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Conditional independence

Definition: If X ,Y ,Z are three random variables, we say
X ⊥ Y | Z if P(X ∈ A | Y ,Z ) is a function of Z only for any
measurable set A.

If they admit a joint density (or mass function) f , then

X ⊥ Y | Z ⇔ fXY |Z (x , y |z) = fX |Z (x |z)fY |Z (y |z).

Other equivalent conditions (f as a generic symbol for densities):

f (x , y , z) = f (x , z)f (y , z)/f (z).

f (x |y , z) = f (x |z).
f (x , z |y) = f (x |z)f (z |y).
f (x , y , z) = h(x , z)k(y , z) for some h, k .

f (x , y , z) = f (x |z)f (y , z).
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Conditional independence

CI in statistical inference (Dawid 1979):

Sufficient and ancillary statistics: Suppose X | Θ ∼ PΘ.
1 T = T (X ) is a sufficient statistic for Θ if X ⊥ Θ | T .
2 S = S(X ) is an ancillary statistic if S ⊥ Θ.

Example: X = (X1, . . . ,Xn) | µ, σ2 ∼ N (µ, σ2). Then
T1 =

∑
i Xi is sufficient for µ;

T2 =
∑

i (Xi − X̄ )2 is ancillary for µ.

Model selection: Y = Xβ + ε. If supp(β) = S , then
Y ⊥ (X \ XS) | XS .

Parameter identification: X | Θ,Φ ∼ P(Θ,Φ). If X ⊥ Φ | Θ,
then Φ is not identifiable.
Example: Gaussian linear model Y = Xβ + ε with X not
having full column rank. Let Θ = Xβ ∈ col(X ) and
Φ = β − X−Xβ (X− is a g-inverse of X ; XX−X = X ). Then
XΦ = 0, i.e. Φ ∈ null(X ). Thus Y ⊥ Φ | (Θ, σ2), i.e. Φ is
not identifiable. Note dim(Θ) + dim(Φ) = dim(β).
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Conditional independence

Graphoid axioms (Pearl (1988), §3.1.2.)

CI statement defines a ternary relation: ⟨X ,Y | Z ⟩ for X ⊥ Y | Z .
Suppose X ,Y ,Z ,W are disjoint subsets of random variables from
a joint distribution P. Then the CI relation satisfies

(C1) symmetry: ⟨X ,Y | Z ⟩ ⇒ ⟨Y ,X | Z ⟩;
(C2) decomposition: ⟨X ,YW | Z ⟩ ⇒ ⟨X ,Y | Z ⟩;
(C3) weak union: ⟨X ,YW | Z ⟩ ⇒ ⟨X ,Y | ZW ⟩;
(C4) contraction: ⟨X ,Y | Z ⟩&⟨X ,W | ZY ⟩ ⇒ ⟨X ,YW | Z ⟩.
If the joint density of P wrt a product measure is positive and
continuous, then

(C5) intersection: ⟨X ,Y | ZW ⟩&⟨X ,W | ZY ⟩ ⇒ ⟨X ,YW | Z ⟩.
In the above, YW :=Y ∪W .
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Conditional independence

Any ternary relation ⟨A,B | C ⟩ that satisfies (C1) to (C4) is called
a semi-graphoid. If (C5) also holds, then it is called a graphoid.

Examples of graphoid:

1 Conditional independence of P (positive and continous).

2 Graph separation in undirected graph: ⟨X ,Y | Z ⟩ means
nodes Z separate X and Y , i.e. X − Z − Y .

3 Partial orthogonality: Let X ,Y ,Z be disjoint sets of linearly
independent vectors in Rn. ⟨X ,Y | Z ⟩ means P⊥

Z X is
orthogonal to P⊥

Z Y . Here P⊥
Z X = (In − PZ )X is the residual

after projecting X onto span(Z ).

Graph separation provides an intuitive graphical interpretation for
the CI axioms.
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Conditional independence

Example application of CI in causal inference:

Treatment X , outcome Y . Let I indicates each individual,
I = 1, . . . , n. Want to test if Y ⊥ X | I (untestable).
Suppose Z = Z (I ) is a set of sufficient covariates such that
Y ⊥ I | (X ,Z ). Then

Y ⊥ X | I ⇔ Y ⊥ X | Z (testable based on data) (1)

Proof outline:
Note Y ⊥ X | I ⇔ Y ⊥ X | (I ,Z ) because Z = Z (I ).
⇐: Sufficient set and RHS of (1) imply Y ⊥ (I ,X ) | Z by
(C4) and thus Y ⊥ X | (I ,Z ) by (C3).
⇒: Sufficient set and LHS (Y ⊥ X | (I ,Z )) imply
Y ⊥ (X , I ) | Z by (C5) and thus Y ⊥ X | Z by (C2).
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Conditional independence

Definition: A graph G = (V ,E ), V = {1, . . . , p} is a set of vertices
(or nodes) and E ⊂ V × V is a set of edges.

Undirected edge i − j : (i , j) ∈ E ⇔ (j , i) ∈ E .

Directed edge i → j : (i , j) ∈ E ⇒ (j , i) /∈ E .

Associate V to random variables Xi (i = 1, . . . , p) with joint
distribution P. Then (G,P) is called a graphical model. Often
use node i and Xi interchangeably.

Use graph separation to represent conditional independence
among X1, . . . ,Xp.
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Undirected graphical models

Reference: Lauritzen (1996), chapters 2 and 3.

Terminology for undirected graph G = (V ,E )

i and j are neighbors if (i , j) ∈ E ; ne(i) denotes the set of
neighbors of i .

A path of length n from i to j is a sequence a0 = i , . . . , an = j
of distinct vertices so that (ak−1, ak) ∈ E for all k = 1, . . . , n.

A subset C ⊂ V separates a and b if all paths from a to b
intersect C .

C separates A and B if C separates a and b for every a ∈ A
and b ∈ B. Write A− C − B.
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Undirected graphical models

Markov properties on undirected graphs

Consider undirected graphical model (G,P). We say P satisfies

(P) the pairwise Markov property wrt G if

(i , j) /∈ E ⇒ i ⊥ j | V \ {i , j} :=[V ]ij ;

(L) the local Markov property wrt G if

(i , j) /∈ E ⇒ i ⊥ j | ne(i);

(G) the global Markov property wrt G if

A− C − B ⇒ A ⊥ B | C ;
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Undirected graphical models

Factorization via cliques

Complete subset and clique: A subset of C ⊂ V is complete if
the subgraph on C is complete. A complete subset that is
maximal (wrt ⊂) is called a clique.

(F) Factorization: P factorizes according to G if for every
clique A, there exists ψA(xA) ≥ 0, such that the joint density
of P has the form

f (x) =
∏
A∈C

ψA(xA),

where C is the set of cliques of G.
Relations: (F) ⇒ (G) ⇒ (L) ⇒ (P).

Examples.
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Undirected graphical models

When does (F) ⇔ (G) ⇔ (L) ⇔ (P)?

Theorem 1

If P has a positive and continuous density f with respect to a
product measure, then (F) ⇔ (P).

Product measure: (1) Xj ∈ R, use Lebesgue measure; (2) Xj

finite discrete, use counting measure.

Conclusion implies (F) ⇔ (G) ⇔ (L) ⇔ (P).

Counter example. Let p = 5, X1,X5 ∼iid Bern(0.5), X2 = X1,
X4 = X5, and X3 = X2X4. This defines P. Let G be a chain
E = {(i , i + 1) : i = 1, . . . , 4}.
Then (L) holds but not (G). Because density (probability mass
function) is not positive on all possible values of Xi ’s.
(L): X2 ⊥ X4 | (X1,X3) true; (G): X2 ⊥ X4 | X3 false!
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Undirected graphical models

Conditional independence graph (CIG).

Definition: A CIG is a graphical model (G,P) such that (P)
holds. That is,

(i , j) /∈ E ⇒ i ⊥ j | V \ {i , j} :=[V ]ij .

Sparser graph G implies more conditional independence (CI)
relations.

One can always choose the minimal G such that (P) holds to
be the CIG, i.e., replace ⇒ by ⇔.

Estimate the structure of G to detect CI relations, assuming
we have observed iid data from P.
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Undirected graphical models

Gaussian graphical models (GGMs)

A CIG with P = Np(0,Σ), Σ > 0 (positive definite).

Lemma 1

Suppose (X1, . . . ,Xp) ∼ Np(0,Σ) with Σ > 0 and let
Θ = (θjk)p×p = Σ−1. Then

θjk = 0⇔ Xj ⊥ Xk | X−{j ,k}. (2)

Θ is called the precision matrix.

(2) shows that GGM is constructed as

θjk = 0⇔ (j , k) /∈ E . (3)
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Undirected graphical models

Partial correlation and neighborhood regression

Partial correlation between j and k given [V ]jk :
ρjk = −θjk/

√
θjjθkk .

Correlation calculated from Σ(j ,k)|[V ]jk = Var(j , k | [V ]jk).

Neighborhood regression, regress Xj on X−j :

Xj =
∑
i ̸=j

βijXi + εj . (4)

Then βkj = −θjk/θjj . (By symmetry βjk = −θkj/θkk .)
Thus, we have

(j , k) /∈ E ⇔ θjk = 0⇔ ρjk = 0⇔ βkj = βjk = 0. (5)
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Undirected graphical models

Learning GGMs: Given xi ∼iid Np(0,Σ), i = 1, . . . , n, estimate

the structure of G ⇔ supp(Θ) = {(j , k) : θjk ̸= 0}.

Also called covariance selection (Dempster 1972).

Log-likelihood

ℓ(Σ) = −n

2
log det(Σ)− 1

2
tr(SΣ−1),

where S =
∑

i xix
T
i is a p × p matrix (sufficient statistic).

Σ̂MLE = S/n (always exists).

If n > p, inverte Σ̂MLE ⇒ Θ̂MLE = (Σ̂MLE)−1.
Then obtain Ĝ by thresholding: Ê = {(j , k) : |θ̂MLE

jk | > τ}.
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Undirected graphical models

Regularized estimation under ℓ1 penalty (Yuan and Lin 2007;
Friedman et al. 2008; Banerjee et al. 2008)

Element-wise ℓ1 norm ∥Θ∥1 :=
∑

j<k |θjk |.

ℓ1 regularized estimate Θ̂ = argminΘ>0 f (Θ),

f (Θ) = −2

n
ℓ(Θ−1) + λ∥Θ∥1

= − log det(Θ) + tr(Σ̂MLEΘ) + λ∥Θ∥1.

f is convex, efficient algorithm.

Well-defined for p > n.

Sparse solution, θ̂jk = 0 for some (j , k).
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Undirected graphical models

Estimate G from Θ̂

Ê = {(j , k) : θ̂jk ̸= 0}, but needs very strong assumptions

(irrepresentability) for P(Ê = E0)→ 1.

Thresholding Θ̂: Ê = {(j , k) : |θ̂jk | > τ}. Weaker assumptions

(RE, beta-min) for P(Ê = E0)→ 1.

Choosing λ by cross-validation, λ∗CV , then P(Ê (λ∗CV ) ⊃ E0)→ 1
under certain conditions (RE, beta-min).
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Undirected graphical models

Estimate G by neighborhood regression (Meinshausen and
Bühlmann 2006)

Apply model selection (e.g. lasso) for each neighborhood
regression (4) ⇒ β̂jk (j , k = 1, . . . , p).

Combine results to define Ĝ, e.g.,

Ê = {(j , k) : β̂jk ̸= 0, β̂kj ̸= 0}.

Approximate Θ̂ if lasso is used in neighborhood regression.
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Directed acyclic graphs

Terminology for directed acyclic graph (DAG) G = (V ,E )

If i → j , then i is a parent of j and j is a child of i ;
pa(j) is the set of parents of j ; ch(i) is the set of children of i .

If there is a path from i to j , we say i leads to j and write
i 7−→ j .
The ancestors an(j) = {i : i 7−→ j}.
The descendants de(i) = {j : i 7−→ j}.
The non-descendants nd(i) = V \ (de(i) ∪ {i}).
A chain of length n from i to j is a sequence
a0 = i , . . . , an = j of distinct vertices so that ak−1 → ak or
ak → ak−1 for all k = 1, . . . , n.
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Directed acyclic graphs

d-separation: A chain π from a to b is said to be blocked by
S ⊂ V , if the chain contains a vertex γ such that either (1) or
(2) holds:

1 γ ∈ S and the arrows of π do not meet at γ (i → γ → j or
i ← γ → j).

2 γ ∪ de(γ) not in S and arrows of π meet at γ (i → γ ← j)

Two subsets A and B are d-separated by S is all chains from
A to B are blocked by S .

A topological sort of G is an ordering σ, i.e., a permutation of
{1, . . . , p}, such that j ∈ an(i) implies j ≺ i in σ. Due to
acyclicity, every DAG has at least one sort.

Example G : 1→ 2→ 3← 4.
{2} d-separates 1 and 4; ∅ d-separates 1 and 4.
σ = (1, 2, 4, 3) or (4, 1, 2, 3) or (1, 4, 2, 3) are topological sorts.
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Directed acyclic graphs

Markov properties on DAGs: We say a joint distribution P
(DF) admits a recursive factorization according to G if P has a
density f such that

f (x) =
∏
j∈V

fj(xj | pa(j)), (6)

where fj is the density for [j | pa(j)].
(DG) satisfies the directed global Markov property if

S d-separates A and B ⇒ A ⊥ B | S ;

(DL) satisfies the directed local Markov property if
i ⊥ nd(i) | pa(i).
(DP) satisfies the directed pairwise Markov property if for any
(i , j) /∈ E with j ∈ nd(i), i ⊥ j | nd(i) \ {j}.
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Directed acyclic graphs

Relations: (DF) ⇒ (DG) ⇒ (DL) ⇒ (DP).

Theorem 2

If P has a density f with respect to a product measure, then (DF),
(DG), and (DL) are equivalent.

Markov equivalence: Two DAGs are called Markov equivalent if
they induce the same set of CI restrictions.
⇔ Same skeleton and same v-structures (Verma and Pearl 1990).

Connections to Markov properties on undirected graphs:

Moral graph Gm: add edges between all parents of a node in a
DAG G and delete directions.

If P admits a recursive factorization according to G, then it
factorizes according to Gm.
That is, (DF) wrt G ⇒ (F) wrt Gm ⇒ (G), (L), (P) wrt Gm.
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Directed acyclic graphs

Definition of Bayesian networks: Given P with density f and
an ordering (σ(1), . . . , σ(p)), we factorize f

f (x) =

p∏
j=1

f (xσ(j) | xσ(1), . . . , xσ(j−1))

=

p∏
j=1

f (xσ(j) | xAj
), (7)

where Aj ⊂ {σ(1), . . . , σ(j − 1)} is the minimum subset such
that (7) holds. Then the DAG G with pa(σ(j)) = Aj for all
j ∈ V is a Bayesian network of P.
CI: If G is a BN of P, then (DF) holds, so (DG), (DL), (DP)
also hold.

Examples: Markov chains, HMMs, etc.
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Directed acyclic graphs

Parameterization: Given G, to parameterize [Xj | pa(j)] as in (6).

(1) Gaussian BNs

Linear structural equation model (SEM):

Xj =
∑

i∈pa(j)

βijXi + εj , j = 1, . . . , p. (8)

Assume εj ∼ N (0, ω2
j ) and εj ⊥ pa(j).

Put B = (βij) and Ω = diag(ω2
1, . . . , ω

2
p). Then

X = BTX + ε, ε ∼ Np(0,Ω).

⇒ X ∼ Np(0,Θ
−1), where Θ = (Ip − B)Ω−1(Ip − B)T

(Cholesky decomposition of Θ); see van de Geer and
Bühlmann (2013); Aragam and Zhou (2015).
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Directed acyclic graphs

(2) Discrete BNs

Multinomial distribution: θ
(j)
km = P(Xj = m | pa(j) = k).

Parameter for [Xj | pa(j)] is a K ×M table:{
θ
(j)
km :

∑
m

θ
(j)
km = 1, k = 1, . . . ,K ,m = 1, . . . ,M

}
.

K : number of all possible combinations of pa(j). (Too many
parameters if a node has many parents.)

Multi-logit regression model (Gu et al. 2019): Use generalized
linear model for [Xj | pa(j)].
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Directed acyclic graphs

Structure learning

Given xi ∼iid P, i = 1, . . . , n, estimate a BN Ĝ for P.
The sparser the Ĝ, the more CI relations learned from data.

Score-based methods: Minimize a scoring function over DAGs;
regularization to obtain sparse solutions.

Constraint-based methods: Condition independence tests
against Xi ⊥ Xj | XS for all i , j ,S .

Hybrid methods: First use constraint-based method to prune
the search space, and then apply a score-based method to
search for the optimal DAG.

See, e.g. Aragam and Zhou (2015) Section 1.2.
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Directed acyclic graphs

Causal DAG model:

Model causal relations among nodes: If i → j , then i is a
causal parent (direct cause) of j .

Causal relation defined by experimental intervention (Pearl
2000): Force X to some fixed value x , which we denote by
do(X = x) or do(x) for short.

Effect of do(xi ): to replace the SEM for Xi by Xi = xi and
substitute Xi = xi in the other SEMs for Xj , j ̸= i . See Eq (8).

The causal effect of X on Y is defined by the mapping
x 7→ P[Y | do(X = x)] ≡ P(Y | do(x)).

1 linear SEM: Causal effect ∂E(Y |do(x))
∂x .

2 Treatment (X = 1) vs control (X = 0): Causal effect
E(Y | do(X = 1))− E(Y | do(X = 0)).
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Faithfulness

Given a graphical model (G,P) where P satisfies, say (G) or (DG).
Then graph separation ⇒ condition independence, but not ⇐. If P
is faithful to G then ⇐ holds as well. In this case, we have ⇔.

Definition 1

For a graphical model (G,P), we say the distribution P is faithful
to the graph G if for every triple of disjoint sets A,B,S ⊂ V ,

A ⊥ B | S ⇔ S separates (d-separates) A and B.

How likely is P faithful?
Example: Gaussian graphs (undirected or DAGs), P is Gaussian.

Given G, almost all parameter values will define a faithful P.
Counterexamples: The parameters, Θ or (βij), satisfy
additional equality constraints that define CI in P not implied
by any separation in G.
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