Conditional Independence

Qing Zhou

UCLA Department of Statistics

Stats 212 Graphical Models Lecture Notes

- 1 Definitions of conditional independence (CI)
- 2 CI in statistical inference
- Graphoid
- 4 CI tests

Definition: If X, Y, Z are three random variables, we say $X \perp Y \mid Z$ if $\mathbb{P}(X \in A \mid Y, Z)$ is a function of Z only for any measurable set A.

If they admit a joint density (or mass function) f, then

$$X \perp Y \mid Z \Leftrightarrow f_{XY|Z}(x, y|z) = f_{X|Z}(x|z)f_{Y|Z}(y|z).$$

Other equivalent conditions (*f* as a generic symbol for densities):

•
$$f(x, y, z) = f(x, z)f(y, z)/f(z)$$
.

$$f(x|y,z) = f(x|z).$$

•
$$f(x,z|y) = f(x|z)f(z|y).$$

•
$$f(x, y, z) = h(x, z)k(y, z)$$
 for some h, k .

• f(x, y, z) = f(x|z)f(y, z).

CI in statistical inference (Dawid 1979):

- Sufficient and ancillary statistics: Suppose X | Θ ~ P_Θ.
 T = T(X) is a sufficient statistic for Θ if X ⊥ Θ | T.
 S = S(X) is an ancillary statistic if S ⊥ Θ.
 Example: X = (X₁,...,X_n) | μ, σ² ~ N(μ, σ²). Then T₁ = ∑_i X_i is sufficient for μ; T₂ = ∑_i (X_i - X̄)² is ancillary for μ.
- Model selection: $Y = X\beta + \varepsilon$. If supp $(\beta) = S$, then $Y \perp (X \setminus X_S) \mid X_S$.

Parameter identification: X | Θ, Φ ~ P_(Θ,Φ). If X ⊥ Φ | Θ, then Φ is not identifiable.

Example: Gaussian linear model $Y = X\beta + \varepsilon$ with X not having full column rank.

Let $\Theta = X\beta \in col(X)$ and $\Phi = \beta - X^- X\beta$ (X^- is a g-inverse of X; $XX^-X = X$).

Then $X\Phi = 0$, i.e. $\Phi \in \text{null}(X)$. Thus $Y \perp \Phi \mid (\Theta, \sigma^2)$, i.e. Φ is not identifiable. Note dim $(\Theta) + \text{dim}(\Phi) = \text{dim}(\beta)$.

Cl in statistical inference

 Statistical modeling: Given P(X₁,..., X_p) with density f and an ordering (σ(1),..., σ(p)), we factorize f

$$f(x) = \prod_{j=1}^{p} f(x_{\sigma(j)} \mid x_{\sigma(1)}, \dots, x_{\sigma(j-1)})$$

= $\prod_{j=1}^{p} f(x_{\sigma(j)} \mid x_{A_j}),$ (1)

where $A_j \subset \{\sigma(1), \ldots, \sigma(j-1)\}$ is the minimum subset such that (1) holds:

$$X_{\sigma(j)}\perp X_k\mid X_{A_j}, \qquad k\in\{\sigma(1),\ldots,\sigma(j-1)\}\setminus A_j.$$

Examples: Markov chains, HMMs, etc.

Graphoid axioms (Pearl (1988), §3.1.2.)

CI statement defines a ternary relation: $\langle X, Y | Z \rangle$ for $X \perp Y | Z$. Suppose X, Y, Z, W are disjoint subsets of random variables from a joint distribution \mathbb{P} . Then the CI relation satisfies

(C1) symmetry:
$$\langle X, Y \mid Z \rangle \Rightarrow \langle Y, X \mid Z \rangle$$
;

- (C2) decomposition: $\langle X, YW \mid Z \rangle \Rightarrow \langle X, Y \mid Z \rangle$;
- (C3) weak union: $\langle X, YW \mid Z \rangle \Rightarrow \langle X, Y \mid ZW \rangle$;
- (C4) contraction: $\langle X, Y \mid Z \rangle \& \langle X, W \mid ZY \rangle \Rightarrow \langle X, YW \mid Z \rangle$.

If the joint density of $\ensuremath{\mathbb{P}}$ wrt a product measure is positive and continuous, then

(C5) intersection: $\langle X, Y \mid ZW \rangle \& \langle X, W \mid ZY \rangle \Rightarrow \langle X, YW \mid Z \rangle$. In the above, $YW := Y \cup W$. Any ternary relation $\langle A, B \mid C \rangle$ that satisfies (C1) to (C4) is called a *semi-graphoid*. If (C5) also holds, then it is called a *graphoid*.

Examples of graphoid:

- **1** Conditional independence of \mathbb{P} (positive and continous).
- 2 Graph separation in undirected graph: ⟨X, Y | Z⟩ means nodes Z separate X and Y, i.e. X − Z − Y.
- 3 Partial orthogonality: Let X, Y, Z be disjoint sets of linearly independent vectors in ℝⁿ. (X, Y | Z) means P[⊥]_ZX is orthogonal to P[⊥]_ZY. Here P[⊥]_ZX = (I_n P_Z)X is the residual after projecting X onto span(Z).

Graph separation provides an intuitive graphical interpretation for the CI axioms.

Graphoid

Example application of CI in causal inference:

- Treatment X, outcome Y. Let I indicates each individual, I = 1, ..., n. Want to test if $Y \perp X \mid I$ (untestable).
- Suppose Z = Z(I) is a set of sufficient covariates such that $Y \perp I \mid (X, Z)$. Then

$$Y \perp X \mid I \Leftrightarrow Y \perp X \mid Z$$
 (testable based on data) (2)

Proof outline:

Note $Y \perp X \mid I \Leftrightarrow Y \perp X \mid (I, Z)$ because Z = Z(I). \Leftarrow : Sufficient set and RHS of (2) imply $Y \perp (I, X) \mid Z$ by (C4) and thus $Y \perp X \mid (I, Z)$ by (C3). \Rightarrow : Sufficient set and LHS ($Y \perp X \mid (I, Z)$) imply $Y \perp (X, I) \mid Z$ by (C5) and thus $Y \perp X \mid Z$ by (C2). Conditional independence tests $(H_0 : X \perp Y \mid S)$:

• Gaussian data: partial correlation $cor(X, Y \mid S) = 0$.

Sample covariance matrix Σ̂ from data columns of (X, Y, S).
 Ω̂ = (ω_{ij}) ← Σ̂⁻¹ and ρ̂_{XY|S} = -ω₁₂/√ω₁₁ω₂₂.
 Fisher z-transformation,

$$z(X, Y|S) = rac{1}{2} \log \left(rac{1 + \widehat{
ho}_{XY|S}}{1 - \widehat{
ho}_{XY|S}}
ight)$$

and
$$\sqrt{n-|S|-3} \cdot z(X,Y|S) \mid H_0 \sim \mathcal{N}(0,1).$$

Conditional independence tests $(H_0 : X \perp Y \mid S)$:

Discrete data: G^2 or χ^2 test for conditional independence.

$$G^{2}(X, Y; S = s) = 2 \sum_{x,y} O_{xys} \log(O_{xys}/E_{xys}),$$

$$G^{2}(X, Y; S) = \sum_{s} G^{2}(X, Y; S = s) \mid H_{0} \sim \chi^{2}_{(|X|-1)(|Y|-1)|S|},$$

 E_{xys} : expected counts under H_0 ; O_{xys} : observed counts.

References I

A.P. Dawid. Conditional independence in statistical theory. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 41:1–31, 1979.

Judea Pearl. Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann, 1988.