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Causal DAGs and intervention

(Reference: Pearl (2000) §3.1 and §3.2; Pearl (1995))
Definition: A causal model among X1, . . . ,Xp is defined by a DAG
G and a distribution P(ε) = P(ε1, . . . , εp).

Each child-parent relationship in G, (Xj ,PAj), represents a
functional relationship (structural equation model, SEM):

Xj = fj(PAj , εj), j = 1, . . . , p. (1)

The noise variables are jointly independent:

P(ε1, . . . , εp) =
∏
j

P(εj). (2)

(1) and (2) imply that P(X1, . . . ,Xp) is Markovian with
respect to the DAG G:

P(X1, . . . ,Xp) =

p∏
j=1

P(Xj | PAj). (3)
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Causal DAGs and intervention

Causal effect defined via external intervention:

Consider an atomic intervention that forces Xi to some fixed
value xi , which we denote by do(Xi = xi ) or do(xi ) for short.

Effect of do(xi ): to replace the SEM for Xi by Xi = xi and
substitute Xi = xi in the other SEMs.

For two distinct sets of variables X and Y , the causal effect of
X on Y is determined by the mapping

x 7→ P[Y | do(X = x)] ≡ P(Y | do(x)).

Examples of causal effects.

1 linear SEM: Causal effect ∂E(Y |do(x))
∂x .

2 Treatment (X = 1) vs control (X = 0): Causal effect
E(Y | do(X = 1))− E(Y | do(X = 0)).
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Causal DAGs and intervention

Model interventions as variables:

Treat intervention as additional variable in the DAG: Fj for
intervention on Xj .

SEM for Xj change to

Xj = hj(PAj ,Fj , εj) =

{
fj(PAj , εj), if Fj = idle

x , if Fj = do(x).
(4)

Augment the parents of Xj to PAj ∪ {Fj}:

P(Xj = xj | PAj ,Fj) =

{
P(Xj = xj | PAj), if Fj = idle

I (xj = x), if Fj = do(x),

assuming all Xj are discrete for convenience.
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Causal DAGs and intervention

Computing causal effect (of interventions): To simplify notation,
consider discrete Xj and write P(X = x) = P(x).

Truncated factorization of P(x1, . . . , xp) given do(Xi = x∗i ):

P(x1, . . . , xp | do(x∗i )) = I (xi = x∗i )
∏
j ̸=i

P(xj | paj), (5)

where paj = (xk : k ∈ PAj).

Multiple interventions do(XS = x∗), S ⊂ {1, . . . , p}:

P(x1, . . . , xp | do(x∗)) = I (xS = x∗)
∏
j /∈S

P(xj | paj). (6)

Graph structure change when do(Xi = x∗i ): delete edges
Xj → Xi for all j ∈ PAi , i.e. change G to GX̄i

.
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Causal DAGs and intervention

Difference between P(y | do(x)) and P(y | x).
Two DAGs G1 and G2 on X1,X2:

G1

G2

Find P(x1 | do(x2)) with respect to G1 and G2.

G1 : P(x1 | do(x2)) = P(x1),

G2 : P(x1 | do(x2)) = P(x1 | x2).
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Causal DAGs and intervention

From (5), putting xi = x∗i :

P(x−i | do(x∗i )) =
∏
j ̸=i

P(xj | paj) ·
P(x∗i | pai )
P(x∗i | pai )

=
P(x1, . . . , xp)

P(x∗i | pai )
= P(xj , j ∈ B | x∗i , pai )P(pai ), (7)

where B = [p] \ {i ,PAi} and [p] :={1, . . . , p}.

Intervention event (do-operator) not on the right-hand side.

Compute causal effect (intervention probability) by conditional
probabilities (pre-intervention probabilities) that can be
estimated from observational data.
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Causal DAGs and intervention

Theorem 1 (Adjustment for direct causes)

Let PAi be the parents of Xi and Y be any set of other variables in
a causal DAG G. Then the causal effect of do(Xi = xi ) on Y is
given by

P(y | do(xi )) =
∑
pai

P(y | xi , pai )P(pai ), (8)

where P(y | xi , pai ) and P(pai ) are pre-intervention probabilities.

Proof.

Marginalize out Xj /∈ Y ∪ {Xi} on both sides of (7).
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Causal DAGs and intervention

A simple implication of Theorem 1:

If Y is a set of non-descendants of Xi , then

Y ⊥ Xi | PAi .

By Theorem 1

P(y | do(xi )) =
∑
pai

P(y | xi , pai )P(pai )

=
∑
pai

P(y | pai )P(pai ) = P(y),

which is independent of the intervention on Xi . Thus, Xi has no
causal effect on Y .
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Linear structural equation models

A causal model (G,Pε) with linear SEMs:

A linear model for each child-parent relationship:

Xj =
∑
i∈PAj

βijXi + εj , j = 1, . . . , p. (9)

εj ’s are independent and E(εj) = 0;

Usually assume εj ∼ N (0, ω2
j ). In this case, the DAG is called

a Gaussian DAG and the graphical model is called a Gaussian
Bayesian network.
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Linear structural equation models

Causal effect:

The causal effect of Xk on Xj

γkj :=
∂E(Xj | do(Xk = x))

∂x
= E(Xj | do(Xk = c + 1))− E(Xj | do(Xk = c)), (10)

for any c ∈ R, due to the linear model assumption.

Using modified DAG GX̄k
after intervention,

E(Xj | Xk = x ;GX̄k
) = γkjx ,

where E(•;GX̄k
) takes expectation with respect to GX̄k

.
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Linear structural equation models

Apply Theorem 1 to find γkj :

Let Z = PAk and z denote the value of PAk ,

p(xj | do(Xk = xk)) =

∫
z
p(xj | xk , z)p(z)dz ,

where the p on the right side is given by the pre-intervention
distribution (that of G).
Let (β, α) be the regression coefficient of Xj on (Xk ,PAk),
that is, E(Xj | Xk ,Z ) = βXk + αTZ , which can be estimated
from observational data.

Then the causal effect

γkj =
∂

∂xk
E(Xj | do(Xk = xk))

=
∂

∂xk

∫
z

{
βxk + αTz

}
p(z)dz = β.
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Estimation of causal effect

Reference: Pearl (2000) §3.3.
Problem setup:

Given a causal DAG G, if P(y | do(x)) can be uniquely
computed from the (pre-intervention) distributions of
observed variables in G, then we say the causal effect of X on
Y is identifiable.

Note that we allow unobserved nodes in G.
Only observational data are collected.
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Estimation of causal effect

Example: Observed nodes X → Z → Y ; hidden node U, a
common parent of X and Y (sometimes called a confounder).

X Z Y

U

Can we estimate the causal effect of X on Y or of Z on Y from
observational data collected for (X ,Y ,Z )?
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Estimation of causal effect

Back-door adjustment:

Theorem 1 implies: If X ,PAX ,Y are observed, then
P(y | do(x)) is identifiable by (8).

Theorem 1 is a special case of back-door adjustment: PAX

satisfies the back-door criterion relative to X and Y .

Back-door criterion: A set of variables Z satisfies the
back-door criterion relative to an ordered pair of variables
(X ,Y ) in a DAG G if

1 no nodes in Z is a descendant of X ;
2 Z blocks every path between X and Y that contains an arrow

into X (backdoor path).

Zhou, Q Causal DAGs 15/46



Estimation of causal effect

Theorem 2 (Back-door adjustment)

If Z satisfies the back-door criterion relative to (X ,Y ). Then the
causal effect of X on Y is given by

P(y | do(x)) =
∑
z

P(y | x , z)P(z). (11)

Proof.

Add intervention variable FX → X to G:

P(y | do(x)) =
∑
z

P(y | do(x), z)P(z | do(x))

=
∑
z

P(y | FX = do(x), x , z)P(z).

Invoke that (X ,Z ) d-separates FX and Y .
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Estimation of causal effect

Linear SEM: By (11), the causal effect can be identified by
regressing Y on (X ,Z ):

γX→Y :=
∂

∂x
E(Y | do(x)) = βX (Y ∼ X + Z ).

Suppose we have data observed for the three random variables
X ,Y ,Z . Then to estimate the causal effect X on Y :

1 Discrete data: estimate P(y | x , z) and P(z) from data. Then
plug into (11).

2 Linear SEM: least-squares regression Y on (X ,Z ), then

γ̂X→Y = β̂X (Y ∼ X + Z ).
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Estimation of causal effect

Example:

X Z Y

U

By Theorem 2,

P(y | do(z)) =
∑
x

P(y | x , z)P(x), P(z | do(x)) = P(z | x),

without observing U.
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Estimation of causal effect

Is P(y | do(x)) identifiable? Yes, because:

P(y | do(x)) = P(y | x ;GX̄ )

=
∑
z

P(y | x , z ;GX̄ )P(z | x ;GX̄ )

=
∑
z

P(y | z ;GX̄ )P(z | do(x))

=
∑
z

P(y | do(z))P(z | x). (12)

Linear SEMs:

γX→Y = γZ→Y × βX (Z ∼ X )

= βZ (Y ∼ Z + X )× βX (Z ∼ X ).

Zhou, Q Causal DAGs 19/46



Estimation of causal effect

Eq. (12) is an example of front-door adjustment (Theorem
3.3.4, Pearl (2000)):

1 Z intercepts all directed paths from X to Y ;
2 there is no back-door path from X to Z ; and
3 all back-door paths from Z to Y are blocked by X .

Then P(y | do(x)) is identifiable

P(y | do(x)) =
∑
z

P(z | x)
∑
x ′

P(y | x ′, z)P(x ′). (13)

Rules of do-calculus (Pearl (2000) §3.4): a set of inference
rules for transforming intervention and observational
probabilities, say to translate causal effect to conditional
probabilities.
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Estimation of causal effect

Instrumental variable formula (Bowden and Day 1984) (assume
linear SEMs)

XZ Y

U

α1 α2

Observed nodes Z → X → Y , and U is hidden common parent of
X and Y . Is γX→Y = α2 identifiable?
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Estimation of causal effect

XZ Y

U

α1 α2

1 Z has no parents, thus α1 is identifiable by regressing X on
Z : α1 = βZ (X ∼ Z ).

2 Similarly, the causal effect of Z on Y , α1α2, is also
identifiable: α1α2 = βZ (Y ∼ Z ).

3 Combined we have the instrumental variable formula:

α2 =
βZ (Y ∼ Z )

βZ (X ∼ Z )
=

Cov(Y ,Z )

Cov(X ,Z )
. (14)
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Estimation of causal effect

XZ Y

U

α1 α2

Two-stage least-squares:

1 Regress X on Z so α1 = βZ (X ∼ Z ) and let X̂ = α1Z .

2 Regress Y on X̂ and then α2 = β
X̂
(Y ∼ X̂ ):

β
X̂
(Y ∼ X̂ ) =

Cov(Y , α1Z )

Var(α1Z )
=

Cov(Y ,Z )

α1 Var(Z )
= α2.

Note: To estimate α2 from samples of (X ,Y ,Z ), β → LSE β̂.
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Structure learning of DAGs

Structure learning: Given data xi = (xi1, . . . , xip) ∼ (G,P) (causal
model), i = 1, . . . , n, how to estimate the DAG G?

Constraint-based methods: Conditional independence tests
against Xi ⊥ Xj | XS for all i , j ,S .

Score-based methods: Optimizing a scoring function over
graph space.

See, e.g. Aragam and Zhou (2015) Section 1.2 for recent literature.

Data types:

Observational data (no intervention)

Experimental data (intervention available)
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Structure learning of DAGs

Assumption: P(X1, . . . ,Xp) is faithful wrt G:

Definition 1

For a graphical model (G,P), we say the distribution P is faithful
to the graph G if for every triple of disjoint sets A,B,S ⊂ V ,

XA ⊥ XB | XS ⇔ S separates (d-separates) A and B.

Conditional independence (CI) in P ⇔ d-separation in G, i.e.

IP(A,B|S)⇔ DG(A,B|S).

Given G, almost all parameter values in the SEMs will define a
faithful P.
Structure learning: use CI relations learned from data to infer
edges in G.
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Structure learning of DAGs

Suppose we only have observational data. What can be learned?

Definition 2 (Markov equivalence)

Two DAGs G and G′ on the same set of nodes V are Markov
equivalent if DG(X ,Y |Z )⇔ DG′(X ,Y |Z ) for any X ,Y ∈ V and
Z ⊆ V \ {X ,Y }.

Two DAGs are Markov equivalent if and only if they have the
same skeletons and the same v -structures.

A v -structure is a triplet {i , j , k} ⊆ V of the form i → k ← j :
i and j are nonadjacent; k is called an uncovered collider.

Equivalent DAGs form an equivalence class.

DAGs in the same equivalence class cannot be distinguished
from observational data. Thus we can only learn the
equivalence class of G from observational data.
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Structure learning of DAGs

How to represent an equivalence class? CPDAG (Completed
partially DAG).

Two types of edges in a DAG G:
A directed edge i → j is compelled in G if for every DAG G′
equivalent to G, the edge i → j exists in G′.
If an edge is not compelled in G, then it is reversible.

Definition 3 (CPDAG)

The CPDAG of an equivalence class is the PDAG consisting of a
directed edge for every compelled edge in the equivalence class,
and an undirected edge for every reversible edge in the equivalence
class.

Examples:
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Structure learning of DAGs

Theorem 3 (Spirtes et al. (1993))

Suppose (G,P) satisfies the faithfulness assumption. Then there is
no edge between a pair of nodes X ,Y ∈ V if and only if there
exists a subset Z ⊆ V \ {X ,Y } such that IP(X ,Y |Z ).

Constraint-based methods:

1 Find the skeleton of G by CI tests;

2 Identify v -structures;

3 Orient other edges.

Output: CPDAG (or PDAG)
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Structure learning of DAGs

Outline of PC algorithm (Spirtes and Glymour 1991):

1: E ← edge set of the complete undirected graph on V .
2: for (i , j) ∈ E do
3: Search for a subset Sij of either Ni (E ) or Nj(E ) such that

Xi ⊥ Xj | Sij . If found, E ← E \ {(i , j), (j , i)} and store Sij .

4: end for
5: Identify v -structures based on E and {Sij}.
6: Orient as many edges in E as possible by Meek’s rules.

Notes:

1 Line 3: Ni (E ) = {Xk : (i , k) ∈ E}.
2 For loop: implemented in ascending order of |Sij | = ℓ for

ℓ = 0, . . . , ℓmax.

3 Line 1 to 4: Estimate skeleton sk(Ĝ) of G.
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Structure learning of DAGs

Edge orientation steps:

1 Identify v -structures (Line 5) given sk(Ĝ):
For all nonadjacent pair (i , j) with a common neighbor k ,
orient i − k − j as i → k ← j if k /∈ Sij .
Because otherwise, Xi ̸⊥ Xj | Sij , contradiction.
After this step, we obtain a PDAG.

2 Meek’s rules (Line 6): In the resulting PDAG, orient as many
undirected edges as possible by repeated application of four
rules (Meek 1995).
Basic idea: If orienting an undirected edge i − j into i → j
would result in additional v -structures or a directed cycle,
then orient it into i ← j .
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Structure learning of DAGs

Conditional independence tests (H0 : X ⊥ Y | S):
Gaussian data: partial correlation cor(X ,Y | S) = 0.

1 Sample covariance matrix Σ̂ from data columns of (X ,Y ,S).

2 Ω̂ = (ωij)← Σ̂−1 and ρ̂XY |S = −ω12/
√
ω11ω22.

3 Fisher z-transformation,

z(X ,Y |S) = 1

2
log

(
1 + ρ̂XY |S

1− ρ̂XY |S

)
and

√
n − |S | − 3 · z(X ,Y |S) | H0 ∼ N (0, 1).

Discrete data: G 2 or χ2 test for conditional independence.

G 2(X ,Y ;S = s) = 2
∑
x ,y

Oxys log(Oxys/Exys),

G 2(X ,Y ;S) =
∑
s

G 2(X ,Y ;S = s) | H0 ∼ χ2
(|X |−1)(|Y |−1)|S |,

Exys : expected counts under H0; Oxys : observed counts.
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Structure learning of DAGs

Correctness and consistency:

Let Ĝn be the estimated graph by PC from a sample of size n and
C be the CPDAG of G. Suppose that P is faithful to G.

1 CI oracles (Spirtes et al. 1993; Meek 1995): If all CI tests are
perfect (oracle), then Ĝn = C.

2 Large-sample limit: When the sample size n→∞, all CI tests
involved will be perfect (no type I or II error) with high
probability. Then the PC algorithm estimates the CPDAG of
G consistently, i.e.

lim
n→∞

P(Ĝn = C) = 1.
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Structure learning of DAGs

Score-based methods:

Ĝ = argmax
G∈Space

S(G ,D). (15)

1 D = (xij)n×p = [X1 | . . . | Xp] i.i.d. data from (G,P).
2 S(G ,D) is a scoring function: log-likelihood of D given a

graph G with a penalty term on model complexity (number of
edges or number of free parameters). For example,

SBIC(G ,D) = log p(D | θ̂,G )− d

2
log n, (16)

θ̂: MLE of parameters under G , d = dimension of θ.

3 Space of graph: DAG space or equivalence class (CPDAGs).
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Structure learning of DAGs

BIC score for Gaussian DAGs:

Liner SEM for data columns Xj ∈ Rn, j ∈ [p]:

Xj =
∑
i∈PAj

βijXi + εj , εj ∼ Nn(0, ω
2
j In).

Decomposable:

SBIC(G ,D) =

p∑
j=1

s(Xj ,PA
G
j ) (17)

=
∑
j

log p(Xj | β̂j , ω̂2
j ,PA

G
j )−

1

2
|PAG

j | log n.

(β̂j , ω̂
2
j ): MLEs in Gaussian regression Xj ∼ PAG

j .
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Structure learning of DAGs

Bayesian Dirichlet score for discrete DAGs (Heckerman et al.
1995):

Multinomial distribution: θijk = P(Xi = k | PAi = j).
Parameter for [Xi | PAi ] is a qi × ri table:

Θi =

{
θijk : j ∈ [qi ], k ∈ [ri ], such that

ri∑
k=1

θijk = 1

}
.

Assume a conjugate prior over Θi given G

Θi | PAi ∼ Product-Dirichlet((αijk)qi×ri )⇔
θij = (θij1, . . . , θijri ) | PAi ∼ind Dirichlet(αij1, . . . , αijri ).

Choose αijk = α/(ri · qi ).
Assume a prior over G : P(G ) ∝ λd(G), λ ∈ (0, 1) and
d(G ) =

∑p
i=1 riqi number of parameters.
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Structure learning of DAGs

Given (G ,D), how to compute the BD score: (PAi ≡ PAG
i )

Contingency tables: Nijk = #{PAi = j &Xi = k} in D. For
each node, a qi × ri table: Ni = {Nijk : j ∈ [qi ], k ∈ [ri ]}.
Marginal likelihood of Nij (one row) given PAi :

P(Nij | PAi ) =

∫
P(Nij | θij)π(θij | PAi )dθij

=
Γ(α/qi )

Γ(Nij• + α/qi )

ri∏
k=1

Γ(Nijk + α/(qi ri ))

Γ(α/(qi ri ))
,

where Nij• =
∑

k Nijk (row sum).

Marginal likelihood of Ni (the whole table):

P(Ni | PAi ) =

qi∏
j=1

P(Nij | PAi ).
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Structure learning of DAGs

Marginal likelihood of D (all p tables, one for each node):

P(D | G ) =

p∏
i=1

P(Ni | PAi ).

Posterior distribution

P(G | D) ∝ P(G )P(D | G )

=

p∏
i=1

λqi ri

qi∏
j=1

Γ(α/qi )

Γ(Nij• + α/qi )

ri∏
k=1

Γ(Nijk + α/(qi ri ))

Γ(α/(qi ri ))
.

BD score is decomposable:

SBD(G ,D) := logP(G ) + logP(D | G ) =

p∑
i=1

s(Ni ,PAi ).

(18)
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Structure learning of DAGs

Properties of the scoring functions (17) and (18):

Score-equivalent: For any two Markov equivalent DAGs G1

and G2, we have S(G1,D) = S(G2,D).

Consistent (Chickering 2002): A scoring function S(G , •) is
consistent if the following two properties hold for Dn ∼iid P:

1 If P ∈ G \ H, then limn P{S(G ,Dn) > S(H,Dn)} = 1.
2 If P ∈ G ∩ H and d(G ) < d(H), i.e. G has fewer parameters,

then limn P{S(G ,Dn) > S(H,Dn)} = 1.

Haughton (1988) established:

1 SBIC(G , •) (16) is consistent for exponential family.

2 SBD(G ,Dn) = SBIC(G ,Dn) + Op(1) = Op(n) + Op(1).

Thus, both (17) and (18) are consistent scoring functions.
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Structure learning of DAGs

Consistency of score-based learning:

Theorem 4

Suppose P is faithful to G and Dn ∼iid P. If S(G , •) is consistent
and score-equivalent, then

lim
n→∞

P
{
argmax

G
S(G ,Dn) = C

}
= 1,

where C :={G : G ≃ G} is the Markov equivalence class of G.
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Structure learning of DAGs

Continuous relaxation of the scoring function:

Consider Gaussian DAGs for simplicity. The BIC score
SBIC (G ,D) (17) is over a discrete space and hard to optimize.

B = (βij) = [β1 | · · · | βp] and Ω = diag(ω2
j ).

Maximum regularized likelihood:

(B̂, Ω̂) = argmax
B∈B,Ω

p∑
j=1

log p(Xj | Xβj , ω
2
j )− λnρ(βj). (19)

1 B: weighted adjacency matrices of DAGs, so that
PAj = supp(βj) and supp(B) defines a DAG G .

2 ρ(βj) =
∑

i ρ(|βij |): continuous function, e.g. ℓ1 or concave
(Fu and Zhou 2013; Aragam and Zhou 2015).

3 Apply continuous function optimization, such as block-wise
coordinate descent.
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Structure learning of DAGs

Compare regularizers: ℓ1, concave, and ℓ0.

Black: ℓ0 penalty; Teal: ℓ1 penalty; Blue: MCP; Red, dashed:
Capped-ℓ1 penalty.
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Structure learning of DAGs

Score-based learning with experimental data:

If Xi is under intervention, i.e. do(Xi = x∗): delete edges
Xk → Xi for all k ∈ PAi .

Let Oi be the row indices of the data matrix D for which
node Xi is not under intervention (i.e. observational). Replace
p(Xi | PAi ) by p(XOi i | PAOi i ).

1 Gaussian data: log-likelihood in (17) and (19) replaced by

ℓ(B,Ω;D) =

p∑
j=1

log p(XOj j | XOjβj , ω
2
j ). (20)

2 Multinomial data: Replace Nijk by

Nijk(Oi ) = #{rows ∈ Oi : PAi = j &Xi = k}.
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Structure learning of DAGs

Identifiability of causal DAGs:

Assumptions:

(A1) The true parameter Θ∗ is faithful to G.
(A2) The parameter for [Xj | PAj ] is identifiable.

(A3) Each node Xj is under intervention for nj ≫
√
n data points.

Theorem 5 (Gu et al. (2019))

Assume (A1), (A2) and (A3). Denote by ℓ(Θ;Dn) the
log-likelihood of the data Dn. For any Θ ̸= Θ∗,

lim
n→∞

P{ℓ(Θ∗;Dn) > ℓ(Θ;Dn)} = 1.

1 Gaussian data, ℓ(Θ;Dn) = (20).

2 Discrete data, ℓ(Θ;Dn) =
∑p

i=1

∑
j ,k Nijk(Oi ) log θijk .
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