Conditional Independence

Qing Zhou

UCLA Department of Statistics

Stats 212 Graphical Models
Lecture Notes

Outline

1 Definitions of conditional independence (Cl)
2 Cl in statistical inference
3 Graphoid
4 Cl tests

Definitions of conditional independence

Definition: If X, Y, Z are three random variables, we say $X \perp Y \mid Z$ if $\mathbb{P}(X \in A \mid Y, Z)$ is a function of Z only for any measurable set A.
If they admit a joint density (or mass function) f, then

$$
X \perp Y \mid Z \Leftrightarrow f_{X Y \mid Z}(x, y \mid z)=f_{X \mid Z}(x \mid z) f_{Y \mid Z}(y \mid z)
$$

Other equivalent conditions (f as a generic symbol for densities):

- $f(x, y, z)=f(x, z) f(y, z) / f(z)$.
- $f(x \mid y, z)=f(x \mid z)$.

■ $f(x, z \mid y)=f(x \mid z) f(z \mid y)$.
■ $f(x, y, z)=h(x, z) k(y, z)$ for some h, k.

- $f(x, y, z)=f(x \mid z) f(y, z)$.

Cl in statistical inference

Cl in statistical inference (Dawid 1979):
■ Sufficient and ancillary statistics: Suppose $X \mid \Theta \sim P_{\Theta}$. $1 T=T(X)$ is a sufficient statistic for Θ if $X \perp \Theta \mid T$. $2 S=S(X)$ is an ancillary statistic if $S \perp \Theta$.
Example: $X=\left(X_{1}, \ldots, X_{n}\right) \mid \mu, \sigma^{2} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. Then $T_{1}=\sum_{i} X_{i}$ is sufficient for μ;
$T_{2}=\sum_{i}\left(X_{i}-\bar{X}\right)^{2}$ is ancillary for μ.
■ Model selection: $Y=X \beta+\varepsilon$. If $\operatorname{supp}(\beta)=S$, then $Y \perp\left(X \backslash X_{S}\right) \mid X_{S}$.

Cl in statistical inference

■ Parameter identification: $X \mid \Theta, \Phi \sim P_{(\Theta, \Phi)}$. If $X \perp \Phi \mid \Theta$, then Φ is not identifiable.
Example: Gaussian linear model $Y=X \beta+\varepsilon$ with X not having full column rank.
Let $\Theta=X \beta \in \operatorname{col}(X)$ and $\Phi=\beta-X^{-} X \beta\left(X^{-}\right.$is a g-inverse of $X ; X X^{-} X=X$).
Then $X \Phi=0$, i.e. $\Phi \in \operatorname{null}(X)$. Thus $Y \perp \Phi \mid\left(\Theta, \sigma^{2}\right)$, i.e. Φ is not identifiable. Note $\operatorname{dim}(\Theta)+\operatorname{dim}(\Phi)=\operatorname{dim}(\beta)$.

Cl in statistical inference

- Statistical modeling: Given $\mathbb{P}\left(X_{1}, \ldots, X_{p}\right)$ with density f and an ordering $(\sigma(1), \ldots, \sigma(p))$, we factorize f

$$
\begin{align*}
f(x) & =\prod_{j=1}^{p} f\left(x_{\sigma(j)} \mid x_{\sigma(1)}, \ldots, x_{\sigma(j-1)}\right) \\
& =\prod_{j=1}^{p} f\left(x_{\sigma(j)} \mid x_{A_{j}}\right) \tag{1}
\end{align*}
$$

where $A_{j} \subset\{\sigma(1), \ldots, \sigma(j-1)\}$ is the minimum subset such that (1) holds:

$$
X_{\sigma(j)} \perp X_{k} \mid X_{A_{j}}, \quad k \in\{\sigma(1), \ldots, \sigma(j-1)\} \backslash A_{j}
$$

■ Examples: Markov chains, HMMs, etc.

Graphoid

Graphoid axioms (Pearl (1988), §3.1.2.)
Cl statement defines a ternary relation: $\langle X, Y \mid Z\rangle$ for $X \perp Y \mid Z$. Suppose X, Y, Z, W are disjoint subsets of random variables from a joint distribution \mathbb{P}. Then the Cl relation satisfies
(C1) symmetry: $\langle X, Y \mid Z\rangle \Rightarrow\langle Y, X \mid Z\rangle$;
(C2) decomposition: $\langle X, Y W \mid Z\rangle \Rightarrow\langle X, Y \mid Z\rangle$;
(C3) weak union: $\langle X, Y W \mid Z\rangle \Rightarrow\langle X, Y \mid Z W\rangle$;
(C4) contraction: $\langle X, Y \mid Z\rangle \&\langle X, W \mid Z Y\rangle \Rightarrow\langle X, Y W \mid Z\rangle$.
If the joint density of \mathbb{P} wrt a product measure is positive and continuous, then
(C5) intersection: $\langle X, Y \mid Z W\rangle \&\langle X, W \mid Z Y\rangle \Rightarrow\langle X, Y W \mid Z\rangle$. In the above, $Y W:=Y \cup W$.

Graphoid

Any ternary relation $\langle A, B \mid C\rangle$ that satisfies (C1) to (C4) is called a semi-graphoid. If (C5) also holds, then it is called a graphoid.

Examples of graphoid:
1 Conditional independence of \mathbb{P} (positive and continous).
2 Graph separation in undirected graph: $\langle X, Y \mid Z\rangle$ means nodes Z separate X and Y, i.e. $X-Z-Y$.
3 Partial orthogonality: Let X, Y, Z be disjoint sets of linearly independent vectors in $\mathbb{R}^{n} .\langle X, Y \mid Z\rangle$ means $P_{Z}^{\perp} X$ is orthogonal to $P_{Z}^{\perp} Y$. Here $P_{Z}^{\perp} X=\left(I_{n}-P_{Z}\right) X$ is the residual after projecting X onto $\operatorname{span}(Z)$.
Graph separation provides an intuitive graphical interpretation for the Cl axioms.

Graphoid

Example application of Cl in causal inference:

- Treatment X, outcome Y. Let I indicates each individual, $I=1, \ldots, n$. Want to test if $Y \perp X \mid I$ (untestable).
- Suppose $Z=Z(I)$ is a set of sufficient covariates such that $Y \perp I \mid(X, Z)$. Then

$$
\begin{equation*}
Y \perp X|I \Leftrightarrow Y \perp X| Z \text { (testable based on data) } \tag{2}
\end{equation*}
$$

- Proof outline:

Note $Y \perp X|I \Leftrightarrow Y \perp X|(I, Z)$ because $Z=Z(I)$.
\Leftarrow : Sufficient set and RHS of (2) imply $Y \perp(I, X) \mid Z$ by
(C4) and thus $Y \perp X \mid(I, Z)$ by (C3).
\Rightarrow : Sufficient set and LHS $(Y \perp X \mid(I, Z))$ imply
$Y \perp(X, I) \mid Z$ by (C5) and thus $Y \perp X \mid Z$ by (C2).

CI tests

Conditional independence tests $\left(H_{0}: X \perp Y \mid S\right)$:

- Gaussian data: partial correlation $\operatorname{cor}(X, Y \mid S)=0$.

1 Sample covariance matrix $\widehat{\Sigma}$ from data columns of (X, Y, S).
$2 \widehat{\Omega}=\left(\omega_{i j}\right) \leftarrow \widehat{\Sigma}^{-1}$ and $\widehat{\rho}_{X Y \mid S}=-\omega_{12} / \sqrt{\omega_{11} \omega_{22}}$.
3 Fisher z-transformation,

$$
\begin{array}{r}
\quad z(X, Y \mid S)=\frac{1}{2} \log \left(\frac{1+\widehat{\rho}_{X Y \mid S}}{1-\widehat{\rho}_{X Y \mid S}}\right) \\
\text { and } \sqrt{n-|S|-3} \cdot z(X, Y \mid S) \mid H_{0} \sim \mathcal{N}(0,1) .
\end{array}
$$

Cl tests

Conditional independence tests $\left(H_{0}: X \perp Y \mid S\right)$:
■ Discrete data: G^{2} or χ^{2} test for conditional independence.

$$
\begin{aligned}
& G^{2}(X, Y ; S=s)=2 \sum_{x, y} O_{x y s} \log \left(O_{x y s} / E_{x y s}\right) \\
& G^{2}(X, Y ; S)=\sum_{s} G^{2}(X, Y ; S=s) \mid H_{0} \sim \chi_{(|X|-1)(|Y|-1)|S|}^{2}
\end{aligned}
$$

$E_{x y s}$: expected counts under $H_{0} ; O_{x y s}$: observed counts.

References I

A.P. Dawid. Conditional independence in statistical theory. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 41:1-31, 1979.
Judea Pearl. Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann, 1988.

