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Definitions of conditional independence

Definition: If X ,Y ,Z are three random variables, we say
X ⊥ Y | Z if P(X ∈ A | Y ,Z ) is a function of Z only for any
measurable set A.

If they admit a joint density (or mass function) f , then

X ⊥ Y | Z ⇔ fXY |Z (x , y |z) = fX |Z (x |z)fY |Z (y |z).

Other equivalent conditions (f as a generic symbol for densities):

f (x , y , z) = f (x , z)f (y , z)/f (z).

f (x |y , z) = f (x |z).
f (x , z |y) = f (x |z)f (z |y).
f (x , y , z) = h(x , z)k(y , z) for some h, k .

f (x , y , z) = f (x |z)f (y , z).
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CI in statistical inference

CI in statistical inference (Dawid 1979):

Sufficient and ancillary statistics: Suppose X | Θ ∼ PΘ.

1 T = T (X ) is a sufficient statistic for Θ if X ⊥ Θ | T .
2 S = S(X ) is an ancillary statistic if S ⊥ Θ.

Example: X = (X1, . . . ,Xn) | µ, σ2 ∼ N (µ, σ2). Then
T1 =

∑
i Xi is sufficient for µ;

T2 =
∑

i (Xi − X̄ )2 is ancillary for µ.

Model selection: Y = Xβ + ε. If supp(β) = S , then
Y ⊥ (X \ XS) | XS .
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CI in statistical inference

Parameter identification: X | Θ,Φ ∼ P(Θ,Φ). If X ⊥ Φ | Θ,
then Φ is not identifiable.
Example: Gaussian linear model Y = Xβ + ε with X not
having full column rank.
Let Θ = Xβ ∈ col(X ) and Φ = β − X−Xβ (X− is a g-inverse
of X ; XX−X = X ).
Then XΦ = 0, i.e. Φ ∈ null(X ). Thus Y ⊥ Φ | (Θ, σ2), i.e. Φ
is not identifiable. Note dim(Θ) + dim(Φ) = dim(β).
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CI in statistical inference

Statistical modeling: Given P(X1, . . . ,Xp) with density f and
an ordering (σ(1), . . . , σ(p)), we factorize f

f (x) =

p∏
j=1

f (xσ(j) | xσ(1), . . . , xσ(j−1))

=

p∏
j=1

f (xσ(j) | xAj
), (1)

where Aj ⊂ {σ(1), . . . , σ(j − 1)} is the minimum subset such
that (1) holds:

Xσ(j) ⊥ Xk | XAj
, k ∈ {σ(1), . . . , σ(j − 1)} \ Aj .

Examples: Markov chains, HMMs, etc.
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Graphoid

Graphoid axioms (Pearl (1988), §3.1.2.)

CI statement defines a ternary relation: ⟨X ,Y | Z ⟩ for X ⊥ Y | Z .
Suppose X ,Y ,Z ,W are disjoint subsets of random variables from
a joint distribution P. Then the CI relation satisfies

(C1) symmetry: ⟨X ,Y | Z ⟩ ⇒ ⟨Y ,X | Z ⟩;
(C2) decomposition: ⟨X ,YW | Z ⟩ ⇒ ⟨X ,Y | Z ⟩;
(C3) weak union: ⟨X ,YW | Z ⟩ ⇒ ⟨X ,Y | ZW ⟩;
(C4) contraction: ⟨X ,Y | Z ⟩&⟨X ,W | ZY ⟩ ⇒ ⟨X ,YW | Z ⟩.
If the joint density of P wrt a product measure is positive and
continuous, then

(C5) intersection: ⟨X ,Y | ZW ⟩&⟨X ,W | ZY ⟩ ⇒ ⟨X ,YW | Z ⟩.
In the above, YW :=Y ∪W .
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Graphoid

Any ternary relation ⟨A,B | C ⟩ that satisfies (C1) to (C4) is called
a semi-graphoid. If (C5) also holds, then it is called a graphoid.

Examples of graphoid:

1 Conditional independence of P (positive and continous).

2 Graph separation in undirected graph: ⟨X ,Y | Z ⟩ means
nodes Z separate X and Y , i.e. X − Z − Y .

3 Partial orthogonality: Let X ,Y ,Z be disjoint sets of linearly
independent vectors in Rn. ⟨X ,Y | Z ⟩ means P⊥

Z X is
orthogonal to P⊥

Z Y . Here P⊥
Z X = (In − PZ )X is the residual

after projecting X onto span(Z ).

Graph separation provides an intuitive graphical interpretation for
the CI axioms.
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Graphoid

Example application of CI in causal inference:

Treatment X , outcome Y . Let I indicates each individual,
I = 1, . . . , n. Want to test if Y ⊥ X | I (untestable).
Suppose Z = Z (I ) is a set of sufficient covariates such that
Y ⊥ I | (X ,Z ). Then

Y ⊥ X | I ⇔ Y ⊥ X | Z (testable based on data) (2)

Proof outline:
Note Y ⊥ X | I ⇔ Y ⊥ X | (I ,Z ) because Z = Z (I ).
⇐: Sufficient set and RHS of (2) imply Y ⊥ (I ,X ) | Z by
(C4) and thus Y ⊥ X | (I ,Z ) by (C3).
⇒: Sufficient set and LHS (Y ⊥ X | (I ,Z )) imply
Y ⊥ (X , I ) | Z by (C5) and thus Y ⊥ X | Z by (C2).
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CI tests

Conditional independence tests (H0 : X ⊥ Y | S):
Gaussian data: partial correlation cor(X ,Y | S) = 0.

1 Sample covariance matrix Σ̂ from data columns of (X ,Y ,S).

2 Ω̂ = (ωij)← Σ̂−1 and ρ̂XY |S = −ω12/
√
ω11ω22.

3 Fisher z-transformation,

z(X ,Y |S) = 1

2
log

(
1 + ρ̂XY |S

1− ρ̂XY |S

)
and

√
n − |S | − 3 · z(X ,Y |S) | H0 ∼ N (0, 1).
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CI tests

Conditional independence tests (H0 : X ⊥ Y | S):
Discrete data: G 2 or χ2 test for conditional independence.

G 2(X ,Y ;S = s) = 2
∑
x ,y

Oxys log(Oxys/Exys),

G 2(X ,Y ;S) =
∑
s

G 2(X ,Y ;S = s) | H0 ∼ χ2
(|X |−1)(|Y |−1)|S |,

Exys : expected counts under H0; Oxys : observed counts.
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