
Chapter 5
Random Graphs for Modeling Network Data

Qing Zhou

UCLA Department of Statistics

Stats 201C Advanced Modeling and Inference
Lecture Notes



Outline

1 Network data

2 Latent space models

3 Stochastic block models

4 Variational EM

5 Community detection

6 Extensions and discussions

Zhou, Q Random Graphs 1/32



Network Data

Examples & applications

Social networks.

Protein-protein interaction networks.

Biomedical data with family history.

Figure sources: (left) forbes.com; (right) UW Madison.
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Network Data

Observed data: A network (graph) among n nodes.

Each node corresponds to an individual i ∈ {1, . . . , n} := V .

Connections among the nodes are given by an adjacency
matrix, A = (Yij)n×n (symmetric):

Yij = 0 : no edge between i and j ;

Yij = 1 : there is edge between i and j .

If Yij ∈ R \ {0} when there is an edge, weighted graph.

Build a probabilistic model on the random graph A; an
observed network (yij) is a realization of A.

Modeling heterogeneity: nodes that share a large number of
connections form a community (Matias and Robin 2014).
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Latent space models

Reference: Hoff et al. (2002).

Each node i ∈ V is associated with an independent latent
variable Zi ∈ Rq. The space for Zi is the latent space.

The distribution of the edge Yij depends on ∥Zi − Zj∥
(distance between Zi and Zj in the latent space).

Conditional distribution [Yij |Zi ,Zj ] (assuming binary graph):

Yij = Yji ∼ Bern(γij)

logit{γij} = α− ∥Zi − Zj∥.

If ∥Zi − Zj∥ is small, then P(Yij = 1|Zi ,Zj) is large (more
likely to connect i and j).

Predict Zi and cluster them to detect communities.
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Latent space models

Other related models:

Graphon: latent variables Ui ∼ Unif(0, 1).

Yij ∼ Bern(γij)

γij = g(Ui ,Uj),

g is a symmetric function, called a graphon: Nonparametric
estimation.

Stochastic block model (SBM): Zi ∈ {1, . . . ,K}.
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Stochastic block models

Model structure:

Assume K communities (clusters) among the n nodes.

Latent cluster labels Zi = (Zi1, . . . ,ZiK ) ∈ {e1, . . . , eK}

Zi = (Zi1, . . . ,ZiK ) ∼iid M(1, π),

where π = (π1, . . . , πK ) are cell probabilities.

Given Zi and Zj , the edge Yij = Yji is drawn independently:

Yij | Zim = 1,Zjℓ = 1 ∼ f (·; γmℓ).

The matrix γ = (γmℓ)K×K contains all parameters for
connection probabilities among the K communities.
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Stochastic block models

Formulate as a hidden variable model:

Parameters: θ = (π, γ).

Hidden variables (missing data): Z = (Z1, . . . ,Zn).

Observed data: A = (Yij)n×n.

To be concrete, assume

Yij | Zim = 1,Zjℓ = 1 ∼ Bern(γmℓ)

f (y ; γmℓ) = γymℓ(1− γmℓ)
1−y , y ∈ {0, 1}.
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Stochastic block models

Using EM for MLE:

MLE θ̂ is the solution to:

max
θ

logP(Y ; θ) = log

∑
Z1

. . .
∑
Zn

P(Y ,Z1, . . . ,Zn; θ)

 .

Complete-data log-likelihood

ℓ(θ | Y ,Z ) = logP(Y ,Z ; θ)

=
n∑

i=1

∑
m

Zim log πm +
1

2

∑
i ̸=j

∑
m,ℓ

ZimZjℓ log f (Yij ; γmℓ). (1)

E-step needs E(Zim | Y ; θ(t)) and E(ZimZjℓ | Y ; θ(t)).
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Stochastic block models

Difficulty:

E-step is intractable, since P(Z1, . . . ,Zn | Y ; θ(t)) does not
factorize in any way.

Zi ,Zj are dependent given Yij for all i , j ⇒ Z1, . . . ,Zn are all
dependent given A = (Yij).

Compare:
(1) Mixture modeling, Zi ⊥ Zj | Y .
(2) HMM, (Z1, . . . ,Zn | Y ) is a Markov chain.
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Variational EM algorithm

An iterative maximization view of EM:

ℓ(θ|Y ) := logP(Y ; θ) = logP(Y ,Z ; θ)− logP(Z | Y ; θ).

Take expectation wrt a distribution F over Z :

ℓ(θ|Y ) = EF {logP(Y ,Z ; θ)}+ H(F ) + KL(F∥P(Z | Y ; θ)), (2)

where H(F ) = EF{− log F (Z )} is the entropy of F and KL ≥ 0 is
the Kullback-Leibler divergence. Thus, for any F

ℓ(θ|Y ) ≥ EF {logP(Y ,Z ; θ)}+ H(F ) := L(θ,F ).

L(θ,F ): evidence lower bound (ELBO),
F : variational distribution.
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Variational EM algorithm

EM iterates between two maximization steps to

max
F ,θ

{L(θ,F ) = EF {logP(Y ,Z ; θ)}+ H(F )} .

E-step: Given θ(t), maxF L(θ(t),F ), due to (2), ⇔

min
F

KL(F∥P(Z | Y ; θ(t))) ⇒ F (t) = P(Z | Y ; θ(t)).

M-step: Given F (t), maxθ L(θ,F
(t)) ⇔

max
θ

EF (t) {logP(Y ,Z ; θ)} = max
θ

E
{
logP(Y ,Z ; θ) | Y ; θ(t)

}
= max

θ
Q(θ | θ(t)) ⇒ θ(t+1).

Note that L(θ,F (t)) is the minorization function in the MM view
of EM.
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Variational EM algorithm

Variational EM maximizes L(θ,F ) within a restricted class of
F ∈ F so that E-step is tractable.

E-step: Given θ(t)

max
F∈F

EF

{
logP(Y ,Z ; θ(t))

}
+ H(F ) ⇒ F (t) ∈ F .

M-step: Given F (t)

max
θ

EF (t) {logP(Y ,Z ; θ)} ⇒ θ(t+1).

Note that L(θ,F ) always a lower bound of ℓ(θ | Y ) for any F .
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Variational EM algorithm

Reference Daudin et al. (2008).
Assume F (Z ) =

∏n
i=1 h(Zi ; τi ), and Zi ∼ M(1, τi ) under h.

EF (ZimZjℓ) = EF (Zim)EF (Zjℓ) = τimτjℓ.

Then plug into complete-date log-likelihood (1) and H(F ):

L(θ,F ) =
n∑

i=1

∑
m

τim log πm +
1

2

∑
i ̸=j

∑
m,ℓ

τimτjℓ log f (Yij ; γmℓ)

−
n∑

i=1

∑
m

τim log τim := L(θ, τ).

Variational EM iteratively maximize L(θ, τ) over τ (E-step)
and θ (M-step).
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Variational EM algorithm

E-step:

Given θ(t), maxτ L(θ
(t), τ) subject to

∑
m τim = 1 for all i .

max
τ

L(θ(t), τ) +
n∑

i=1

λi

(
1−

∑
m

τim

)
⇒ log π

(t)
m − log τim +

∑
j ̸=i

∑
ℓ

τjℓ log f (Yij ; γ
(t)
mℓ) = λi + 1,

by taking derivative wrt τim.

No closed form, τ (t) is given by the fixed point of

τim ∝ π
(t)
m

∏
j ̸=i

K∏
ℓ=1

{
f (Yij ; γ

(t)
mℓ)
}τjℓ

,

subject to
∑

m τim = 1 for each i . Use this as an iterative
algorithm to obtain τ (t).
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Variational EM algorithm

Some intuition behind the update

τim ∝ π
(t)
m

∏
j ̸=i

K∏
ℓ=1

{
f (Yij ; γ

(t)
mℓ)
}τjℓ

.

Consider a Gibbs sampler for [Z | Y ] by iteratively sampling from
[Zi | Y ,Z−i ] for i = 1, . . . , n

P(Zim = 1 | Y ,Z−i ) ∝ P(Zim = 1 | Z−i )P(Y | Zim = 1,Z−i )

= π
(t)
m

∏
j ̸=i

K∏
ℓ=1

{
f (Yij ; γ

(t)
mℓ)
}Zjℓ

,

given the current parameter θ(t).
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Variational EM algorithm

M-step:

Given τ (t), maxτ L(θ, τ
(t)) subject to

∑
m πm = 1.

π
(t+1)
m =

1

n

n∑
i=1

τ
(t)
im

γ
(t+1)
mℓ =

∑
i ̸=j τ

(t)
im τ

(t)
jℓ Yij∑

i ̸=j τ
(t)
im τ

(t)
jℓ

.

τ
(t)
im approximates P(Zim = 1 | Y , θ(t)), weight of node i in
cluster m.

τ
(t)
im τ

(t)
jℓ approximates P(Zim = 1,Zjℓ = 1 | Y , θ(t)), weight of

node i in cluster m and j in cluster ℓ (Yij indicates an edge
between the two clusters).
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Variational EM algorithm

Consistency of variational estimator (Bickel et al. 2013):

MLE θ̂ML = argmaxθ ℓ(θ | Y ).

Variational estimator θ̂VR = argmaxθ maxτ L(θ, τ).

Bound maxτ L(θ, τ) by two log-likelihood functions:

logP(Y ,Z = z ; θ) ≤ max
τ

L(θ, τ) ≤ ℓ(θ | Y ), (3)

for any z .

Asymptotic normality for both estimators as n → ∞.
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Variational EM algorithm

Logit transformation of parameters:

ωm = log {πm/πK} , m = 1, . . . ,K − 1,

νmℓ = log {γmℓ/(1− γmℓ)} , m, ℓ = 1, . . . ,K .

Theorem 1

Assume the true parameter is θ∗ = (π∗, γ∗), where γ∗ has no
identical columns. Let λn = E(degree) = nPθ∗(Yij = 1). If
λn/ log n → ∞, then

√
n(ω̂ − ω∗)

d→N (0,Σ1),√
nλn(ν̂ − ν∗)

d→N (0,Σ2),

for both θ̂VR and θ̂ML, where Σ1 and Σ2 are functions of θ∗.
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Community detection

Clustering nodes: predict Z .

Posterior distribution P(Z | Y , θ̂). Celisse et al. (2012)
establish ∑

z ̸=z∗ P(Z = z | Y ; θ̂)

P(Z = z∗ | Y ; θ̂)

p→ 0,

where z∗ is the true cluster labels.

Spectral clustering (von Luxburg 2007) also achieves
vanishing clustering error rate (Rohe et al. 2011):

# of misclustered nodes

n
→ 0, a.s.
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Community detection

Spectral clustering of A = (Yij)n×n (Rohe et al. 2011):

Define normalized graph Laplacian L = D−1/2AD−1/2, where
D = diag(d1, . . . , dn) and di =

∑
j Yij is the degree of node i .

1 Find X = [X1 | · · · | XK ] ∈ Rn×K , Xj ’s are the orthogonal
eigenvectors corresponding to the largest K eigenvalues of L
(in absolute value).

2 Treat each row of X as a data point in RK , apply k-means to
cluster the n rows into K clusters, C1, . . . ,CK (partition of
{1, . . . , n}).

Output: Ẑim = 1 if i ∈ Cm.

Zhou, Q Random Graphs 20/32



Community detection

Why does spectral clustering work?

Define population version of A: A = (Aij)n×n,

Aij = E(Yij | Z ) = P(Yij = 1 | Z ).

Let B = (γmℓ)K×K and Z = (Zim)n×K , then A = ZBZT.

Define the graph Laplacian of A similarly:
L = D−1/2AD−1/2, where Dii =

∑
j Aij .

Then the eigenvectors of L converge to the eigenvectors of L.
L has K nonzero eigenvalues, the associated eigenvectors
U = (uij) = [U1 | · · · | UK ] ∈ Rn×K satisfies:

ui = uj ⇔ Zi = Zj ,

where ui is the ith row of U .
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Community detection

Example of L and U :

Zhou, Q Random Graphs 22/32



Extensions and discussions

Weighted graphs, e.g., Yij | Zim = 1,Zjℓ = 1 ∼ Poiss(γmℓ).

Degree-corrected block model:

Yij | Zim = 1,Zjℓ = 1 ∼ Poiss(γmℓκiκj),

κi controls expected degree of node i .

Accounting for covariates
1 Nodewise covariates xi , i = 1, . . . , n:

Zi ∼ M(1, π(xi )).

2 Edgewise covariates xij , i ̸= j . Bernoulli model:

logit {P(Yij = 1 | Zim = 1,Zjℓ = 1)} = xTij β + γmℓ.

Poisson model:

Yij | Zim = 1,Zjℓ = 1 ∼ Poiss(exp(xTij β + γmℓ)).
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Graphons

Hereafter, consider simple graphs: unweighted and symmetric.

Recall the definition of a graphon, g : [0, 1]2 → [0, 1]. We define a
random simple graph (Yij) ∈ {0, 1}n×n given a graphon g :

1 Draw Ui ∼ Unif(0, 1) for i = 1, . . . , n.

2 Draw Yij = Yji ∼ Bern(g(Ui ,Uj)) for all i ̸= j .
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Graphons

SBM as a graphon model:

Partition (0, 1) into K intervals, Jm for m = 1, . . . ,K , so that
|Jm| = πm.

Let g(u, v) = γmℓ if u ∈ Jm and v ∈ Jℓ (block-wise constant).

Then the graphon is equivalent to the SBM.
Let Zim = I (Ui ∈ Jm). If Zim = 1,Zjℓ = 1, then

g(Ui ,Uj) = γmℓ

Yij ∼ Bern(g(Ui ,Uj)) = Bern(γmℓ).
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Graphons

Exchangeable graphs: A random graph G is said to be
exchangeable if its distribution is invariant to any relabeling
(or permutation) of its vertex set.

An equivalent definition is that its adjacency matrix (Yij)n×n

is a jointly exchangeable random array, i.e.

P(Yij ∈ Aij ,∀i , j ∈ [n]) = P(Yπ(i)π(j) ∈ Aij ,∀i , j ∈ [n]) (4)

for every permutation π of {1, . . . , n} and every collection of

measurable sets {Aij}. We write (Yij)
d
=(Yπ(i)π(j)) when (4)

holds.
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Graphons

Theorem 2 (Aldous-Hoover)

A random array (Xij),Xij ∈ Ω, i , j ∈ N, is jointly exchangeable if
and only if there is a random function F : [0, 1]3 → Ω such that

(Xij)
d
=(F (Ui ,Uj ,Uij)), (5)

where (Ui )i∈N and (Uij)i ,j∈N are, respectively, an infinite sequence
and array of i.i.d. Unif[0, 1] independent of F .

A few remarks:

1 (Xij)i ,j∈N is an infinite two-way array, i = 1, 2, . . . and
j = 1, 2, . . .. Exchangeability of X is an assumption on the
data source.

2 A exchangeable graph G on n nodes is regarded as a sample
of finite size from this data source.
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Graphons

Apply Theorem 2 to (Yij)N×N with Ω = {0, 1}:
F (x , y , u) ∈ {0, 1} for all x , y , u ∈ [0, 1]. Assume F is
symmetric in (x , y).

Define a function g : [0, 1]2 → [0, 1] by g(x , x) = 0 and

g(x , y) := P(F (x , y ,U) = 1 | F ),

where U ∼ Unif[0, 1] and is independent of F .

Then g is a random symmetric function and

(Yij)
d
=(F (Ui ,Uj ,Uij))

d
=(I (Uij < g(Ui ,Uj))). (6)

This is because (Yij) are independent given (Ui ) and F and

P(Yij = 1 | Ui ,Uj ,F ) = g(Ui ,Uj) (by definition of g)

= P(Uij < g(Ui ,Uj) | Ui ,Uj ,F ).
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Graphons

Corollary 1

A random simple graph G with vertex set N is exchangeable if and
only if there is a random function g : [0, 1]2 → [0, 1] such that its
adjacency matrix

(Yij)
d
=(I (Uij < g(Ui ,Uj))), (7)

where (Ui ) and (Uij) are i.i.d. Unif[0, 1] and independent of g .

The random function g is called a graphon.
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Graphons

Every exchangeable random simple graph G on N is represented by
a random graphon g :

1 Draw g from a distribution ν (over functions [0, 1]2 → [0, 1]).

2 Draw Ui , i ∈ N independently from Unif[0, 1].

3 For every pair i < j ∈ N, draw

Yij | g ,Ui ,Uj ∼ Bern(g(Ui ,Uj)).

Remarks:

1 The distribution of G is determined by ν.

2 Statistical modeling of exchangeable simple graphs is
parameterized by graphons g .

A review article: Orbanz and Roy (2015).
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