Chapter 6
 Introduction to Graphical Models

Qing Zhou

UCLA Department of Statistics

Stats 201C Advanced Modeling and Inference Lecture Notes

Outline

1 Conditional independence (Cl)
2 Undirected graphical models
3 Directed acyclic graphs
4 Faithfulness

Conditional independence

Definition: If X, Y, Z are three random variables, we say $X \perp Y \mid Z$ if $\mathbb{P}(X \in A \mid Y, Z)$ is a function of Z only for any measurable set A.
If they admit a joint density (or mass function) f, then

$$
X \perp Y \mid Z \Leftrightarrow f_{X Y \mid Z}(x, y \mid z)=f_{X \mid Z}(x \mid z) f_{Y \mid Z}(y \mid z)
$$

Other equivalent conditions (f as a generic symbol for densities):

- $f(x, y, z)=f(x, z) f(y, z) / f(z)$.
- $f(x \mid y, z)=f(x \mid z)$.

■ $f(x, z \mid y)=f(x \mid z) f(z \mid y)$.
■ $f(x, y, z)=h(x, z) k(y, z)$ for some h, k.

- $f(x, y, z)=f(x \mid z) f(y, z)$.

Conditional independence

Cl in statistical inference (Dawid 1979):
■ Sufficient and ancillary statistics: Suppose $X \mid \Theta \sim P_{\Theta}$.
$1 T=T(X)$ is a sufficient statistic for Θ if $X \perp \Theta \mid T$.
$2 S=S(X)$ is an ancillary statistic if $S \perp \Theta$.
Example: $X=\left(X_{1}, \ldots, X_{n}\right) \mid \mu, \sigma^{2} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. Then $T_{1}=\sum_{i} X_{i}$ is sufficient for μ;
$T_{2}=\sum_{i}\left(X_{i}-\bar{X}\right)^{2}$ is ancillary for μ.
■ Model selection: $Y=X \beta+\varepsilon$. If $\operatorname{supp}(\beta)=S$, then $Y \perp\left(X \backslash X_{S}\right) \mid X_{S}$.
■ Parameter identification: $X \mid \Theta, \Phi \sim P_{(\Theta, \Phi)}$. If $X \perp \Phi \mid \Theta$, then Φ is not identifiable.
Example: Gaussian linear model $Y=X \beta+\varepsilon$ with X not having full column rank. Let $\Theta=X \beta \in \operatorname{col}(X)$ and $\Phi=\beta-X^{-} X \beta\left(X^{-}\right.$is a g-inverse of $\left.X ; X X^{-} X=X\right)$. Then $X \Phi=0$, i.e. $\Phi \in \operatorname{null}(X)$. Thus $Y \perp \Phi \mid\left(\Theta, \sigma^{2}\right)$, i.e. Φ is not identifiable. Note $\operatorname{dim}(\Theta)+\operatorname{dim}(\Phi)=\operatorname{dim}(\beta)$.

Conditional independence

Graphoid axioms (Pearl (1988), §3.1.2.)
Cl statement defines a ternary relation: $\langle X, Y \mid Z\rangle$ for $X \perp Y \mid Z$. Suppose X, Y, Z, W are disjoint subsets of random variables from a joint distribution \mathbb{P}. Then the Cl relation satisfies
(C1) symmetry: $\langle X, Y \mid Z\rangle \Rightarrow\langle Y, X \mid Z\rangle$;
(C2) decomposition: $\langle X, Y W \mid Z\rangle \Rightarrow\langle X, Y \mid Z\rangle$;
(C3) weak union: $\langle X, Y W \mid Z\rangle \Rightarrow\langle X, Y \mid Z W\rangle$;
(C4) contraction: $\langle X, Y \mid Z\rangle \&\langle X, W \mid Z Y\rangle \Rightarrow\langle X, Y W \mid Z\rangle$.
If the joint density of \mathbb{P} wrt a product measure is positive and continuous, then
(C5) intersection: $\langle X, Y \mid Z W\rangle \&\langle X, W \mid Z Y\rangle \Rightarrow\langle X, Y W \mid Z\rangle$. In the above, $Y W:=Y \cup W$.

Conditional independence

Any ternary relation $\langle A, B \mid C\rangle$ that satisfies (C1) to (C4) is called a semi-graphoid. If (C5) also holds, then it is called a graphoid.

Examples of graphoid:
1 Conditional independence of \mathbb{P} (positive and continous).
2 Graph separation in undirected graph: $\langle X, Y \mid Z\rangle$ means nodes Z separate X and Y, i.e. $X-Z-Y$.
3 Partial orthogonality: Let X, Y, Z be disjoint sets of linearly independent vectors in $\mathbb{R}^{n} .\langle X, Y \mid Z\rangle$ means $P_{Z}^{\perp} X$ is orthogonal to $P_{Z}^{\perp} Y$. Here $P_{Z}^{\perp} X=\left(I_{n}-P_{Z}\right) X$ is the residual after projecting X onto $\operatorname{span}(Z)$.
Graph separation provides an intuitive graphical interpretation for the Cl axioms.

Conditional independence

Example application of Cl in causal inference:

- Treatment X, outcome Y. Let I indicates each individual, $I=1, \ldots, n$. Want to test if $Y \perp X \mid I$ (untestable).
- Suppose $Z=Z(I)$ is a set of sufficient covariates such that $Y \perp I \mid(X, Z)$. Then

$$
\begin{equation*}
Y \perp X|I \Leftrightarrow Y \perp X| Z \text { (testable based on data) } \tag{1}
\end{equation*}
$$

- Proof outline:

Note $Y \perp X|I \Leftrightarrow Y \perp X|(I, Z)$ because $Z=Z(I)$.
\Leftarrow : Sufficient set and RHS of (1) imply $Y \perp(I, X) \mid Z$ by
(C4) and thus $Y \perp X \mid(I, Z)$ by (C3).
\Rightarrow : Sufficient set and LHS $(Y \perp X \mid(I, Z))$ imply
$Y \perp(X, I) \mid Z$ by (C5) and thus $Y \perp X \mid Z$ by (C2).

Conditional independence

Definition: A graph $\mathcal{G}=(V, E), V=\{1, \ldots, p\}$ is a set of vertices (or nodes) and $E \subset V \times V$ is a set of edges.

■ Undirected edge $i-j:(i, j) \in E \Leftrightarrow(j, i) \in E$.

- Directed edge $i \rightarrow j:(i, j) \in E \Rightarrow(j, i) \notin E$.
- Associate V to random variables $X_{i}(i=1, \ldots, p)$ with joint distribution \mathbb{P}. Then $(\mathcal{G}, \mathbb{P})$ is called a graphical model. Often use node i and X_{i} interchangeably.
- Use graph separation to represent conditional independence among X_{1}, \ldots, X_{p}.

Undirected graphical models

Reference: Lauritzen (1996), chapters 2 and 3.
Terminology for undirected graph $\mathcal{G}=(V, E)$

- i and j are neighbors if $(i, j) \in E$; ne (i) denotes the set of neighbors of i.
- A path of length n from i to j is a sequence $a_{0}=i, \ldots, a_{n}=j$ of distinct vertices so that $\left(a_{k-1}, a_{k}\right) \in E$ for all $k=1, \ldots, n$.
- A subset $C \subset V$ separates a and b if all paths from a to b intersect C.
- C separates A and B if C separates a and b for every $a \in A$ and $b \in B$. Write $A-C-B$.

Undirected graphical models

Markov properties on undirected graphs
Consider undirected graphical model $(\mathcal{G}, \mathbb{P})$. We say \mathbb{P} satisfies
■ (P) the pairwise Markov property wrt \mathcal{G} if

$$
(i, j) \notin E \Rightarrow i \perp j \mid V \backslash\{i, j\}:=[V]_{i j} ;
$$

- (L) the local Markov property wrt \mathcal{G} if

$$
(i, j) \notin E \Rightarrow i \perp j \mid \mathrm{ne}(i)
$$

- (G) the global Markov property wrt \mathcal{G} if

$$
A-C-B \Rightarrow A \perp B \mid C
$$

Undirected graphical models

Factorization via cliques

- Complete subset and clique: A subset of $C \subset V$ is complete if the subgraph on C is complete. A complete subset that is maximal (wrt \subset) is called a clique.
- (F) Factorization: \mathbb{P} factorizes according to \mathcal{G} if for every clique A, there exists $\psi_{A}\left(x_{A}\right) \geq 0$, such that the joint density of \mathbb{P} has the form

$$
f(x)=\prod_{A \in \mathcal{C}} \psi_{A}\left(x_{A}\right)
$$

where \mathcal{C} is the set of cliques of \mathcal{G}.

- Relations: $(\mathrm{F}) \Rightarrow(\mathrm{G}) \Rightarrow(\mathrm{L}) \Rightarrow(\mathrm{P})$.

Examples.

Undirected graphical models

$$
\text { When does }(F) \Leftrightarrow(G) \Leftrightarrow(L) \Leftrightarrow(P) \text { ? }
$$

Theorem 1

If \mathbb{P} has a positive and continuous density f with respect to a product measure, then $(F) \Leftrightarrow(P)$.

■ Product measure: (1) $X_{j} \in \mathbb{R}$, use Lebesgue measure; (2) X_{j} finite discrete, use counting measure.

- Conclusion implies $(\mathrm{F}) \Leftrightarrow(\mathrm{G}) \Leftrightarrow(\mathrm{L}) \Leftrightarrow(\mathrm{P})$.
- Counter example. Let $p=5, X_{1}, X_{5} \sim_{i i d} \operatorname{Bern}(0.5), X_{2}=X_{1}$, $X_{4}=X_{5}$, and $X_{3}=X_{2} X_{4}$. This defines \mathbb{P}. Let \mathcal{G} be a chain $E=\{(i, i+1): i=1, \ldots, 4\}$.
Then (L) holds but not (G). Because density (probability mass function) is not positive on all possible values of X_{i} 's.
(L): $X_{2} \perp X_{4} \mid\left(X_{1}, X_{3}\right)$ true; (G): $X_{2} \perp X_{4} \mid X_{3}$ false!

Undirected graphical models

Conditional independence graph (CIG).

- Definition: A CIG is a graphical model $(\mathcal{G}, \mathbb{P})$ such that (P) holds. That is,

$$
(i, j) \notin E \Rightarrow i \perp j \mid V \backslash\{i, j\}:=[V]_{i j} .
$$

■ Sparser graph \mathcal{G} implies more conditional independence (CI) relations.

■ One can always choose the minimal \mathcal{G} such that (P) holds to be the CIG, i.e., replace \Rightarrow by \Leftrightarrow.
■ Estimate the structure of \mathcal{G} to detect Cl relations, assuming we have observed iid data from \mathbb{P}.

Undirected graphical models

Gaussian graphical models (GGMs)
A CIG with $\mathbb{P}=\mathcal{N}_{p}(0, \Sigma), \Sigma>0$ (positive definite).

Lemma 1

Suppose $\left(X_{1}, \ldots, X_{p}\right) \sim \mathcal{N}_{p}(0, \Sigma)$ with $\Sigma>0$ and let $\Theta=\left(\theta_{j k}\right)_{p \times p}=\Sigma^{-1}$. Then

$$
\begin{equation*}
\theta_{j k}=0 \Leftrightarrow X_{j} \perp X_{k} \mid X_{-\{j, k\}} \tag{2}
\end{equation*}
$$

- Θ is called the precision matrix.
- (2) shows that GGM is constructed as

$$
\begin{equation*}
\theta_{j k}=0 \Leftrightarrow(j, k) \notin E . \tag{3}
\end{equation*}
$$

Undirected graphical models

Partial correlation and neighborhood regression
■ Partial correlation between j and k given $[V]_{j k}$:
$\rho_{j k}=-\theta_{j k} / \sqrt{\theta_{j j} \theta_{k k}}$.
Correlation calculated from $\Sigma_{(j, k)\left[[V]_{j k}\right.}=\operatorname{Var}\left(j, k \mid[V]_{j k}\right)$.

- Neighborhood regression, regress X_{j} on X_{-j} :

$$
\begin{equation*}
X_{j}=\sum_{i \neq j} \beta_{i j} X_{i}+\varepsilon_{j} \tag{4}
\end{equation*}
$$

Then $\beta_{k j}=-\theta_{j k} / \theta_{j j}$. (By symmetry $\left.\beta_{j k}=-\theta_{k j} / \theta_{k k}.\right)$

- Thus, we have

$$
\begin{equation*}
(j, k) \notin E \Leftrightarrow \theta_{j k}=0 \Leftrightarrow \rho_{j k}=0 \Leftrightarrow \beta_{k j}=\beta_{j k}=0 \tag{5}
\end{equation*}
$$

Undirected graphical models

Learning GGMs: Given $x_{i} \sim_{i i d} \mathcal{N}_{p}(0, \Sigma), i=1, \ldots, n$, estimate

$$
\text { the structure of } \mathcal{G} \Leftrightarrow \operatorname{supp}(\Theta)=\left\{(j, k): \theta_{j k} \neq 0\right\} .
$$

Also called covariance selection (Dempster 1972).
■ Log-likelihood

$$
\ell(\Sigma)=-\frac{n}{2} \log \operatorname{det}(\Sigma)-\frac{1}{2} \operatorname{tr}\left(S \Sigma^{-1}\right)
$$

where $S=\sum_{i} x_{i} x_{i}^{\top}$ is a $p \times p$ matrix (sufficient statistic).

- $\hat{\Sigma}^{\mathrm{MLE}}=S / n$ (always exists).

■ If $n>p$, inverte $\hat{\Sigma}^{\mathrm{MLE}} \Rightarrow \hat{\Theta}^{\mathrm{MLE}}=\left(\hat{\Sigma}^{\mathrm{MLE}}\right)^{-1}$.
Then obtain $\widehat{\mathcal{G}}$ by thresholding: $\widehat{E}=\left\{(j, k):\left|\hat{\theta}_{j k}^{\mathrm{MLE}}\right|>\tau\right\}$.

Undirected graphical models

Regularized estimation under ℓ_{1} penalty (Yuan and Lin 2007; Friedman et al. 2008; Banerjee et al. 2008)

- Element-wise ℓ_{1} norm $\|\Theta\|_{1}:=\sum_{j<k}\left|\theta_{j k}\right|$.
- ℓ_{1} regularized estimate $\hat{\Theta}=\operatorname{argmin}_{\Theta>0} f(\Theta)$,

$$
\begin{aligned}
f(\Theta) & =-\frac{2}{n} \ell\left(\Theta^{-1}\right)+\lambda\|\Theta\|_{1} \\
& =-\log \operatorname{det}(\Theta)+\operatorname{tr}\left(\hat{\Sigma}^{\mathrm{MLE}} \Theta\right)+\lambda\|\Theta\|_{1}
\end{aligned}
$$

- f is convex, efficient algorithm.
- Well-defined for $p>n$.
- Sparse solution, $\hat{\theta}_{j k}=0$ for some (j, k).

Undirected graphical models

Estimate \mathcal{G} from $\hat{\Theta}$

- $\widehat{E}=\left\{(j, k): \hat{\theta}_{j k} \neq 0\right\}$, but needs very strong assumptions (irrepresentability) for $\mathbb{P}\left(\widehat{E}=E_{0}\right) \rightarrow 1$.
- Thresholding $\hat{\Theta}: \widehat{E}=\left\{(j, k):\left|\hat{\theta}_{j k}\right|>\tau\right\}$. Weaker assumptions (RE, beta-min) for $\mathbb{P}\left(\widehat{E}=E_{0}\right) \rightarrow 1$.
Choosing λ by cross-validation, $\lambda_{C V}^{*}$, then $\mathbb{P}\left(\widehat{E}\left(\lambda_{C V}^{*}\right) \supset E_{0}\right) \rightarrow 1$ under certain conditions (RE, beta-min).

Undirected graphical models

Estimate \mathcal{G} by neighborhood regression (Meinshausen and Bühlmann 2006)

- Apply model selection (e.g. lasso) for each neighborhood regression (4) $\Rightarrow \hat{\beta}_{j k}(j, k=1, \ldots, p)$.
- Combine results to define $\widehat{\mathcal{G}}$, e.g.,

$$
\widehat{E}=\left\{(j, k): \hat{\beta}_{j k} \neq 0, \hat{\beta}_{k j} \neq 0\right\} .
$$

- Approximate $\hat{\Theta}$ if lasso is used in neighborhood regression.

Directed acyclic graphs

Terminology for directed acyclic graph (DAG) $\mathcal{G}=(V, E)$

- If $i \rightarrow j$, then i is a parent of j and j is a child of i; $\mathrm{pa}(j)$ is the set of parents of $j ; \operatorname{ch}(i)$ is the set of children of i.
- If there is a path from i to j, we say i leads to j and write $i \longmapsto j$.
The ancestors an $(j)=\{i: i \longmapsto j\}$.
The descendants de $(i)=\{j: i \longmapsto j\}$.
The non-descendants nd $(i)=V \backslash(\operatorname{de}(i) \cup\{i\})$.
- A chain of length n from i to j is a sequence $a_{0}=i, \ldots, a_{n}=j$ of distinct vertices so that $a_{k-1} \rightarrow a_{k}$ or $a_{k} \rightarrow a_{k-1}$ for all $k=1, \ldots, n$.

Directed acyclic graphs

- d-separation: A chain π from a to b is said to be blocked by $S \subset V$, if the chain contains a vertex γ such that either (1) or (2) holds:

1. $\gamma \in S$ and the arrows of π do not meet at $\gamma(i \rightarrow \gamma \rightarrow j$ or $i \leftarrow \gamma \rightarrow j)$.
$2 \gamma \cup \operatorname{de}(\gamma)$ not in S and arrows of π meet at $\gamma(i \rightarrow \gamma \leftarrow j)$
Two subsets A and B are d-separated by S is all chains from A to B are blocked by S.

- A topological sort of \mathcal{G} is an ordering σ, i.e., a permutation of $\{1, \ldots, p\}$, such that $j \in \operatorname{an}(i)$ implies $j \prec i$ in σ. Due to acyclicity, every DAG has at least one sort.
- Example $\mathcal{G}: \quad 1 \rightarrow 2 \rightarrow 3 \leftarrow 4$.
$\{2\} d$-separates 1 and $4 ; \varnothing d$-separates 1 and 4 .
$\sigma=(1,2,4,3)$ or $(4,1,2,3)$ or $(1,4,2,3)$ are topological sorts.

Directed acyclic graphs

Markov properties on DAGs: We say a joint distribution \mathbb{P}
■ (DF) admits a recursive factorization according to \mathcal{G} if \mathbb{P} has a density f such that

$$
\begin{equation*}
f(x)=\prod_{j \in V} f_{j}\left(x_{j} \mid \operatorname{pa}(j)\right) \tag{6}
\end{equation*}
$$

where f_{j} is the density for $[j \mid \mathrm{pa}(j)]$.
■ (DG) satisfies the directed global Markov property if

$$
S d \text {-separates } A \text { and } B \Rightarrow A \perp B \mid S
$$

■ (DL) satisfies the directed local Markov property if $i \perp \mathrm{nd}(i) \mid \mathrm{pa}(i)$.

- (DP) satisfies the directed pairwise Markov property if for any $(i, j) \notin E$ with $j \in \operatorname{nd}(i), i \perp j \mid \operatorname{nd}(i) \backslash\{j\}$.

Directed acyclic graphs

Relations: $(\mathrm{DF}) \Rightarrow(\mathrm{DG}) \Rightarrow(\mathrm{DL}) \Rightarrow(\mathrm{DP})$.

Theorem 2

If \mathbb{P} has a density f with respect to a product measure, then (DF), (DG), and (DL) are equivalent.

Markov equivalence: Two DAGs are called Markov equivalent if they induce the same set of Cl restrictions.
\Leftrightarrow Same skeleton and same v-structures (Verma and Pearl 1990).
Connections to Markov properties on undirected graphs:
■ Moral graph \mathcal{G}^{m} : add edges between all parents of a node in a DAG \mathcal{G} and delete directions.

■ If \mathbb{P} admits a recursive factorization according to \mathcal{G}, then it factorizes according to \mathcal{G}^{m}.
That is, (DF) wrt $\mathcal{G} \Rightarrow(\mathrm{F})$ wrt $\mathcal{G}^{m} \Rightarrow(\mathrm{G}),(\mathrm{L}),(\mathrm{P})$ wrt \mathcal{G}^{m}.

Directed acyclic graphs

- Definition of Bayesian networks: Given \mathbb{P} with density f and an ordering $(\sigma(1), \ldots, \sigma(p))$, we factorize f

$$
\begin{align*}
f(x) & =\prod_{j=1}^{p} f\left(x_{\sigma(j)} \mid x_{\sigma(1)}, \ldots, x_{\sigma(j-1)}\right) \\
& =\prod_{j=1}^{p} f\left(x_{\sigma(j)} \mid x_{A_{j}}\right) \tag{7}
\end{align*}
$$

where $A_{j} \subset\{\sigma(1), \ldots, \sigma(j-1)\}$ is the minimum subset such that (7) holds. Then the DAG \mathcal{G} with $\operatorname{pa}(\sigma(j))=A_{j}$ for all $j \in V$ is a Bayesian network of \mathbb{P}.
■ Cl : If \mathcal{G} is a BN of \mathbb{P}, then (DF) holds, so (DG), (DL), (DP) also hold.
■ Examples: Markov chains, HMMs, etc.

Directed acyclic graphs

Parameterization: Given \mathcal{G}, to parameterize $\left[X_{j} \mid \mathrm{pa}(j)\right]$ as in (6).
(1) Gaussian BNs

- Linear structural equation model (SEM):

$$
\begin{equation*}
X_{j}=\sum_{i \in \mathrm{pa}(j)} \beta_{i j} X_{i}+\varepsilon_{j}, \quad j=1, \ldots, p \tag{8}
\end{equation*}
$$

Assume $\varepsilon_{j} \sim \mathcal{N}\left(0, \omega_{j}^{2}\right)$ and $\varepsilon_{j} \perp \mathrm{pa}(j)$.
■ Put $B=\left(\beta_{i j}\right)$ and $\Omega=\operatorname{diag}\left(\omega_{1}^{2}, \ldots, \omega_{p}^{2}\right)$. Then

$$
X=B^{\top} X+\varepsilon, \quad \varepsilon \sim \mathcal{N}_{p}(0, \Omega)
$$

$\Rightarrow X \sim \mathcal{N}_{p}\left(0, \Theta^{-1}\right)$, where $\Theta=\left(I_{p}-B\right) \Omega^{-1}\left(I_{p}-B\right)^{\top}$
(Cholesky decomposition of Θ); see van de Geer and Bühlmann (2013); Aragam and Zhou (2015).

Directed acyclic graphs

(2) Discrete BNs

- Multinomial distribution: $\theta_{k m}^{(j)}=\mathbb{P}\left(X_{j}=m \mid \mathrm{pa}(j)=k\right)$. Parameter for $\left[X_{j} \mid \mathrm{pa}(j)\right]$ is a $K \times M$ table:

$$
\left\{\theta_{k m}^{(j)}: \sum_{m} \theta_{k m}^{(j)}=1, k=1, \ldots, K, m=1, \ldots, M\right\}
$$

K : number of all possible combinations of $\mathrm{pa}(j)$. (Too many parameters if a node has many parents.)

- Multi-logit regression model (Gu et al. 2019): Use generalized linear model for $\left[X_{j} \mid \mathrm{pa}(j)\right]$.

Directed acyclic graphs

Structure learning
Given $x_{i} \sim_{i i d} \mathbb{P}, i=1, \ldots, n$, estimate a BN $\widehat{\mathcal{G}}$ for \mathbb{P}.
The sparser the $\widehat{\mathcal{G}}$, the more Cl relations learned from data.

- Score-based methods: Minimize a scoring function over DAGs; regularization to obtain sparse solutions.
- Constraint-based methods: Condition independence tests against $X_{i} \perp X_{j} \mid X_{S}$ for all i, j, S.
■ Hybrid methods: First use constraint-based method to prune the search space, and then apply a score-based method to search for the optimal DAG.
See, e.g. Aragam and Zhou (2015) Section 1.2.

Directed acyclic graphs

Causal DAG model:
■ Model causal relations among nodes: If $i \rightarrow j$, then i is a causal parent (direct cause) of j.

- Causal relation defined by experimental intervention (Pearl 2000): Force X to some fixed value x, which we denote by $d o(X=x)$ or $d o(x)$ for short.
- Effect of do $\left(x_{i}\right)$: to replace the SEM for X_{i} by $X_{i}=x_{i}$ and substitute $X_{i}=x_{i}$ in the other SEMs for $X_{j}, j \neq i$. See Eq (8).
- The causal effect of X on Y is defined by the mapping $x \mapsto \mathbb{P}[Y \mid \operatorname{do}(X=x)] \equiv \mathbb{P}(Y \mid \operatorname{do}(x))$.
1 linear SEM: Causal effect $\frac{\partial \mathbb{E}(Y \mid d o(x))}{\partial x}$.
2 Treatment $(X=1)$ vs control $(X=0)$: Causal effect $\mathbb{E}(Y \mid \operatorname{do}(X=1))-\mathbb{E}(Y \mid d o(X=0))$.

Faithfulness

Given a graphical model $(\mathcal{G}, \mathbb{P})$ where \mathbb{P} satisfies, say (G) or (DG). Then graph separation \Rightarrow condition independence, but not \Leftarrow. If \mathbb{P} is faithful to \mathcal{G} then \Leftarrow holds as well. In this case, we have \Leftrightarrow.

Definition 1

For a graphical model $(\mathcal{G}, \mathbb{P})$, we say the distribution \mathbb{P} is faithful to the graph \mathcal{G} if for every triple of disjoint sets $A, B, S \subset V$,

$$
A \perp B \mid S \Leftrightarrow S \text { separates (} d \text {-separates) } A \text { and } B \text {. }
$$

How likely is \mathbb{P} faithful?
Example: Gaussian graphs (undirected or DAGs), \mathbb{P} is Gaussian.

- Given \mathcal{G}, almost all parameter values will define a faithful \mathbb{P}.
- Counterexamples: The parameters, Θ or $\left(\beta_{i j}\right)$, satisfy additional equality constraints that define Cl in \mathbb{P} not implied by any separation in \mathcal{G}.

References I

Bryon Aragam and Qing Zhou. Concave penalized estimation of sparse Gaussian Bayesian networks. Journal of Machine Learning Research, 16:2273-2328, 2015.
Onureena Banerjee, Laurent El Ghaoui, and Alexandre d'Aspremont. Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. The Journal of Machine Learning Research, 9:485-516, 2008.
A.P. Dawid. Conditional independence in statistical theory. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 41:1-31, 1979.
Arthur P Dempster. Covariance selection. Biometrics, 28(1): 157-175, 1972.

References II

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation with the Graphical Lasso.
Biostatistics, 9(3):432-441, 2008.
Fei Fu and Qing Zhou. Learning sparse causal Gaussian networks with experimental intervention: Regularization and coordinate descent. Journal of the American Statistical Association, 108 (501):288-300, 2013.

Jiaying Gu, Fei Fu, and Qing Zhou. Penalized estimation of directed acyclic graphs from discrete data. Statistics and Computing, 29:161-176, 2019.
Steffen L. Lauritzen. Graphical Models. Oxford University Press, 1996. ISBN 0-19-852219-3.

References III

Nicolai Meinshausen and Peter Bühlmann. High-dimensional graphs and variable selection with the Lasso. The Annals of Statistics, 34(3):1436-1462, 2006.
Judea Pearl. Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann, 1988.
Judea Pearl. Causality: Models, reasoning and inference. Cambridge Univ Press, 2000.
Sara van de Geer and Peter Bühlmann. ℓ_{0}-penalized maximum likelihood for sparse directed acyclic graphs. The Annals of Statistics, 41(2):536-567, 2013.
T. Verma and J. Pearl. Equivalence and synthesis of causal models. In Proceedings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence, pages 220-227, 1990.
Ming Yuan and Yi Lin. Model selection and estimation in the Gaussian graphical model. Biometrika, 94(1):19-35, 2007.

