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DAGs and terminology

Terminology for directed acyclic graph (DAG) G = (V ,E )

E = {(i , j) : i → j} (all edges are directed).

If i → j , then i is a parent of j and j is a child of i ;
pa(j) is the set of parents of j ; ch(i) is the set of children of i .

A path of length n from i to j is a sequence a0 = i , . . . , an = j
of distinct vertices so that (ak−1, ak) ∈ E for all k = 1, . . . , n,
i.e. i → a1 → · · · → an−1 → j .

An n-cycle is a path of length n with the modification that
i = j . A cycle is directed if it contains a directed edge.

DAG: (i) all edges are directed; (ii) has no directed cycles.
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DAGs and terminology

If there is a path from i to j , we say i leads to j and write
i 7→ j .
The ancestors an(j) = {i : i 7→ j}.
The descendants de(i) = {j : i 7→ j}.
The non-descendants nd(i) = V \ (de(i) ∪ {i}).
A topological sort of G over p vertices is an ordering σ, i.e., a
permutation of {1, . . . , p}, such that j ∈ an(i) implies j ≺ i in
σ. Due to acyclicity, every DAG has at least one sort.
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DAGs and terminology

Example:

1

2

3

45

6

pa(1) = {2, 3, 6}, ch(1) = {4, 5}.
Path: 2→ 6→ 1→ 4, 3→ 1→ 5.
2→ 6→ 1← 3 is not a path.

an(4)= {2, 6, 3, 1}
de(6)= {1, 4, 5}, nd(6)= {2, 3}.
topological sorts: (2, 6, 3, 1, 4, 5),
(3, 2, 6, 1, 5, 4), etc.
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d-separation

A chain of length n from i to j is a sequence a0 = i , . . . , an = j
of distinct vertices so that ak−1 → ak or ak → ak−1 for all
k = 1, . . . , n. Example: i ← a1 → a2 → · · · → an−1 ← j .

d-separation: A chain π from a to b is said to be blocked by
S ⊂ V , if the chain contains a vertex γ such that either (1) or
(2) holds:

1 γ ∈ S and the arrows of π do not meet at γ (i → γ → j or
i ← γ → j). (γ is a non-collider.)

2 γ ∪ de(γ) not in S and arrows of π meet at γ (i → γ ← j).
(γ is a collider.)

Two subsets A and B are d-separated by S is all chains from
A to B are blocked by S .
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d-separation

Example:

1

2

3

45

6

chain 2→ 6→ 1→ 4 has no collider
and is blocked by {1}, {6}, or {1, 6}.
chain 2→ 6→ 1← 3 has a collider
(node 1), and thus is blocked by ∅.
But this chain is not blocked by {1} or
any node in de(1)= {4, 5}, i.e. the chain
is d-connected given {1}, {4} or {5}.
Find S to d-separate 2 and 4: S = {1},
S = {1, 6}.
Find S to d-separate 3 and 6: S = ∅,
S = {2}, S ̸= any subset of {1, 4, 5}.
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d-separation

Example (flip the edge between 1 and 6)

1

2

3

45

6

Find S to d-separate 3 and 6:

1 To block 3→ 1→ 6, must include
1 ∈ S .

2 But 1 is a collider in
3→ 1← 2→ 6, given node 1 this
chain is d-connected.

3 Thus, to block 3→ 1← 2→ 6,
must include 2 ∈ S .

4 S = {1, 2} d-separates 3 and 6.
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Markov properties

Markov properties on DAGs: We say a joint distribution P
(DF) admits a recursive factorization according to G if P has a
density f such that

f (x) =
∏

j∈V
fj(xj | pa(j)), (1)

where fj is the density for [j | pa(j)].
(DG) satisfies the directed global Markov property if for any
disjoint (A,B,S),

S d-separates A and B ⇒ A ⊥ B | S .
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Markov properties

(DL) satisfies the directed local Markov property if
i ⊥ nd(i) | pa(i) for all i ∈ V .

(DP) satisfies the directed pairwise Markov property if for any
(i , j) /∈ E with j ∈ nd(i), i ⊥ j | nd(i) \ {j}.

Relations: (DF) ⇒ (DG) ⇒ (DL) ⇒ (DP).

Theorem 1

If P has a density f with respect to a product measure, then (DF),
(DG), and (DL) are equivalent.
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Markov properties

Example: Markov chain

1 2 3 · · · n

pa(i) = i − 1, i = 2, . . . , n.
(DF) holds:

P(X1, . . . ,Xn) = P(X1)P(X2 | X1) · · ·P(Xn | Xn−1).

Thus, (DG) holds: For any i < j < k , j d-separates i and k and
therefore,

Xi ⊥ Xk | Xj .
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Markov properties

Example: Suppose f (x1, . . . , x6) factorizes according to G.

1

2

3

45

6

1 (DG): {1, 2} d-separates 3 and 6
⇒ X3 ⊥ X6 | {X1,X2}.
(DL): pa(6)= {1, 2} and 3 ∈ nd(6)
⇒ X3 ⊥ X6 | {X1,X2}.

2 (DG): 2 and 3 are d-separated by ∅,
thus X2 ⊥ X3.
X2 ⊥ X3 | X5? False, because 5 is a
descendant of a collider 1.

3 (DL): pa(4)= {1} and node 4 has
no descendant. Thus
X4 ⊥ {X2,X3,X6,X5} | X1.
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Markov properties

Connections to Markov properties on undirected graphs:

Moral graph Gm: add edges between all parents of a node in a
DAG G and then ignoring edge orientations. The resulting
undirected graph is the moral graph of G.
If P admits a recursive factorization according to G, then it
factorizes according to Gm.
That is, (DF) wrt G ⇒ (F) wrt Gm ⇒ (G), (L), (P) wrt Gm.
S d-separates A and B in G ⇔ S separates A and B in
(GAn(A∪B∪S))m.

If pa(i) ⊂ A for all i ∈ A, then the subset A is an ancestral set.
For a subset A of nodes, An(A) is the smallest ancestral set
containing A.
For a DAG, An(A) is A and the ancestors of A.
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Markov properties

DAG and its moral graph:

DAG G

1

2

3

45

6

Moral graph Gm

1

2

3

45

6

In the moral graph Gm, red edges added between all parents of
node 1.
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Markov properties

d-separation from moral graphs:

DAG G

1

2

3

45

6

2 and 3 are d-separated by ∅.
An({2, 3}) = {2, 3}

(G{2,3})m: 32

2 and 3 are not d-separated by 5.
An({2, 3, 5}) = {1, 2, 3, 4, 5, 6}
In Gm, 2 and 3 are not separated by
5.
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Markov properties

Markov equivalence:

Definition 1 (Markov equivalence)

Two DAGs are called Markov equivalent if they imply the same set
of d-separations.

A v -structure is a triplet {i , j , k} ⊆ V of the form i → k ← j : i
and j are nonadjacent; k is called an uncovered collider.

Theorem 2 (Verma and Pearl (1990))

Two DAGs are Markov equivalent if and only if they have the same
skeleton and the same v-structures.
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Markov properties

Markov equivalence, examples: G1,G2,G3 are equivalent DAGs.

G1
1

2 3

4

5

G2
1

2 3

4

5

G3
1

2 3

4

5

Red: compelled edges, same orientation in all equivalent DAGs.
Black: reversible edges, either direction occurs in at least one
equivalent DAG.
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Markov properties

Definition of Bayesian networks: Given P with density f and
an ordering (σ(1), . . . , σ(p)), we factorize f

f (x) =

p∏

j=1

f (xσ(j) | xσ(1), . . . , xσ(j−1))

=

p∏

j=1

f (xσ(j) | xAj
), (2)

where Aj ⊂ {σ(1), . . . , σ(j − 1)} is the minimum subset such
that (2) holds. Then the DAG G with pa(σ(j)) = Aj for all
j ∈ V is a Bayesian network of P.
CI: If G is a BN of P, then (DF) holds, so (DG), (DL), (DP)
also hold.
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Parameterizations

Parameterization: Given G, to parameterize [Xj | pa(j)] as in (1).

(1) Gaussian BNs

Structural equations:

Xj =
∑

i∈pa(j)
βijXi + εj , j = 1, . . . , p.

Assume εj ∼ N (0, ω2
j ) and εj ⊥ pa(j).

Put B = (βij) and Ω = diag(ω2
1, . . . , ω

2
p). Then

X = BTX + ε, ε ∼ Np(0,Ω).

⇒ X ∼ Np(0,Θ
−1), where Θ = (Ip − B)Ω−1(Ip − B)T

(Cholesky decomposition of Θ); see van de Geer and
Bühlmann (2013); Aragam and Zhou (2015).
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Parameterizations

G X2

X3 X1

X4

B0 =

X1 X2 X3 X4
0
BB@

1
CCA

X1 0 0 0 0
X2 �0

21 0 �0
23 0

X3 0 0 0 �0
34

X4 0 0 0 0

⇡ = [4,1,3,2]

P⇡ =

0
BB@

1
CCA

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

B⇡ = P⇡B0P
>
⇡ =

X4 X1 X3 X2
0
BB@

1
CCA

X4 0 0 0 0
X1 0 0 0 0
X3 �0

34 0 0 0
X2 0 �0

21 �0
23 0

1

Ye et al. (2021)

An example DAG G and its coefficient matrix B0 = (β0
ij)4×4.

π is a reversed topological sort: (2, 3, 1, 4) is a sort.

Bπ permutes columns and rows of B0 according to π, and is
strictly lower triangular. Similarly define Θπ and Ωπ.

Θπ = (I − Bπ)Ω
−1
π (I − Bπ)

T: Cholesky decomposition.
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Parameterizations

(2) Discrete BNs

Multinomial distribution: θ
(j)
km = P(Xj = m | pa(j) = k).

Parameter for [Xj | pa(j)] is a K ×M table:

{
θ
(j)
km :

∑

m

θ
(j)
km = 1, k = 1, . . . ,K ,m = 1, . . . ,M

}
.

K : number of all possible combinations of pa(j). (Too many
parameters if a node has many parents.)

Multi-logit regression model (Gu et al. 2019): Use generalized
linear model for [Xj | pa(j)].
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Parameterizations

Faithfulness:
Given a DAG model (G,P) where P satisfies, say (DG).
Then graph separation ⇒ condition independence, but not ⇐. If P
is faithful to G then ⇐ holds as well. In this case, we have ⇔.

Definition 2

For a DAG model (G,P), we say the distribution P is faithful to the
DAG G if for every triple of disjoint sets A,B, S ⊂ V ,

A ⊥ B | S ⇔ S d-separates A and B.
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Parameterizations

How likely is P faithful?
Gaussian DAGs.

Given a DAG G, consider all B = (βij) such that
βij ̸= 0⇔ i → j . Almost all such B and Ω will define a joint
distribution P that is faithful to G.
Counterexamples: The parameters (βij) satisfy additional
equality constraints that define CI in P not implied by any
d-separation in G.
For example, path coefficients cancel from i to j . Then
Xi ⊥ Xj but the nodes i and j are not d-separated by ∅.
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Overview of topics

Causal inference

Model causal relations among nodes: If i → j , then i is a
causal parent of j .

Causal relation defined by experimental intervention (Pearl
2000).

If pa(i) is fixed by intervention, then i will not be affected by
interventions on V \ {pa(i) ∪ {i}}.
If j ∈ M are under intervention, then modify factorization

f (x) =
∏

j /∈M
fj(xj | pa(j))

∏

j∈M
gj(xj), (3)

where gj(•) is the density of Xj under intervention.
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Overview of topics

Structure learning

Given xi ∼iid P defined by a DAG G, estimate the DAG Ĝ.
The sparser the Ĝ, the more CI relations learned from data.

Score-based methods: Minimize a scoring function over DAGs;
regularization to obtain sparse solutions.

Constraint-based methods: Condition independence tests
against Xi ⊥ Xj | XS for all i , j ,S .

Hybrid methods: First use constraint-based method to prune
the search space, and then apply a score-based method to
search for the optimal DAG.

See, e.g. Aragam and Zhou (2015) Section 1.2.
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Chain graphs

Reference: Lauritzen (1996) §3.2.3
A chain graph on V may contain two types of edges, undirected
(i − j) and directed i → j .

Partition V = V1 ∪ · · · ∪ VT .

All edges between vertices in the same Vt are undirected.

All edges between two different subsets Vs ,Vt (s < t) are
directed and pointing from Vs to Vt .

Special cases: undirected graphs (T = 1) and DAGs (|Vt | = 1 for
all t).

Applications:

Represent a larger class of distributions.

Represent Markov equivalence class of a DAG.
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Chain graphs

Connectivity components:

A path from i to j is a sequence a0 = i , . . . , an = j of distinct
vertices so that (ak−1, ak) ∈ E for all k = 1, . . . , n.

If there is a path from i to j , we say i leads to j and write
i 7→ j .

If i 7→ j and j 7→ i , then we say i and j connect, write i ↔ j .

The equivalence class [i ] :={j ∈ V : i ↔ j} defined by
connectivity is a connectivity component of G.
Examples:

1 If i − j − k, then i ↔ k and i , j , k ∈ [i ].
2 For a DAG, every connectivity component consists of a single

node.
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Chain graphs

Characterizations of a chain graph:

Have no directed cycles.

Its connectivity components (called chain components) induce
undirected subgraphs.

To find chain components:

1 Remove all directed edges;

2 Take connectivity components.
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Chain graphs

Markov properties on chain graphs:

Boundary bd(i) = pa(i) ∪ ne(i).

Ancestors an(j) = {i : i 7→ j , j ̸7→ i}.
Descendants de(i) = {j : i 7→ j , j ̸7→ i}.
Non-descendants nd(i) = V \ (de(i) ∪ {i}).
If bd(i) ⊂ A for all i ∈ A, then A is an ancestral set.

Moral graph:
(1) For each chain component C , add undirected edges
between pa(C ) = ∪i∈Cpa(i);
(2) ignore all edge directions.
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Chain graphs

Markov properties on a chain graph G: A joint distribution P
satisfies the local chain Markov property if i ⊥ nd(i) | bd(i)
for all i ∈ V .

satisfies the global chain Markov property if for any disjoint
(A,B,S),

S separates A and B in (GAn(A∪B∪S))
m ⇒ A ⊥ B | S .

Unify Markov properties for undirected graphs and DAGs.
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Chain graphs

Example chain graph: V1 = {1, 2, 3},V2 = {4},V3 = {5, 6}.

1

2 3

4

5 6

Chain components: V1,V2,V3.

Paths: 2 7→ 3, 3 7→ 2, 1 7→ 5, 5 ̸7→ 1.

bd(1) = {2, 3}, bd(4) = {1, 2},
bd(5) = {4, 6}
de(3) = {4, 5, 6}, de(5) = ∅.

Local Markov property:
5 ⊥ {1, 2, 3} | {4, 6}.
Global Markov property:
2 ⊥ 3 | 1, from (G{1,2,3})m = 2− 1− 3
2 ̸⊥ 3 | {1, 6}, from Gm
1 ⊥ 6 | {3, 4}, from Gm
Gm: add 3− 4.
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Chain graphs

Example application: Factor analysis.

V = L ∪ X
L = (L1, . . . , Ld) (latent factors)
X = (X1, . . . ,Xp) (observed variables)

L ∼ N (0,Φ) (oblique factor analysis)

Xj = βT
j L+ εj , j = 1, . . . , p.

Other applications, see Lauritzen and Richardson (2002).
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