Chapter 5
 Random Graphs for Modeling Network Data

Qing Zhou

UCLA Department of Statistics

Stats 201C Advanced Modeling and Inference
Lecture Notes

Outline

1 Network data
2 Latent space models
3 Stochastic block models
4 Variational EM
5 Community detection
6 Extensions and discussions

Network Data

Examples \& applications

- Social networks.
- Protein-protein interaction networks.
- Biomedical data with family history.

Figure sources: (left) forbes.com; (right) UW Madison.

Network Data

Observed data: A network (graph) among n nodes.
■ Each node corresponds to an individual $i \in\{1, \ldots, n\}:=V$.

- Connections among the nodes are given by an adjacency matrix, $A=\left(Y_{i j}\right)_{n \times n}$ (symmetric):

$$
\begin{aligned}
& Y_{i j}=0: \text { no edge between } i \text { and } j \\
& Y_{i j}=1: \text { there is edge between } i \text { and } j .
\end{aligned}
$$

If $Y_{i j} \in \mathbb{R} \backslash\{0\}$ when there is an edge, weighted graph.
■ Build a probabilistic model on the random graph A; an observed network $\left(y_{i j}\right)$ is a realization of A.
Modeling heterogeneity: nodes that share a large number of connections form a community (Matias and Robin 2014).

Latent space models

Reference: Hoff et al. (2002).
■ Each node $i \in V$ is associated with an independent latent variable $Z_{i} \in \mathbb{R}^{q}$. The space for Z_{i} is the latent space.
■ The distribution of the edge $Y_{i j}$ depends on $\left\|Z_{i}-Z_{j}\right\|$ (distance between Z_{i} and Z_{j} in the latent space).
$■$ Conditional distribution $\left[Y_{i j} \mid Z_{i}, Z_{j}\right.$] (assuming binary graph):

$$
\begin{aligned}
Y_{i j}=Y_{j i} & \sim \operatorname{Bern}\left(\gamma_{i j}\right) \\
\operatorname{logit}\left\{\gamma_{i j}\right\} & =\alpha-\left\|Z_{i}-Z_{j}\right\| .
\end{aligned}
$$

If $\left\|Z_{i}-Z_{j}\right\|$ is small, then $\mathbb{P}\left(Y_{i j}=1 \mid Z_{i}, Z_{j}\right)$ is large (more likely to connect i and j).

- Predict Z_{i} and cluster them to detect communities.

Latent space models

Other related models:
■ Graphon: latent variables $U_{i} \sim \operatorname{Unif}(0,1)$.

$$
\begin{aligned}
& Y_{i j} \sim \operatorname{Bern}\left(\gamma_{i j}\right) \\
& \gamma_{i j}=g\left(U_{i}, U_{j}\right),
\end{aligned}
$$

g is a symmetric function, called a graphon: Nonparametric estimation.
■ Stochastic block model (SBM): $Z_{i} \in\{1, \ldots, K\}$.

Stochastic block models

Model structure:
■ Assume K communities (clusters) among the n nodes.
$■$ Latent cluster labels $Z_{i}=\left(Z_{i 1}, \ldots, Z_{i K}\right) \in\left\{e_{1}, \ldots, e_{K}\right\}$

$$
Z_{i}=\left(Z_{i 1}, \ldots, Z_{i K}\right) \sim_{i i d} M(1, \pi)
$$

where $\pi=\left(\pi_{1}, \ldots, \pi_{K}\right)$ are cell probabilities.
■ Given Z_{i} and Z_{j}, the edge $Y_{i j}=Y_{j i}$ is drawn independently:

$$
Y_{i j} \mid Z_{i m}=1, Z_{j \ell}=1 \sim f\left(\cdot ; \gamma_{m \ell}\right)
$$

The matrix $\gamma=\left(\gamma_{m \ell}\right)_{K \times K}$ contains all parameters for connection probabilities among the K communities.

Stochastic block models

Formulate as a hidden variable model:

- Parameters: $\theta=(\pi, \gamma)$.

■ Hidden variables (missing data): $Z=\left(Z_{1}, \ldots, Z_{n}\right)$.

- Observed data: $A=\left(Y_{i j}\right)_{n \times n}$.

■ To be concrete, assume

$$
\begin{aligned}
& Y_{i j} \mid Z_{i m}=1, Z_{j \ell}=1 \sim \operatorname{Bern}\left(\gamma_{m \ell}\right) \\
& f\left(y ; \gamma_{m \ell}\right)=\gamma_{m \ell}^{y}\left(1-\gamma_{m \ell}\right)^{1-y}, \quad y \in\{0,1\} .
\end{aligned}
$$

Stochastic block models

Using EM for MLE:

- MLE $\hat{\theta}$ is the solution to:

$$
\max _{\theta}\left\{\log \mathbb{P}(Y ; \theta)=\log \left[\sum_{Z_{1}} \ldots \sum_{Z_{n}} \mathbb{P}\left(Y, Z_{1}, \ldots, Z_{n} ; \theta\right)\right]\right\}
$$

- Complete-data log-likelihood

$$
\begin{align*}
& \ell(\theta \mid Y, Z)=\log \mathbb{P}(Y, Z ; \theta) \\
& =\sum_{i=1}^{n} \sum_{m} Z_{i m} \log \pi_{m}+\frac{1}{2} \sum_{i \neq j} \sum_{m, \ell} Z_{i m} Z_{j \ell} \log f\left(Y_{i j} ; \gamma_{m \ell}\right) \tag{1}
\end{align*}
$$

■ E-step needs $\mathbb{E}\left(Z_{i m} \mid Y ; \theta^{(t)}\right)$ and $\mathbb{E}\left(Z_{i m} Z_{j \ell} \mid Y ; \theta^{(t)}\right)$.

Stochastic block models

Difficulty:

■ E-step is intractable, since $\mathbb{P}\left(Z_{1}, \ldots, Z_{n} \mid Y ; \theta^{(t)}\right)$ does not factorize in any way.
■ Z_{i}, Z_{j} are dependent given $Y_{i j}$ for all $i, j \Rightarrow Z_{1}, \ldots, Z_{n}$ are all dependent given $A=\left(Y_{i j}\right)$.

- Compare:
(1) Mixture modeling, $Z_{i} \perp Z_{j} \mid Y$.
(2) $\mathrm{HMM},\left(Z_{1}, \ldots, Z_{n} \mid Y\right)$ is a Markov chain.

Variational EM algorithm

An iterative maximization view of EM:

$$
\ell(\theta \mid Y):=\log \mathbb{P}(Y ; \theta)=\log \mathbb{P}(Y, Z ; \theta)-\log \mathbb{P}(Z \mid Y ; \theta)
$$

Take expectation wrt a distribution F over Z :

$$
\begin{equation*}
\ell(\theta \mid Y)=\mathbb{E}_{F}\{\log \mathbb{P}(Y, Z ; \theta)\}+H(F)+K L(F \| \mathbb{P}(Z \mid Y ; \theta)) \tag{2}
\end{equation*}
$$

where $H(F)=\mathbb{E}_{F}\{-\log F(Z)\}$ is the entropy of F and $K L \geq 0$ is the Kullback-Leibler divergence. Thus, for any F

$$
\ell(\theta \mid Y) \geq \mathbb{E}_{F}\{\log \mathbb{P}(Y, Z ; \theta)\}+H(F):=L(\theta, F)
$$

$L(\theta, F)$: evidence lower bound (ELBO),
F : variational distribution.

Variational EM algorithm

EM iterates between two maximization steps to

$$
\max _{F, \theta}\left\{L(\theta, F)=\mathbb{E}_{F}\{\log \mathbb{P}(Y, Z ; \theta)\}+H(F)\right\}
$$

- E-step: Given $\theta^{(t)}, \max _{F} L\left(\theta^{(t)}, F\right)$, due to (2), \Leftrightarrow

$$
\min _{F} K L\left(F \| \mathbb{P}\left(Z \mid Y ; \theta^{(t)}\right)\right) \Rightarrow F^{(t)}=\mathbb{P}\left(Z \mid Y ; \theta^{(t)}\right)
$$

- M-step: Given $F^{(t)}, \max _{\theta} L\left(\theta, F^{(t)}\right) \Leftrightarrow$

$$
\begin{aligned}
\max _{\theta} \mathbb{E}_{F^{(t)}}\{\log \mathbb{P}(Y, Z ; \theta)\} & =\max _{\theta} \mathbb{E}\left\{\log \mathbb{P}(Y, Z ; \theta) \mid Y ; \theta^{(t)}\right\} \\
& =\max _{\theta} Q\left(\theta \mid \theta^{(t)}\right) \Rightarrow \theta^{(t+1)}
\end{aligned}
$$

Note that $L\left(\theta, F^{(t)}\right)$ is the minorization function in the MM view of EM.

Variational EM algorithm

Variational EM maximizes $L(\theta, F)$ within a restricted class of $F \in \mathcal{F}$ so that E-step is tractable.

- E-step: Given $\theta^{(t)}$

$$
\max _{F \in \mathcal{F}} \mathbb{E}_{F}\left\{\log \mathbb{P}\left(Y, Z ; \theta^{(t)}\right)\right\}+H(F) \Rightarrow F^{(t)} \in \mathcal{F}
$$

- M-step: Given $F^{(t)}$

$$
\max _{\theta} \mathbb{E}_{F^{(t)}}\{\log \mathbb{P}(Y, Z ; \theta)\} \Rightarrow \theta^{(t+1)}
$$

Note that $L(\theta, F)$ always a lower bound of $\ell(\theta \mid Y)$ for any F.

Variational EM algorithm

Reference Daudin et al. (2008).
Assume $F(Z)=\prod_{i=1}^{n} h\left(Z_{i} ; \tau_{i}\right)$, and $Z_{i} \sim M\left(1, \tau_{i}\right)$ under h.
$■ \mathbb{E}_{F}\left(Z_{i m} Z_{j \ell}\right)=\mathbb{E}_{F}\left(Z_{i m}\right) \mathbb{E}_{F}\left(Z_{j \ell}\right)=\tau_{i m} \tau_{j \ell}$.

- Then plug into complete-date log-likelihood (1) and $H(F)$:

$$
\begin{aligned}
L(\theta, F)=\sum_{i=1}^{n} & \sum_{m} \tau_{i m} \log \pi_{m}+\frac{1}{2} \sum_{i \neq j} \sum_{m, \ell} \tau_{i m} \tau_{j \ell} \log f\left(Y_{i j} ; \gamma_{m \ell}\right) \\
& -\sum_{i=1}^{n} \sum_{m} \tau_{i m} \log \tau_{i m}:=L(\theta, \tau)
\end{aligned}
$$

■ Variational EM iteratively maximize $L(\theta, \tau)$ over τ (E-step) and θ (M-step).

Variational EM algorithm

E-step:

- Given $\theta^{(t)}, \max _{\tau} L\left(\theta^{(t)}, \tau\right)$ subject to $\sum_{m} \tau_{i m}=1$ for all i.

$$
\begin{aligned}
& \max _{\tau} L\left(\theta^{(t)}, \tau\right)+\sum_{i=1}^{n} \lambda_{i}\left(1-\sum_{m} \tau_{i m}\right) \\
\Rightarrow & \log \pi_{m}^{(t)}-\log \tau_{i m}+\sum_{j \neq i} \sum_{\ell} \tau_{j \ell} \log f\left(Y_{i j} ; \gamma_{m \ell}^{(t)}\right)=\lambda_{i}+1,
\end{aligned}
$$

by taking derivative wrt $\tau_{i m}$.

- No closed form, $\tau^{(t)}$ is given by the fixed point of

$$
\tau_{i m} \propto \pi_{m}^{(t)} \prod_{j \neq i} \prod_{\ell=1}^{K}\left\{f\left(Y_{i j} ; \gamma_{m \ell}^{(t)}\right)\right\}^{\tau_{j \ell}}
$$

subject to $\sum_{m} \tau_{i m}=1$ for each i. Use this as an iterative algorithm to obtain $\tau^{(t)}$.

Variational EM algorithm

Some intuition behind the update

$$
\tau_{i m} \propto \pi_{m}^{(t)} \prod_{j \neq i} \prod_{\ell=1}^{K}\left\{f\left(Y_{i j} ; \gamma_{m \ell}^{(t)}\right)\right\}^{\tau_{j \ell}}
$$

Consider a Gibbs sampler for [$Z \mid Y$] by iteratively sampling from $\left[Z_{i} \mid Y, Z_{-i}\right]$ for $i=1, \ldots, n$

$$
\begin{aligned}
\mathbb{P}\left(Z_{i m}=1 \mid Y, Z_{-i}\right) & \propto \mathbb{P}\left(Z_{i m}=1 \mid Z_{-i}\right) \mathbb{P}\left(Y \mid Z_{i m}=1, Z_{-i}\right) \\
& =\pi_{m}^{(t)} \prod_{j \neq i} \prod_{\ell=1}^{K}\left\{f\left(Y_{i j} ; \gamma_{m \ell}^{(t)}\right)\right\}^{Z_{j \ell}}
\end{aligned}
$$

given the current parameter $\theta^{(t)}$.

Variational EM algorithm

M-step:
■ Given $\tau^{(t)}, \max _{\tau} L\left(\theta, \tau^{(t)}\right)$ subject to $\sum_{m} \pi_{m}=1$.

$$
\begin{aligned}
\pi_{m}^{(t+1)} & =\frac{1}{n} \sum_{i=1}^{n} \tau_{i m}^{(t)} \\
\gamma_{m \ell}^{(t+1)} & =\frac{\sum_{i \neq j} \tau_{i m}^{(t)} \tau_{j \ell}^{(t)} Y_{i j}}{\sum_{i \neq j} \tau_{i m}^{(t)} \tau_{j \ell}^{(t)}}
\end{aligned}
$$

- $\tau_{i m}^{(t)}$ approximates $\mathbb{P}\left(Z_{i m}=1 \mid Y, \theta^{(t)}\right)$, weight of node i in cluster m.
- $\tau_{i m}^{(t)} \tau_{j \ell}^{(t)}$ approximates $\mathbb{P}\left(Z_{i m}=1, Z_{j \ell}=1 \mid Y, \theta^{(t)}\right)$, weight of node i in cluster m and j in cluster ℓ ($Y_{i j}$ indicates an edge between the two clusters).

Variational EM algorithm

Consistency of variational estimator (Bickel et al. 2013):

- MLE $\hat{\theta}^{\mathrm{ML}}=\operatorname{argmax}_{\theta} \ell(\theta \mid Y)$.

■ Variational estimator $\hat{\theta}^{\mathrm{VR}}=\operatorname{argmax}_{\theta} \max _{\tau} L(\theta, \tau)$.

- Bound $\max _{\tau} L(\theta, \tau)$ by two log-likelihood functions:

$$
\begin{equation*}
\log \mathbb{P}(Y, Z=z ; \theta) \leq \max _{\tau} L(\theta, \tau) \leq \ell(\theta \mid Y) \tag{3}
\end{equation*}
$$

for any z.
■ Asymptotic normality for both estimators as $n \rightarrow \infty$.

Variational EM algorithm

Logit transformation of parameters:

$$
\begin{aligned}
\omega_{m} & =\log \left\{\pi_{m} / \pi_{K}\right\}, \quad m=1, \ldots, K-1 \\
\nu_{m \ell} & =\log \left\{\gamma_{m \ell} /\left(1-\gamma_{m \ell}\right)\right\}, \quad m, \ell=1, \ldots, K .
\end{aligned}
$$

Theorem 1

Assume the true parameter is $\theta^{*}=\left(\pi^{*}, \gamma^{*}\right)$, where γ^{*} has no identical columns. Let $\lambda_{n}=\mathbb{E}($ degree $)=n \mathbb{P}_{\theta^{*}}\left(Y_{i j}=1\right)$. If $\lambda_{n} / \log n \rightarrow \infty$, then

$$
\begin{aligned}
\sqrt{n}\left(\hat{\omega}-\omega^{*}\right) & \xrightarrow{d} \mathcal{N}\left(0, \Sigma_{1}\right), \\
\sqrt{n \lambda_{n}}\left(\hat{\nu}-\nu^{*}\right) & \xrightarrow{d} \mathcal{N}\left(0, \Sigma_{2}\right),
\end{aligned}
$$

for both $\hat{\theta}^{\mathrm{VR}}$ and $\hat{\theta}^{\mathrm{ML}}$, where Σ_{1} and Σ_{2} are functions of θ^{*}.

Community detection

Clustering nodes: predict Z.

- Posterior distribution $\mathbb{P}(Z \mid Y, \hat{\theta})$. Celisse et al. (2012) establish

$$
\frac{\sum_{z \neq z^{*}} \mathbb{P}(Z=z \mid Y ; \hat{\theta})}{\mathbb{P}\left(Z=z^{*} \mid Y ; \hat{\theta}\right)} \stackrel{p}{\rightarrow} 0
$$

where z^{*} is the true cluster labels.

- Spectral clustering (von Luxburg 2007) also achieves vanishing clustering error rate (Rohe et al. 2011):

$$
\frac{\# \text { of misclustered nodes }}{n}
$$

Community detection

Spectral clustering of $A=\left(Y_{i j}\right)_{n \times n}$ (Rohe et al. 2011):
Define normalized graph Laplacian $L=D^{-1 / 2} A D^{-1 / 2}$, where $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ and $d_{i}=\sum_{j} Y_{i j}$ is the degree of node i.
1 Find $X=\left[X_{1}|\cdots| X_{K}\right] \in \mathbb{R}^{n \times K}, X_{j}^{\prime}$'s are the orthogonal eigenvectors corresponding to the largest K eigenvalues of L (in absolute value).
2 Treat each row of X as a data point in \mathbb{R}^{K}, apply k-means to cluster the n rows into K clusters, C_{1}, \ldots, C_{K} (partition of $\{1, \ldots, n\}$).
Output: $\hat{Z}_{i m}=1$ if $i \in C_{m}$.

Community detection

Why does spectral clustering work?

- Define population version of A : $\mathcal{A}=\left(\mathcal{A}_{i j}\right)_{n \times n}$,

$$
\mathcal{A}_{i j}=\mathbb{E}\left(Y_{i j} \mid Z\right)=\mathbb{P}\left(Y_{i j}=1 \mid Z\right)
$$

- Let $B=\left(\gamma_{m \ell}\right)_{K \times K}$ and $Z=\left(Z_{i m}\right)_{n \times K}$, then $\mathcal{A}=Z B Z^{\top}$.
- Define the graph Laplacian of \mathcal{A} similarly: $\mathcal{L}=\mathcal{D}^{-1 / 2} \mathcal{A D}^{-1 / 2}$, where $\mathcal{D}_{i i}=\sum_{j} \mathcal{A}_{i j}$.
- Then the eigenvectors of L converge to the eigenvectors of \mathcal{L}.
- \mathcal{L} has K nonzero eigenvalues, the associated eigenvectors $\mathcal{U}=\left(u_{i j}\right)=\left[U_{1}|\cdots| U_{K}\right] \in \mathbb{R}^{n \times K}$ satisfies:

$$
u_{i}=u_{j} \Leftrightarrow Z_{i}=Z_{j}
$$

where u_{i} is the i th row of \mathcal{U}.

Community detection

Example of \mathcal{L} and \mathcal{U} :

$>B$

[,1] [,2]				
[1,]	0.8	0.1		
$\left[\begin{array}{llll}{[2,1} & 0.1 & 0.7\end{array}\right.$				
$\bigcirc 2$ [,1] [,2]				
[1,]	1	0		
[2,]	1	0		
[3,]	0	1		
[4,]	0	1		
$>$ A		[,2] [,3]	[,4]	
[1,]	0.8	$0.8 \quad 0.1$	0.1	
[2,]	0.8	0.80 .1	0.1	
[3,	0.1	0.10 .7	0.7	
[4,]	0.1	0.10 .7	0.7	
		[,1]	[,2]	[,3]

$\left[\begin{array}{llllll}{[1,1} & 0.44444444 & 0.44444444 & 0.05892557 & 0.05892557\end{array}\right.$ [2,] 0.444444440 .444444440 .058925570 .05892557 $[3] \quad$, $[4,1] 0.058925570 .058925570 .437500000 .43750000$ $>$ eigen (L)
\$values
[1] 1.00000000 .76388890 .00000000 .0000000

\$vectors				
	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	-0.5144958	0.4850713	0.0000000	$7.071068 \mathrm{e}-01$
$[2]$,	-0.5144958	0.4850713	0.0000000	$-7.071068 \mathrm{e}-01$
$[3,1$	-0.4850713	-0.5144958	-0.7071068	$-1.665335 \mathrm{e}-16$
$[4]$,	-0.4850713	-0.5144958	0.7071068	$-1.387779 \mathrm{e}-16$

Extensions and discussions

■ Weighted graphs, e.g., $Y_{i j} \mid Z_{i m}=1, Z_{j \ell}=1 \sim \operatorname{Poiss}\left(\gamma_{m \ell}\right)$.
■ Degree-corrected block model:

$$
Y_{i j} \mid Z_{i m}=1, Z_{j \ell}=1 \sim \operatorname{Poiss}\left(\gamma_{m \ell} \kappa_{i} \kappa_{j}\right)
$$

κ_{i} controls expected degree of node i.

- Accounting for covariates

1 Nodewise covariates $x_{i}, i=1, \ldots, n$:

$$
Z_{i} \sim M\left(1, \pi\left(x_{i}\right)\right)
$$

2 Edgewise covariates $x_{i j}, i \neq j$. Bernoulli model:

$$
\operatorname{logit}\left\{\mathbb{P}\left(Y_{i j}=1 \mid Z_{i m}=1, Z_{j \ell}=1\right)\right\}=x_{i j}^{\top} \beta+\gamma_{m \ell}
$$

Poisson model:

$$
Y_{i j} \mid Z_{i m}=1, Z_{j \ell}=1 \sim \operatorname{Poiss}\left(\exp \left(x_{i j}^{\top} \beta+\gamma_{m \ell}\right)\right) .
$$

Graphons

Hereafter, consider simple graphs: unweighted and symmetric.
Recall the definition of a graphon, $g:[0,1]^{2} \rightarrow[0,1]$. We define a random simple graph $\left(Y_{i j}\right) \in\{0,1\}^{n \times n}$ given a graphon g :
1 Draw $U_{i} \sim \operatorname{Unif}(0,1)$ for $i=1, \ldots, n$.
2 Draw $Y_{i j}=Y_{j i} \sim \operatorname{Bern}\left(g\left(U_{i}, U_{j}\right)\right)$ for all $i \neq j$.

Graphons

SBM as a graphon model:

- Partition $(0,1)$ into K intervals, J_{m} for $m=1, \ldots, K$, so that $\left|J_{m}\right|=\pi_{m}$.
- Let $g(u, v)=\gamma_{m \ell}$ if $u \in J_{m}$ and $v \in J_{\ell}$ (block-wise constant).
- Then the graphon is equivalent to the SBM.

Let $Z_{i m}=I\left(U_{i} \in J_{m}\right)$. If $Z_{i m}=1, Z_{j \ell}=1$, then

$$
\begin{aligned}
& g\left(U_{i}, U_{j}\right)=\gamma_{m \ell} \\
& Y_{i j} \sim \operatorname{Bern}\left(g\left(U_{i}, U_{j}\right)\right)=\operatorname{Bern}\left(\gamma_{m \ell}\right)
\end{aligned}
$$

Graphons

- Exchangeable graphs: A random graph G is said to be exchangeable if its distribution is invariant to any relabeling (or permutation) of its vertex set.
- An equivalent definition is that its adjacency matrix $\left(Y_{i j}\right)_{n \times n}$ is a jointly exchangeable random array, i.e.

$$
\begin{equation*}
\mathbb{P}\left(Y_{i j} \in A_{i j}, \forall i, j \in[n]\right)=\mathbb{P}\left(Y_{\pi(i) \pi(j)} \in A_{i j}, \forall i, j \in[n]\right) \tag{4}
\end{equation*}
$$

for every permutation π of $\{1, \ldots, n\}$ and every collection of measurable sets $\left\{A_{i j}\right\}$. We write $\left(Y_{i j}\right) \stackrel{d}{=}\left(Y_{\pi(i) \pi(j)}\right)$ when (4) holds.

Graphons

Theorem 2 (Aldous-Hoover)

A random array $\left(X_{i j}\right), X_{i j} \in \Omega, i, j \in \mathbb{N}$, is jointly exchangeable if and only if there is a random function $F:[0,1]^{3} \rightarrow \Omega$ such that

$$
\begin{equation*}
\left(X_{i j}\right) \stackrel{d}{=}\left(F\left(U_{i}, U_{j}, U_{i j}\right)\right) \tag{5}
\end{equation*}
$$

where $\left(U_{i}\right)_{i \in \mathbb{N}}$ and $\left(U_{i j}\right)_{i, j \in \mathbb{N}}$ are, respectively, an infinite sequence and array of i.i.d. Unif[0, 1] independent of F.

A few remarks:
$1\left(X_{i j}\right)_{i, j \in \mathbb{N}}$ is an infinite two-way array, $i=1,2, \ldots$ and $j=1,2, \ldots$. Exchangeability of X is an assumption on the data source.
2 A exchangeable graph G on n nodes is regarded as a sample of finite size from this data source.

Graphons

- Apply Theorem 2 to $\left(Y_{i j}\right)_{\mathbb{N} \times \mathbb{N}}$ with $\Omega=\{0,1\}$: $F(x, y, u) \in\{0,1\}$ for all $x, y, u \in[0,1]$. Assume F is symmetric in (x, y).
■ Define a function $g:[0,1]^{2} \rightarrow[0,1]$ by $g(x, x)=0$ and

$$
g(x, y):=\mathbb{P}(F(x, y, U)=1 \mid F)
$$

where $U \sim \operatorname{Unif}[0,1]$ and is independent of F.

- Then g is a random symmetric function and

$$
\begin{equation*}
\left(Y_{i j}\right) \stackrel{d}{=}\left(F\left(U_{i}, U_{j}, U_{i j}\right)\right) \stackrel{d}{=}\left(I\left(U_{i j}<g\left(U_{i}, U_{j}\right)\right)\right) \tag{6}
\end{equation*}
$$

This is because $\left(Y_{i j}\right)$ are independent given $\left(U_{i}\right)$ and F and

$$
\begin{aligned}
\mathbb{P}\left(Y_{i j}=1 \mid U_{i}, U_{j}, F\right) & \left.=g\left(U_{i}, U_{j}\right) \quad \text { (by definition of } g\right) \\
& =\mathbb{P}\left(U_{i j}<g\left(U_{i}, U_{j}\right) \mid U_{i}, U_{j}, F\right)
\end{aligned}
$$

Graphons

Corollary 1

A random simple graph G with vertex set \mathbb{N} is exchangeable if and only if there is a random function $g:[0,1]^{2} \rightarrow[0,1]$ such that its adjacency matrix

$$
\begin{equation*}
\left(Y_{i j}\right) \stackrel{d}{=}\left(I\left(U_{i j}<g\left(U_{i}, U_{j}\right)\right)\right), \tag{7}
\end{equation*}
$$

where $\left(U_{i}\right)$ and $\left(U_{i j}\right)$ are i.i.d. Unif $[0,1]$ and independent of g.
The random function g is called a graphon.

Graphons

Every exchangeable random simple graph G on \mathbb{N} is represented by a random graphon g :
1 Draw g from a distribution ν (over functions $[0,1]^{2} \rightarrow[0,1]$).
2 Draw $U_{i}, i \in \mathbb{N}$ independently from Unif $[0,1]$.
3 For every pair $i<j \in \mathbb{N}$, draw

$$
Y_{i j} \mid g, U_{i}, U_{j} \sim \operatorname{Bern}\left(g\left(U_{i}, U_{j}\right)\right)
$$

Remarks:
1 The distribution of G is determined by ν.
2 Statistical modeling of exchangeable simple graphs is parameterized by graphons g.
A review article: Orbanz and Roy (2015).

References I

P. Bickel, Choi D., X. Chang, and H. Zhang. Asymptotic normality of maximum likelihood and its variational approximation for stochastic blockmodels. Annals of Statistics, 41:1922-1943, 2013.
A. Celisse, J.J. Daudin, and L. Pierre. Consistency of maximum-likelihood and variational estimators in the stochastic block model. Electronic Journal of Statistics, 6:1847-1899, 2012.
J.J. Daudin, F. Picard, and S. Robin. A mixture model for random graphs. Statistics and Computing, 18:173-183, 2008.
P.D. Hoff, A.E. Raftery, and M.S. Handcock. Latent space approaches to social network analysis. Journal of the American Statistical Association, 97:1090-1098, 2002.

References II

C. Matias and S. Robin. Modeling heterogeneity in random graphs through latent space models: A selective review. ESAIM:
Proceedings and Surveys, 47:55-74, 2014.
P. Orbanz and D.M. Roy. Bayesian models of graphs, arrays and other exchangeable random structures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37:437-461, 2015.
K. Rohe, S. Chatterjee, and B. Yu. Spectral clustering and the high-dimensional stochastic block model. Annals of Statistics, 39:1878-1915, 2011.
U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17:395-416, 2007.

