Chapter 6

Introduction to Graphical Models

Qing Zhou
UCLA Department of Statistics

Stats 201C Advanced Modeling and Inference
Lecture Notes



Conditional independence (ClI)
Undirected graphical models
Directed acyclic graphs
Faithfulness

Zhou, Q Graphical Models 1/31



Conditional independence

Definition: If X, Y, Z are three random variables, we say
XLY|ZifP(Xe€A|Y,Z)is a function of Z only for any
measurable set A.

If they admit a joint density (or mass function) f, then
X LY | Z <& fxyiz(x,yl2) = fx)z(x|2) fy z(y]2).

Other equivalent conditions (f as a generic symbol for densities):

m f(x,y,z) =f(x,z)f(y,z)/f(2).
m f(xly,z) = f(x|2).

m f(x,zly) = f(x[2)f(z]y).
m f(x,y,z) = h(x,z)k(y, z) for some h, k.

m f(x,y,z) =f(x|2)f(y, z).
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Conditional independence

Cl in statistical inference (Dawid 1979):

m Sufficient and ancillary statistics: Suppose X | © ~ Pg.
T = T(X) is a sufficient statistic for © if X L © | T.
S = S(X) is an ancillary statistic if S L ©.
Example: X = (Xq,...,X,) | u, 0% ~ N(p,52). Then
T1 = ), X; is sufficient for y;
To = >;(X; — X)? is ancillary for .
m Model selection: Y = X3 + . If supp(3) = S, then
Y L (X\Xs) | Xs.
m Parameter identification: X [ ©,® ~ Pg¢). If X L & |0,
then @ is not identifiable.
Example: Gaussian linear model Y = X + ¢ with X not
having full column rank. Let © = X3 € col(X) and
®=p0—-X"XB (X is ag-inverse of X; XX~ X = X). Then
X®=0,ie ®cnull(X) Thus Y L ®|(0,02%), ie ®is
not identifiable. Note dim(©) + dim(®) = dim(J3).
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Conditional independence

Graphoid axioms (Pearl (1988), §3.1.2.)

Cl statement defines a ternary relation: (X,Y | Z) for X L Y | Z.
Suppose X, Y, Z, W are disjoint subsets of random variables from
a joint distribution P. Then the Cl relation satisfies

C1l) symmetry: (X, Y | Z) = (Y, X | Z);

C2) decomposition: (X, YW | Z) = (X, Y | Z);

C3) weak union: (X, YW | Z) = (X, Y | ZW);

C4) contraction: (X,Y | Z)&(X,W | ZY) = (X, YW | Z).
If the joint density of IP wrt a product measure is positive and
continuous, then

(C5) intersection: (X, Y | ZW)&(X, W | ZY) = (X, YW | Z).
In the above, YW :=Y U W.

(
(
(
(
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Conditional independence

Any ternary relation (A, B | C) that satisfies (C1) to (C4) is called
a semi-graphoid. If (C5) also holds, then it is called a graphoid.

Examples of graphoid:
Conditional independence of P (positive and continous).

Graph separation in undirected graph: (X, Y | Z) means
nodes Z separate X and Y,ie. X —-Z-Y.

Partial orthogonality: Let X, Y, Z be disjoint sets of linearly
independent vectors in R". (X, Y | Z) means P£X is
orthogonal to P£Y. Here Pz X = (I, — Pz)X is the residual
after projecting X onto span(Z).

Graph separation provides an intuitive graphical interpretation for
the Cl axioms.
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Conditional independence

Example application of Cl in causal inference:

m Treatment X, outcome Y. Let / indicates each individual,
I=1,...,n. Want to test if Y L X | | (untestable).

m Suppose Z = Z(I) is a set of sufficient covariates such that
Y L 1] (X,Z). Then

Y LX|I< Y L X|Z (testable based on data) (1)

m Proof outline:
Note Y L X |/ < Y L X|(/,Z) because Z = Z(I).
<« Sufficient set and RHS of (1) imply Y L (/,X) | Z by
(C4) and thus Y L X | (/, Z) by (C3).
= Sufficient set and LHS (Y L X | (/,Z)) imply
Y L (X,1)| Z by (C5) and thus Y L X | Z by (C2).
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Conditional independence

Definition: A graph G = (V,E), V ={1,...,p} is a set of vertices
(or nodes) and E C V x V is a set of edges.
m Undirected edge i —j: (i,j) € E < (j,i) € E.
m Directed edge i — j: (i,j) € E=(j,i) ¢ E.
m Associate V to random variables X; (i = 1,..., p) with joint
distribution P. Then (G, P) is called a graphical model. Often
use node i and X; interchangeably.

m Use graph separation to represent conditional independence
among Xi, ..., Xp.
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Undirected graphical models

Reference: Lauritzen (1996), chapters 2 and 3.

Terminology for undirected graph G = (V, E)

m / and j are neighbors if (i,j) € E; ne(i) denotes the set of
neighbors of i.

m A path of length n from j to j is a sequence ag = /,...,ap, = J
of distinct vertices so that (ax_1,ax) € E forall k=1,...,n.

m A subset C C V separates a and b if all paths from a to b
intersect C.

m C separates A and B if C separates a and b for every a € A
and b€ B. Write A— C — B.
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Undirected graphical models

Markov properties on undirected graphs

Consider undirected graphical model (G,P). We say P satisfies
m (P) the pairwise Markov property wrt G if

(i) ¢ E=iLj|V\{ij}=[V]
m (L) the local Markov property wrt G if
(i,j) ¢ E=iLj|ne(i);
m (G) the global Markov property wrt G if

A-C-B=ALB|C
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Undirected graphical models

Factorization via cliques

m Complete subset and clique: A subset of C C V is complete if
the subgraph on C is complete. A complete subset that is
maximal (wrt C) is called a clique.

m (F) Factorization: P factorizes according to G if for every
clique A, there exists 1)a(xa) > 0, such that the joint density
of P has the form

F(x) = [ valxa),

AeC

where C is the set of cliques of G.
m Relations: (F) = (G) = (L) = (P).

Examples.
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Undirected graphical models

When does (F) < (G) < (L) < (P)?

If P has a positive and continuous density f with respect to a
product measure, then (F) < (P).

m Product measure: (1) X; € R, use Lebesgue measure; (2) X;
finite discrete, use counting measure.

m Conclusion implies (F) < (G) < (L) < (P).

m Counter example. Let p =5, Xi, X5 ~jig Bern(0.5), Xo = Xi,
Xz = Xs, and X3 = X5Xy. This defines P. Let G be a chain
E={(i,i+1):i=1,...,4}.

Then (L) holds but not (G). Because density (probability mass
function) is not positive on all possible values of X;'s.
(L): Xo L Xq | (X1, X3) true; (G): Xo L Xy | X3 false!
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Undirected graphical models

Conditional independence graph (CIG).

m Definition: A CIG is a graphical model (G, P) such that (P)
holds. That is,

(i) E=iLj|V\{ij}:=[V]
m Sparser graph G implies more conditional independence (Cl)
relations.

m One can always choose the minimal G such that (P) holds to
be the CIG, i.e., replace = by <.

m Estimate the structure of G to detect Cl relations, assuming
we have observed iid data from P.
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Undirected graphical models

Gaussian graphical models (GGMs)

A CIG with P = N,(0,X), X > 0 (positive definite).

Lemma 1

Suppose (Xi,...,Xp) ~ Np(0,X) with X > 0 and let
0= (ij)pxp =3%"1 Then

9jk =0« XJ 1 X | X—{j,k}- (2)

m O is called the precision matrix.
m (2) shows that GGM is constructed as

b =0 & (j.k) ¢ E. 3)
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Undirected graphical models

Partial correlation and neighborhood regression

m Partial correlation between j and k given [V]j:

pik = —Ojk/\/0jiOkk-

Correlation calculated from X(; 4y vy, = Var(j, k | [V]jk).

m Neighborhood regression, regress X; on X_;:

Xj =Y ByXi+ej. (4)
i

Then Bi; = —0j /8. (By symmetry Bj = —04;/0k.)
m Thus, we have

(j,k)§éE<:>0jk=0<:>pjk=0<:>,3kj:,3jk:0. (5)
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Undirected graphical models

Learning GGMs: Given x; ~jig Np(0,X), i = ., n, estimate

the structure of G < supp(©) = {(J, k) : Ojx # 0}.

Also called covariance selection (Dempster 1972).
m Log-likelihood

1
§x) = —g log det() —  tr(ST ),
where S = 3. x;xT is a p x p matrix (sufficient statistic).
m SME — S§/n (always exists).
m If n> p, inverte yMLE . OMLE

:( MLE)—l
Then obtain G by thresholding: E=

{U. k) 10} > 7).
Zhou, Q
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Undirected graphical models

Regularized estimation under ¢; penalty (Yuan and Lin 2007;
Friedman et al. 2008; Banerjee et al. 2008)

m Element-wise {1 norm [|Of|1:=3_; [0l

m /; regularized estimate © = argming., (©),
2 o-1
f(©) = -6 + Alels
= —logdet(©) + tr(XMEQ) + A||9|;.

m f is convex, efficient algorithm.
m Well-defined for p > n.

m Sparse solution, HAJ-k = 0 for some (j, k).
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Undirected graphical models

Estimate G from ©
m E={(j,k): éjk # 0}, but needs very strong assumptions
(irrepresentability) for P(E = Ey) — 1.
= Thresholding ©: E = i(], k) : ;| > 7}. Weaker assumptions
(RE, beta-min) for P(E = Ey) — 1.

Choosing A by cross-validation, A/, then P(E()\*CV) D E)—1
under certain conditions (RE, beta-min).
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Undirected graphical models

Estimate G by neighborhood regression (Meinshausen and
BiihImann 2006)

m Apply model selection (e.g. lasso) for each neighborhood
regression (4) = B (j,k=1,...,p).

m Combine results to define G, e.g.,
E={(j.k): B #0, By # 0}.

m Approximate  if lasso is used in neighborhood regression.
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Directed acyclic graphs

Terminology for directed acyclic graph (DAG) G = (V, E)
m If i — j, then j is a parent of j and j is a child of /;
pa(j) is the set of parents of j; ch(i) is the set of children of /.
m If there is a path from / to j, we say i leads to j and write
i — J.
The ancestors an(j) = {i : i — j}.
The descendants de(i) = {j : i — j}.
The non-descendants nd(i) = V' \ (de(i) U {i}).
m A chain of length n from i to j is a sequence
ap =1,...,a, =j of distinct vertices so that a,_1; — ax or
dkx — dk—1 for all k:1,...,n.
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Directed acyclic graphs

m d-separation: A chain 7 from a to b is said to be blocked by
S C V, if the chain contains a vertex y such that either (1) or
(2) holds:

v € S and the arrows of m do not meet at v (i — v — j or
i~y —=j).
~vUde(y) not in S and arrows of m meet at vy (i — 7 < j)
Two subsets A and B are d-separated by S is all chains from
A to B are blocked by S.

m A topological sort of G is an ordering o, i.e., a permutation of
{1,..., p}, such that j € an(i) implies j < i in 0. Due to
acyclicity, every DAG has at least one sort.

m Example G: 1 —2—3<«+ 4
{2} d-separates 1 and 4; & d-separates 1 and 4.
o=(1,2,4,3) or (4,1,2,3) or (1,4,2,3) are topological sorts.
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Directed acyclic graphs

Zhou, Q

Markov properties on DAGs: We say a joint distribution P

m (DF) admits a recursive factorization according to G if P has a
density f such that

f(x) =[] fi(x | pa(i), (6)
Jjev
where f; is the density for [j | pa(j)].
m (DG) satisfies the directed global Markov property if
S d-separates Aand B= A L B|S;

m (DL) satisfies the directed local Markov property if
i L nd(i) | pa(i).

m (DP) satisfies the directed pairwise Markov property if for any
(i.J) & E with j € nd(i), i L j | nd(i)\ {j}.
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Directed acyclic graphs

Relations: (DF) = (DG) = (DL) = (DP).

Theorem 2

If P has a density f with respect to a product measure, then (DF),
(DG), and (DL) are equivalent.

Markov equivalence: Two DAGs are called Markov equivalent if
they induce the same set of Cl restrictions.
< Same skeleton and same v-structures (Verma and Pearl 1990).

Connections to Markov properties on undirected graphs:

m Moral graph G™: add edges between all parents of a node in a
DAG G and delete directions.

m If P admits a recursive factorization according to G, then it
factorizes according to G™.
That is, (DF) wrt G = (F) wrt g™ = (G), (L), (P) wrt G™.
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Directed acyclic graphs

m Definition of Bayesian networks: Given P with density f and
an ordering (o(1),...,0(p)), we factorize f

F(x) = [T F o) | %) s Xo(i-1)

J

Il
—

Il
o

f(Xa(j) | XAj)7 (7)

.
Il
N

where A; C {0(1),...,0(j — 1)} is the minimum subset such
that (7) holds. Then the DAG G with pa(c(j)) = A; for all
Jj € V is a Bayesian network of P.

m Cl: If G is a BN of P, then (DF) holds, so (DG), (DL), (DP)
also hold.

m Examples: Markov chains, HMMs, etc.
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Directed acyclic graphs

Parameterization: Given G, to parameterize [X; | pa(j)] as in (6).

(1) Gaussian BNs
m Linear structural equation model (SEM):

Xi= Y BiXite, ji=1....p. (8)
i€pa())
Assume ¢; ~ N(0,w?) and ¢; L pa(j).
m Put B = () and Q = diag(w?,...,w3). Then
X=B"X+¢e,  e~Ny0,9).

= X ~ N,(0,071), where © = (I, — B)Q~ (1, — B)T
(Cholesky decomposition of ©); see van de Geer and
Biihimann (2013); Aragam and Zhou (2015).
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Directed acyclic graphs

(2) Discrete BNs

= Multinomial distribution: 6Y) = P(X; = m | pa(j) = k).
Parameter for [X; | pa(j)] is a K x M table:

{ 290)_1 k=1,. szl,...,M}.

K: number of all possible combinations of pa(j). (Too many
parameters if a node has many parents.)

m Multi-logit regression model (Gu et al. 2019): Use generalized
linear model for [X; | pa(j)].
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Directed acyclic graphs

Structure learning

Given x; ~jig P, i = 1,...,n, estimate a BN éfor P.
The sparser the G, the more Cl relations learned from data.
m Score-based methods: Minimize a scoring function over DAGs;
regularization to obtain sparse solutions.
m Constraint-based methods: Condition independence tests
against X; L Xj | Xs forall i,/,S.
m Hybrid methods: First use constraint-based method to prune
the search space, and then apply a score-based method to
search for the optimal DAG.

See, e.g. Aragam and Zhou (2015) Section 1.2.
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Directed acyclic graphs

Causal DAG model:

m Model causal relations among nodes: If i — j, then j is a
causal parent (direct cause) of j.

m Causal relation defined by experimental intervention (Pearl
2000): Force X to some fixed value x, which we denote by
do(X = x) or do(x) for short.

m Effect of do(x;): to replace the SEM for X; by X; = x; and
substitute X; = x; in the other SEMs for Xj,j # i. See Eq (8).

m The causal effect of X on Y is defined by the mapping
x = P[Y | do(X = x)] = P(Y | do(x)).

linear SEM: Causal effect w.

Treatment (X = 1) vs control (X = 0): Causal effect
E(Y | do(X =1)) —E(Y | do(X = 0)).
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Faithfulness

Given a graphical model (G,P) where P satisfies, say (G) or (DG).
Then graph separation = condition independence, but not <. If P
is faithful to G then <= holds as well. In this case, we have <.

Definition 1

For a graphical model (G, P), we say the distribution PP is faithful
to the graph G if for every triple of disjoint sets A, B,S C V,

AL B|S < S separates (d-separates) A and B.

How likely is P faithful?
Example: Gaussian graphs (undirected or DAGs), P is Gaussian.

m Given G, almost all parameter values will define a faithful PP.

m Counterexamples: The parameters, © or (f3;), satisfy
additional equality constraints that define Cl in P not implied
by any separation in G.
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