1,\ldots,x_p \mid do(\mathbf{x}^*)) = I(x_S = \mathbf{x}^*) \prod_{j \notin S} P(x_j \mid pa_j).$$
(6)

Graph structure change when $do(X_i = x_i^*)$: delete edges $X_j \to X_i$ for all $j \in PA_i$, i.e. change \mathcal{G} to $\mathcal{G}_{\overline{X}_i}$.

Difference between $P(y \mid do(x))$ and $P(y \mid x)$.

• Two DAGs G_1 and G_2 on X_1, X_2 :



Find $P(x_1 | do(x_2))$ with respect to G_1 and G_2 .

$$G_1: P(x_1 \mid do(x_2)) = P(x_1),$$

$$G_2: P(x_1 \mid do(x_2)) = P(x_1 \mid x_2).$$

Causal DAGs and intervention

From (5), putting $x_i = x_i^*$:

$$P(x_{-i} \mid do(x_i^*)) = \prod_{j \neq i} P(x_j \mid pa_j) \cdot \frac{P(x_i^* \mid pa_i)}{P(x_i^* \mid pa_i)}$$

= $\frac{P(x_1, \dots, x_p)}{P(x_i^* \mid pa_i)}$
= $P(x_j, j \in B \mid x_i^*, pa_i)P(pa_i),$ (7)

where $B = [p] \setminus \{i, PA_i\}$ and $[p] := \{1, ..., p\}$.

- Intervention event (*do*-operator) *not* on the right-hand side.
- Compute causal effect (intervention probability) by conditional probabilities (pre-intervention probabilities) that can be estimated from observational data.

Theorem 1 (Adjustment for direct causes)

Let PA_i be the parents of X_i and Y be any set of other variables in a causal DAG G. Then the causal effect of $do(X_i = x_i)$ on Y is given by

$$P(y \mid do(x_i)) = \sum_{pa_i} P(y \mid x_i, pa_i) P(pa_i),$$
(8)

where $P(y | x_i, pa_i)$ and $P(pa_i)$ are pre-intervention probabilities.

Proof.

Marginalize out $X_j \notin Y \cup \{X_i\}$ on both sides of (7).

A simple implication of Theorem 1: If Y is a set of non-descendants of X_i , then

 $Y \perp X_i \mid PA_i$.

By Theorem 1

$$egin{aligned} & P(y \mid do(x_i)) = \sum_{pa_i} P(y \mid x_i, pa_i) P(pa_i) \ & = \sum_{pa_i} P(y \mid pa_i) P(pa_i) = P(y), \end{aligned}$$

which is independent of the intervention on X_i . Thus, X_i has no causal effect on Y.

A causal model $(\mathcal{G}, \mathbb{P}_{\varepsilon})$ with linear SEMs:

• A linear model for each child-parent relationship:

$$X_j = \sum_{i \in PA_j} \beta_{ij} X_i + \varepsilon_j, \qquad j = 1, \dots, p.$$
 (9)

- ε_j 's are independent and $\mathbb{E}(\varepsilon_j) = 0$;
- Usually assume ε_j ~ N(0, ω_j²). In this case, the DAG is called a Gaussian DAG and the graphical model is called a Gaussian Bayesian network.

Causal effect:

• The causal effect of X_k on X_j

$$\gamma_{kj} := \frac{\partial \mathbb{E}(X_j \mid do(X_k = x))}{\partial x}$$
$$= \mathbb{E}(X_j \mid do(X_k = c + 1)) - \mathbb{E}(X_j \mid do(X_k = c)), \quad (10)$$

for any $c \in \mathbb{R}$, due to the linear model assumption. Using modified DAG $\mathcal{G}_{\bar{X}_{L}}$ after intervention,

$$\mathbb{E}(X_j \mid X_k = x; \mathcal{G}_{\bar{X}_k}) = \gamma_{kj} x,$$

where $\mathbb{E}(\bullet; \mathcal{G}_{\bar{X}_{k}})$ takes expectation with respect to $\mathcal{G}_{\bar{X}_{k}}$.

Linear structural equation models

Apply Theorem 1 to find γ_{kj} :

• Let $Z = PA_k$ and z denote the value of PA_k ,

$$p(x_j \mid do(X_k = x_k)) = \int_z p(x_j \mid x_k, z) p(z) dz,$$

where the p on the right side is given by the pre-intervention distribution (that of \mathcal{G}).

- Let (β, α) be the regression coefficient of X_j on (X_k, PA_k) , that is, $\mathbb{E}(X_j \mid X_k, Z) = \beta X_k + \alpha^T Z$, which can be estimated from observational data.
- Then the causal effect

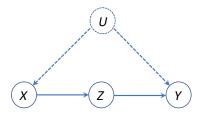
$$\gamma_{kj} = \frac{\partial}{\partial x_k} \mathbb{E}(X_j \mid do(X_k = x_k))$$
$$= \frac{\partial}{\partial x_k} \int_z \left\{ \beta x_k + \alpha^{\mathsf{T}} z \right\} p(z) dz = \beta.$$

Reference: Pearl (2000) §3.3.

Problem setup:

- Given a causal DAG G, if P(y | do(x)) can be uniquely computed from the (pre-intervention) distributions of observed variables in G, then we say the causal effect of X on Y is identifiable.
- Note that we allow unobserved nodes in \mathcal{G} .
- Only observational data are collected.

Example: Observed nodes $X \rightarrow Z \rightarrow Y$; hidden node U, a common parent of X and Y (sometimes called a confounder).



Can we estimate the causal effect of X on Y or of Z on Y from observational data collected for (X, Y, Z)?

Back-door adjustment:

- Theorem 1 implies: If X, PA_X , Y are observed, then $P(y \mid do(x))$ is identifiable by (8).
- Theorem 1 is a special case of back-door adjustment: *PA_X* satisfies the back-door criterion relative to *X* and *Y*.
- Back-door criterion: A set of variables Z satisfies the back-door criterion relative to an ordered pair of variables (X, Y) in a DAG G if
 - 1 no nodes in Z is a descendant of X;
 - Z blocks every path between X and Y that contains an arrow into X (backdoor path).

Theorem 2 (Back-door adjustment)

If Z satisfies the back-door criterion relative to (X, Y). Then the causal effect of X on Y is given by

$$P(y \mid do(x)) = \sum_{z} P(y \mid x, z) P(z).$$
(11)

Proof.

Add intervention variable $F_X \to X$ to \mathcal{G} :

$$P(y \mid do(x)) = \sum_{z} P(y \mid do(x), z) P(z \mid do(x))$$
$$= \sum_{z} P(y \mid F_X = do(x), x, z) P(z)$$

Invoke that (X, Z) d-separates F_X and Y.

Linear SEM: By (11), the causal effect can be identified by regressing Y on (X, Z):

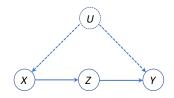
$$\gamma_{X \to Y} := \frac{\partial}{\partial x} \mathbb{E}(Y \mid do(x)) = \beta_X(Y \sim X + Z).$$

Suppose we have data observed for the three random variables X, Y, Z. Then to estimate the causal effect X on Y:

- **1** Discrete data: estimate P(y | x, z) and P(z) from data. Then plug into (11).
- **2** Linear SEM: least-squares regression Y on (X, Z), then

$$\widehat{\gamma}_{X\to Y} = \widehat{\beta}_X (Y \sim X + Z).$$

Example:



By Theorem 2,

$$P(y \mid do(z)) = \sum_{x} P(y \mid x, z) P(x), \quad P(z \mid do(x)) = P(z \mid x),$$

without observing U.

Is $P(y \mid do(x))$ identifiable? Yes, because:

$$P(y \mid do(x)) = P(y \mid x; \mathcal{G}_{\bar{X}})$$

= $\sum_{z} P(y \mid x, z; \mathcal{G}_{\bar{X}}) P(z \mid x; \mathcal{G}_{\bar{X}})$
= $\sum_{z} P(y \mid z; \mathcal{G}_{\bar{X}}) P(z \mid do(x))$
= $\sum_{z} P(y \mid do(z)) P(z \mid x).$ (12)

Linear SEMs:

$$\gamma_{X \to Y} = \gamma_{Z \to Y} \times \beta_X (Z \sim X)$$

= $\beta_Z (Y \sim Z + X) \times \beta_X (Z \sim X).$

■ Eq. (12) is an example of *front-door adjustment* (Theorem 3.3.4, Pearl (2000)):

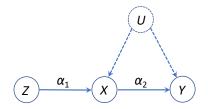
1 Z intercepts all directed paths from X to Y;

- **2** there is no back-door path from X to Z; and
- **3** all back-door paths from Z to Y are blocked by X.

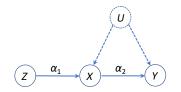
Then $P(y \mid do(x))$ is identifiable

$$P(y \mid do(x)) = \sum_{z} P(z \mid x) \sum_{x'} P(y \mid x', z) P(x').$$
(13)

 Rules of do-calculus (Pearl (2000) §3.4): a set of inference rules for transforming intervention and observational probabilities, say to translate causal effect to conditional probabilities. Instrumental variable formula (Bowden and Day 1984) (assume linear SEMs)

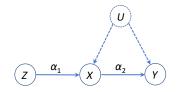


Observed nodes $Z \to X \to Y$, and U is hidden common parent of X and Y. Is $\gamma_{X \to Y} = \alpha_2$ identifiable?



- **1** Z has no parents, thus α_1 is identifiable by regressing X on Z: $\alpha_1 = \beta_Z (X \sim Z)$.
- 2 Similarly, the causal effect of Z on Y, $\alpha_1\alpha_2$, is also identifiable: $\alpha_1\alpha_2 = \beta_Z(Y \sim Z)$.
- **3** Combined we have the *instrumental variable formula*:

$$\alpha_2 = \frac{\beta_Z(Y \sim Z)}{\beta_Z(X \sim Z)} = \frac{\mathsf{Cov}(Y, Z)}{\mathsf{Cov}(X, Z)}.$$
 (14)



Two-stage least-squares:

- **1** Regress X on Z so $\alpha_1 = \beta_Z(X \sim Z)$ and let $\widehat{X} = \alpha_1 Z$.
- **2** Regress Y on \widehat{X} and then $\alpha_2 = \beta_{\widehat{X}}(Y \sim \widehat{X})$:

$$\beta_{\widehat{X}}(Y \sim \widehat{X}) = \frac{\mathsf{Cov}(Y, \alpha_1 Z)}{\mathsf{Var}(\alpha_1 Z)} = \frac{\mathsf{Cov}(Y, Z)}{\alpha_1 \mathsf{Var}(Z)} = \alpha_2.$$

Note: To estimate α_2 from samples of (X, Y, Z), $\beta \to \mathsf{LSE} \ \widehat{\beta}$.

Structure learning: Given data $x_i = (x_{i1}, \ldots, x_{ip}) \sim (\mathcal{G}, \mathbb{P})$ (causal model), $i = 1, \ldots, n$, how to estimate the DAG \mathcal{G} ?

- Constraint-based methods: Conditional independence tests against $X_i \perp X_j \mid X_S$ for all i, j, S.
- Score-based methods: Optimizing a scoring function over graph space.
- See, e.g. Aragam and Zhou (2015) Section 1.2 for recent literature.

Data types:

- Observational data (no intervention)
- Experimental data (intervention available)

Assumption: $\mathbb{P}(X_1, \ldots, X_p)$ is faithful wrt \mathcal{G} :

Definition 1

For a graphical model $(\mathcal{G}, \mathbb{P})$, we say the distribution \mathbb{P} is faithful to the graph \mathcal{G} if for every triple of disjoint sets $A, B, S \subset V$,

 $X_A \perp X_B \mid X_S \Leftrightarrow S$ separates (*d*-separates) A and B.

• Conditional independence (CI) in $\mathbb{P} \Leftrightarrow d$ -separation in \mathcal{G} , i.e.

$$\mathcal{I}_{\mathbb{P}}(A, B|S) \Leftrightarrow \mathcal{D}_{\mathcal{G}}(A, B|S).$$

- Given *G*, almost all parameter values in the SEMs will define a faithful P.
- Structure learning: use CI relations learned from data to infer edges in *G*.

Suppose we only have observational data. What can be learned?

Definition 2 (Markov equivalence)

Two DAGs \mathcal{G} and \mathcal{G}' on the same set of nodes V are Markov equivalent if $\mathcal{D}_{\mathcal{G}}(X, Y|\mathbf{Z}) \Leftrightarrow \mathcal{D}_{\mathcal{G}'}(X, Y|\mathbf{Z})$ for any $X, Y \in V$ and $\mathbf{Z} \subseteq V \setminus \{X, Y\}$.

- Two DAGs are Markov equivalent if and only if they have the same skeletons and the same v-structures.
- A v-structure is a triplet {i, j, k} ⊆ V of the form i → k ← j:
 i and j are nonadjacent; k is called an uncovered collider.
- Equivalent DAGs form an equivalence class.
- DAGs in the same equivalence class cannot be distinguished from observational data. Thus we can only learn the equivalence class of G from observational data.

How to represent an equivalence class? CPDAG (Completed partially DAG).

Two types of edges in a DAG \mathcal{G} :

- A directed edge i → j is compelled in G if for every DAG G' equivalent to G, the edge i → j exists in G'.
- If an edge is not compelled in \mathcal{G} , then it is *reversible*.

Definition 3 (CPDAG)

The CPDAG of an equivalence class is the PDAG consisting of a directed edge for every compelled edge in the equivalence class, and an undirected edge for every reversible edge in the equivalence class.

Examples:

Theorem 3 (Spirtes et al. (1993))

Suppose $(\mathcal{G}, \mathbb{P})$ satisfies the faithfulness assumption. Then there is no edge between a pair of nodes $X, Y \in V$ if and only if there exists a subset $\mathbf{Z} \subseteq V \setminus \{X, Y\}$ such that $\mathcal{I}_P(X, Y | \mathbf{Z})$.

Constraint-based methods:

- **1** Find the skeleton of \mathcal{G} by CI tests;
- 2 Identify v-structures;
- **3** Orient other edges.

Output: CPDAG (or PDAG)

Outline of PC algorithm (Spirtes and Glymour 1991):

- 1: $E \leftarrow$ edge set of the complete undirected graph on V.
- 2: for $(i, j) \in E$ do
- 3: Search for a subset S_{ij} of either $N_i(E)$ or $N_j(E)$ such that $X_i \perp X_j \mid S_{ij}$. If found, $E \leftarrow E \setminus \{(i,j), (j,i)\}$ and store S_{ij} .
- 4: end for
- 5: Identify v-structures based on E and $\{S_{ij}\}$.
- 6: Orient as many edges in E as possible by Meek's rules.

Notes:

- **1** Line 3: $N_i(E) = \{X_k : (i, k) \in E\}.$
- 2 For loop: implemented in ascending order of $|S_{ij}| = \ell$ for $\ell = 0, \dots, \ell_{max}$.
- **3** Line 1 to 4: Estimate skeleton $sk(\widehat{\mathcal{G}})$ of \mathcal{G} .

Edge orientation steps:

- Identify v-structures (Line 5) given sk(G): For all nonadjacent pair (i, j) with a common neighbor k, orient i - k - j as i → k ← j if k ∉ S_{ij}. Because otherwise, X_i ⊥ X_j | S_{ij}, contradiction. After this step, we obtain a PDAG.
- Meek's rules (Line 6): In the resulting PDAG, orient as many undirected edges as possible by repeated application of four rules (Meek 1995).
 Basic idea: If orienting an undirected edge *i* − *j* into *i* → *j*

would result in additional v-structures or a directed cycle, then orient it into $i \leftarrow j$.

Conditional independence tests $(H_0 : X \perp Y \mid S)$: Gaussian data: partial correlation $cor(X, Y \mid S) = 0$.

Sample covariance matrix Σ̂ from data columns of (X, Y, S).
 Ω̂ = (ω_{ij}) ← Σ̂⁻¹ and ρ̂_{XY|S} = -ω₁₂/√ω₁₁ω₂₂.
 Fisher z-transformation.

$$z(X, Y|S) = \frac{1}{2} \log \left(\frac{1 + \widehat{\rho}_{XY|S}}{1 - \widehat{\rho}_{XY|S}} \right)$$

and
$$\sqrt{n-|S|-3} \cdot z(X,Y|S) \mid H_0 \sim \mathcal{N}(0,1).$$

Discrete data: G^2 or χ^2 test for conditional independence.

$$G^{2}(X, Y; S = s) = 2 \sum_{x,y} O_{xys} \log(O_{xys}/E_{xys}),$$

$$G^{2}(X, Y; S) = \sum_{s} G^{2}(X, Y; S = s) \mid H_{0} \sim \chi^{2}_{(|X|-1)(|Y|-1)|S|},$$

 E_{xys} : expected counts under H_0 ; O_{xys} : observed counts.

Correctness and consistency:

Let $\widehat{\mathcal{G}}_n$ be the estimated graph by PC from a sample of size *n* and \mathcal{C} be the CPDAG of \mathcal{G} . Suppose that \mathbb{P} is faithful to \mathcal{G} .

- I CI oracles (Spirtes et al. 1993; Meek 1995): If all CI tests are perfect (oracle), then $\widehat{\mathcal{G}}_n = \mathcal{C}$.
- 2 Large-sample limit: When the sample size n → ∞, all CI tests involved will be perfect (no type I or II error) with high probability. Then the PC algorithm estimates the CPDAG of *G* consistently, i.e.

$$\lim_{n\to\infty}\mathbb{P}(\widehat{\mathcal{G}}_n=\mathcal{C})=1.$$

Score-based methods:

$$\widehat{\mathcal{G}} = \underset{\substack{G \in Space}}{\operatorname{argmax}} S(G, \mathbf{D}).$$
(15)

- $\mathbf{I} \ \mathbf{D} = (x_{ij})_{n \times p} = [X_1 \mid \ldots \mid X_p] \text{ i.i.d. data from } (\mathcal{G}, \mathbb{P}).$
- 2 $S(G, \mathbf{D})$ is a scoring function: log-likelihood of \mathbf{D} given a graph G with a penalty term on model complexity (number of edges or number of free parameters). For example,

$$S_{\mathsf{BIC}}(G,\mathbf{D}) = \log p(\mathbf{D} \mid \widehat{\theta}, G) - \frac{d}{2} \log n, \qquad (16)$$

 $\hat{\theta}$: MLE of parameters under *G*, *d* = dimension of θ .

3 Space of graph: DAG space or equivalence class (CPDAGs).

BIC score for Gaussian DAGs:

• Liner SEM for data columns $X_j \in \mathbb{R}^n, j \in [p]$:

$$X_j = \sum_{i \in PA_j} \beta_{ij} X_i + \varepsilon_j, \qquad \varepsilon_j \sim \mathcal{N}_n(0, \omega_j^2 I_n).$$

Decomposable:

$$S_{\text{BIC}}(G, \mathbf{D}) = \sum_{j=1}^{p} s(X_j, PA_j^G)$$

$$= \sum_j \log p(X_j \mid \widehat{\beta}_j, \widehat{\omega}_j^2, PA_j^G) - \frac{1}{2} |PA_j^G| \log n.$$
(17)

 $(\widehat{\beta}_j, \widehat{\omega}_j^2)$: MLEs in Gaussian regression $X_j \sim PA_j^G$.

Bayesian Dirichlet score for discrete DAGs (Heckerman et al. 1995):

• Multinomial distribution: $\theta_{ijk} = \mathbb{P}(X_i = k \mid PA_i = j)$. Parameter for $[X_i \mid PA_i]$ is a $q_i \times r_i$ table:

$$\Theta_i = \left\{ heta_{ijk} : j \in [q_i], k \in [r_i], ext{such that} \sum_{k=1}^{r_i} heta_{ijk} = 1
ight\}.$$

• Assume a conjugate prior over Θ_i given G

$$\Theta_i \mid PA_i \sim \text{Product-Dirichlet}((\alpha_{ijk})_{q_i \times r_i}) \Leftrightarrow \\ \theta_{ij} = (\theta_{ij1}, \dots, \theta_{ijr_i}) \mid PA_i \sim_{ind} \text{Dirichlet}(\alpha_{ij1}, \dots, \alpha_{ijr_i}).$$

Choose $\alpha_{ijk} = \alpha/(r_i \cdot q_i)$.

Assume a prior over $G: P(G) \propto \lambda^{d(G)}, \lambda \in (0, 1)$ and $d(G) = \sum_{i=1}^{p} r_i q_i$ number of parameters.

Given (G, \mathbf{D}) , how to compute the BD score: $(PA_i \equiv PA_i^G)$

• Contingency tables: $N_{ijk} = \#\{PA_i = j \& X_i = k\}$ in **D**. For each node, a $q_i \times r_i$ table: $N_i = \{N_{ijk} : j \in [q_i], k \in [r_i]\}$.

■ Marginal likelihood of N_{ij} (one row) given PA_i:

$$P(N_{ij} \mid PA_i) = \int P(N_{ij} \mid \theta_{ij}) \pi(\theta_{ij} \mid PA_i) d\theta_{ij}$$
$$= \frac{\Gamma(\alpha/q_i)}{\Gamma(N_{ij\bullet} + \alpha/q_i)} \prod_{k=1}^{r_i} \frac{\Gamma(N_{ijk} + \alpha/(q_i r_i))}{\Gamma(\alpha/(q_i r_i))},$$

where $N_{ij\bullet} = \sum_k N_{ijk}$ (row sum).

Marginal likelihood of N_i (the whole table):

$$P(N_i \mid PA_i) = \prod_{j=1}^{q_i} P(N_{ij} \mid PA_i).$$

Marginal likelihood of D (all p tables, one for each node):

$$P(\mathbf{D} \mid G) = \prod_{i=1}^{p} P(N_i \mid PA_i).$$

Posterior distribution

$$P(G \mid \mathbf{D}) \propto P(G)P(\mathbf{D} \mid G)$$

= $\prod_{i=1}^{p} \lambda^{q_i r_i} \prod_{j=1}^{q_i} \frac{\Gamma(\alpha/q_i)}{\Gamma(N_{ij\bullet} + \alpha/q_i)} \prod_{k=1}^{r_i} \frac{\Gamma(N_{ijk} + \alpha/(q_i r_i))}{\Gamma(\alpha/(q_i r_i))}.$

BD score is decomposable:

$$S_{BD}(G, \mathbf{D}) := \log P(G) + \log P(\mathbf{D} \mid G) = \sum_{i=1}^{p} s(N_i, PA_i).$$
(18)

Properties of the scoring functions (17) and (18):

- Score-equivalent: For any two Markov equivalent DAGs G_1 and G_2 , we have $S(G_1, \mathbf{D}) = S(G_2, \mathbf{D})$.
- Consistent (Chickering 2002): A scoring function S(G, •) is consistent if the following two properties hold for D_n ~_{iid} P:
 - 1 If $\mathbb{P} \in G \setminus H$, then $\lim_{n} \mathbb{P}\{S(G, \mathbf{D}_{n}) > S(H, \mathbf{D}_{n})\} = 1$.
 - 2 If $\mathbb{P} \in G \cap H$ and d(G) < d(H), i.e. G has fewer parameters, then $\lim_{n} \mathbb{P}\{S(G, \mathbf{D}_{n}) > S(H, \mathbf{D}_{n})\} = 1$.

Haughton (1988) established:

1 $S_{\text{BIC}}(G, \bullet)$ (16) is consistent for exponential family.

2 $S_{BD}(G, \mathbf{D}_n) = S_{BIC}(G, \mathbf{D}_n) + O_{\rho}(1) = O_{\rho}(n) + O_{\rho}(1).$

Thus, both (17) and (18) are consistent scoring functions.

Consistency of score-based learning:

Theorem 4

Suppose \mathbb{P} is faithful to \mathcal{G} and $\mathbf{D}_n \sim_{iid} \mathbb{P}$. If $S(G, \bullet)$ is consistent and score-equivalent, then

$$\lim_{n\to\infty} \mathbb{P}\left\{ \operatorname*{argmax}_{G} S(G,\mathbf{D}_n) = \mathcal{C} \right\} = 1,$$

where $C := \{G : G \simeq G\}$ is the Markov equivalence class of G.

Continuous relaxation of the scoring function:

Consider Gaussian DAGs for simplicity. The BIC score
 S_{BIC}(G, D) (17) is over a discrete space and hard to optimize.

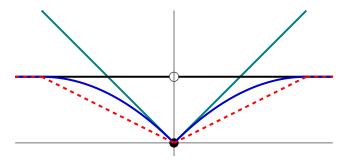
•
$$B = (\beta_{ij}) = [\beta_1 | \cdots | \beta_p]$$
 and $\Omega = \text{diag}(\omega_j^2)$.

Maximum regularized likelihood:

$$(\widehat{B},\widehat{\Omega}) = \underset{B \in \mathcal{B},\Omega}{\operatorname{argmax}} \sum_{j=1}^{p} \log p(X_j \mid X\beta_j, \omega_j^2) - \lambda_n \rho(\beta_j).$$
(19)

- B: weighted adjacency matrices of DAGs, so that PA_j = supp(β_j) and supp(B) defines a DAG G.
 ρ(β_j) = ∑_i ρ(|β_{ij}|): continuous function, e.g. ℓ₁ or concave (Fu and Zhou 2013; Aragam and Zhou 2015).
- 3 Apply continuous function optimization, such as block-wise coordinate descent.

Compare regularizers: ℓ_1 , concave, and ℓ_0 .



Black: ℓ_0 penalty; Teal: ℓ_1 penalty; Blue: MCP; Red, dashed: Capped- ℓ_1 penalty.

Score-based learning with experimental data:

- If X_i is under intervention, i.e. $do(X_i = x^*)$: delete edges $X_k \to X_i$ for all $k \in PA_i$.
- Let O_i be the row indices of the data matrix **D** for which node X_i is *not* under intervention (i.e. observational). Replace p(X_i | PA_i) by p(X_{O_ii} | PA_{O_ii}).

1 Gaussian data: log-likelihood in (17) and (19) replaced by

$$\ell(B,\Omega;\mathbf{D}) = \sum_{j=1}^{p} \log p(X_{\mathcal{O}_j j} \mid X_{\mathcal{O}_j} \beta_j, \omega_j^2).$$
(20)

2 Multinomial data: Replace N_{ijk} by

$$N_{ijk}(\mathcal{O}_i) = \#\{rows \in \mathcal{O}_i : PA_i = j \& X_i = k\}.$$

Identifiability of causal DAGs:

Assumptions:

- (A1) The true parameter Θ^* is faithful to \mathcal{G} .
- (A2) The parameter for $[X_j | PA_j]$ is identifiable.
- (A3) Each node X_j is under intervention for $n_j \gg \sqrt{n}$ data points.

Theorem 5 (Gu et al. (2019))

Assume (A1), (A2) and (A3). Denote by $\ell(\Theta; \mathbf{D}_n)$ the log-likelihood of the data \mathbf{D}_n . For any $\Theta \neq \Theta^*$,

$$\lim_{n\to\infty} \mathbb{P}\{\ell(\Theta^*; \mathbf{D}_n) > \ell(\Theta; \mathbf{D}_n)\} = 1.$$

- **1** Gaussian data, $\ell(\Theta; \mathbf{D}_n) = (20)$.
- 2 Discrete data, $\ell(\Theta; \mathbf{D}_n) = \sum_{i=1}^{p} \sum_{j,k} N_{ijk}(\mathcal{O}_i) \log \theta_{ijk}$.

- Bryon Aragam and Qing Zhou. Concave penalized estimation of sparse Gaussian Bayesian networks. *Journal of Machine Learning Research*, 16:2273–2328, 2015.
- R.J. Bowden and N.E. Day. *Instrumental Variables*. Cambridge University Press, 1984.
- David Maxwell Chickering. Optimal structure identification with greedy search. *The Journal of Machine Learning Research*, 3: 507–554, 2002.
- Fei Fu and Qing Zhou. Learning sparse causal Gaussian networks with experimental intervention: Regularization and coordinate descent. *Journal of the American Statistical Association*, 108 (501):288–300, 2013.

References II

- Jiaying Gu, Fei Fu, and Qing Zhou. Penalized estimation of directed acyclic graphs from discrete data. *Statistics and Computing*, 29:161–176, 2019.
- Dominique M.A. Haughton. On the choice of a model to fit data from an exponential family. *Annals of Statistics*, 16:342–355, 1988.
- David Heckerman, Dan Geiger, and David M Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. *Machine learning*, 20(3):197–243, 1995.
- Christopher Meek. Causal inference and causal explanation with background knowledge. *Uncertainty in Artificial Intelligence*, 11: 403–410, 1995.
- Judea Pearl. Causal diagrams for empirical research. *Biometrika*, 82:669–710, 1995.

References III

- Judea Pearl. *Causality: Models, reasoning and inference.* Cambridge Univ Press, 2000.
- P. Spirtes, C. Glymour, and R. Scheines. *Causation, Prediction, and Search.* Springer, 1993.
- Peter Spirtes and Clark Glymour. An algorithm for fast recovery of sparse causal graphs. *Social Science Computer Review*, 9(1): 62–72, 1991.