Directed Acyclic Graphs

Qing Zhou

UCLA Department of Statistics

Stats 212 Graphical Models
Lecture Notes

Outline

1 DAGs and terminology
$2 d$-separation
3 Markov properties
4 Parameterizations
5 Overview of topics
6 Chain graphs

DAGs and terminology

Terminology for directed acyclic graph (DAG) $\mathcal{G}=(V, E)$
■ $E=\{(i, j): i \rightarrow j\}$ (all edges are directed).
■ If $i \rightarrow j$, then i is a parent of j and j is a child of i; $\mathrm{pa}(j)$ is the set of parents of $j ; \operatorname{ch}(i)$ is the set of children of i.

- A path of length n from i to j is a sequence $a_{0}=i, \ldots, a_{n}=j$ of distinct vertices so that $\left(a_{k-1}, a_{k}\right) \in E$ for all $k=1, \ldots, n$, i.e. $i \rightarrow a_{1} \rightarrow \cdots \rightarrow a_{n-1} \rightarrow j$.
- An n-cycle is a path of length n with the modification that $i=j$. A cycle is directed if it contains a directed edge.
■ DAG: (i) all edges are directed; (ii) has no directed cycles.

DAGs and terminology

■ If there is a path from i to j, we say i leads to j and write $i \mapsto j$.
The ancestors an $(j)=\{i: i \mapsto j\}$.
The descendants de $(i)=\{j: i \mapsto j\}$.
The non-descendants nd $(i)=V \backslash(\operatorname{de}(i) \cup\{i\})$.
■ A topological sort of \mathcal{G} over p vertices is an ordering σ, i.e., a permutation of $\{1, \ldots, p\}$, such that $j \in \operatorname{an}(i)$ implies $j \prec i$ in σ. Due to acyclicity, every DAG has at least one sort.

DAGs and terminology

Example:

■ $\mathrm{pa}(1)=\{2,3,6\}, \operatorname{ch}(1)=\{4,5\}$.
■ Path: $2 \rightarrow 6 \rightarrow 1 \rightarrow 4,3 \rightarrow 1 \rightarrow 5$. $2 \rightarrow 6 \rightarrow 1 \leftarrow 3$ is not a path.

- $\operatorname{an}(4)=\{2,6,3,1\}$ $\operatorname{de}(6)=\{1,4,5\}, \operatorname{nd}(6)=\{2,3\}$.
■ topological sorts: $(2,6,3,1,4,5)$, $(3,2,6,1,5,4)$, etc.

d-separation

- A chain of length n from i to j is a sequence $a_{0}=i, \ldots, a_{n}=j$ of distinct vertices so that $a_{k-1} \rightarrow a_{k}$ or $a_{k} \rightarrow a_{k-1}$ for all $k=1, \ldots, n$. Example: $i \leftarrow a_{1} \rightarrow a_{2} \rightarrow \cdots \rightarrow a_{n-1} \leftarrow j$.
- d-separation: A chain π from a to b is said to be blocked by $S \subset V$, if the chain contains a vertex γ such that either (1) or (2) holds:
$1 \gamma \in S$ and the arrows of π do not meet at $\gamma(i \rightarrow \gamma \rightarrow j$ or $i \leftarrow \gamma \rightarrow j$). (γ is a non-collider.)
$2 \gamma \cup \operatorname{de}(\gamma)$ not in S and arrows of π meet at $\gamma(i \rightarrow \gamma \leftarrow j)$. (γ is a collider.)
- Two subsets A and B are d-separated by S is all chains from A to B are blocked by S.

d-separation

Example:

- chain $2 \rightarrow 6 \rightarrow 1 \rightarrow 4$ has no collider and is blocked by $\{1\},\{6\}$, or $\{1,6\}$.

- chain $2 \rightarrow 6 \rightarrow 1 \leftarrow 3$ has a collider (node 1), and thus is blocked by \varnothing. But this chain is not blocked by $\{1\}$ or any node in $\operatorname{de}(1)=\{4,5\}$, i.e. the chain is d-connected given $\{1\},\{4\}$ or $\{5\}$.
- Find S to d-separate 2 and 4: $S=\{1\}$, $S=\{1,6\}$.
- Find S to d-separate 3 and 6: $S=\varnothing$, $S=\{2\}, S \neq$ any subset of $\{1,4,5\}$.

d-separation

Example (flip the edge between 1 and 6)
Find S to d-separate 3 and 6 :

1 To block $3 \rightarrow 1 \rightarrow 6$, must include $1 \in S$.
2 But 1 is a collider in $3 \rightarrow 1 \leftarrow 2 \rightarrow 6$, given node 1 this chain is d-connected.
3 Thus, to block $3 \rightarrow 1 \leftarrow 2 \rightarrow 6$, must include $2 \in S$.
$4 S=\{1,2\} d$-separates 3 and 6 .

Markov properties

Markov properties on DAGs: We say a joint distribution \mathbb{P}

- (DF) admits a recursive factorization according to \mathcal{G} if \mathbb{P} has a density f such that

$$
\begin{equation*}
f(x)=\prod_{j \in V} f_{j}\left(x_{j} \mid \operatorname{pa}(j)\right) \tag{1}
\end{equation*}
$$

where f_{j} is the density for $[j \mid \operatorname{pa}(j)]$.
■ (DG) satisfies the directed global Markov property if for any disjoint (A, B, S),

$$
S d \text {-separates } A \text { and } B \Rightarrow A \perp B \mid S
$$

Markov properties

- (DL) satisfies the directed local Markov property if $i \perp \mathrm{nd}(i) \mid \mathrm{pa}(i)$ for all $i \in V$.
■ (DP) satisfies the directed pairwise Markov property if for any $(i, j) \notin E$ with $j \in \operatorname{nd}(i), i \perp j \mid \operatorname{nd}(i) \backslash\{j\}$.

Relations: $(\mathrm{DF}) \Rightarrow(\mathrm{DG}) \Rightarrow(\mathrm{DL}) \Rightarrow(\mathrm{DP})$.

Theorem 1

If \mathbb{P} has a density f with respect to a product measure, then (DF), (DG), and (DL) are equivalent.

Markov properties

Example: Markov chain

$\mathrm{pa}(i)=i-1, i=2, \ldots, n$.
(DF) holds:

$$
\mathbb{P}\left(X_{1}, \ldots, X_{n}\right)=\mathbb{P}\left(X_{1}\right) \mathbb{P}\left(X_{2} \mid X_{1}\right) \cdots \mathbb{P}\left(X_{n} \mid X_{n-1}\right)
$$

Thus, (DG) holds: For any $i<j<k, j d$-separates i and k and therefore,

$$
X_{i} \perp X_{k} \mid X_{j}
$$

Markov properties

Example: Suppose $f\left(x_{1}, \ldots, x_{6}\right)$ factorizes according to \mathcal{G}.

1 (DG): $\{1,2\} d$-separates 3 and 6 $\Rightarrow X_{3} \perp X_{6} \mid\left\{X_{1}, X_{2}\right\}$.
(DL): pa(6) $=\{1,2\}$ and $3 \in \operatorname{nd}(6)$ $\Rightarrow X_{3} \perp X_{6} \mid\left\{X_{1}, X_{2}\right\}$.
2 (DG): 2 and 3 are d-separated by \varnothing, thus $X_{2} \perp X_{3}$. $X_{2} \perp X_{3} \mid X_{5}$? False, because 5 is a descendant of a collider 1.
3 (DL): $\mathrm{pa}(4)=\{1\}$ and node 4 has no descendant. Thus

$$
X_{4} \perp\left\{X_{2}, X_{3}, X_{6}, X_{5}\right\} \mid X_{1}
$$

Markov properties

Connections to Markov properties on undirected graphs:

- Moral graph \mathcal{G}^{m} : add edges between all parents of a node in a DAG \mathcal{G} and then ignoring edge orientations. The resulting undirected graph is the moral graph of \mathcal{G}.
- If \mathbb{P} admits a recursive factorization according to \mathcal{G}, then it factorizes according to \mathcal{G}^{m}.
That is, (DF) wrt $\mathcal{G} \Rightarrow(\mathrm{F})$ wrt $\mathcal{G}^{m} \Rightarrow(\mathrm{G})$, (L), (P) wrt \mathcal{G}^{m}.
- $S d$-separates A and B in $\mathcal{G} \Leftrightarrow S$ separates A and B in $\left(\mathcal{G}_{\mathrm{An}(A \cup B \cup S)}\right)^{m}$.
If pa($(i) \subset A$ for all $i \in A$, then the subset A is an ancestral set. For a subset A of nodes, $\operatorname{An}(A)$ is the smallest ancestral set containing A.
For a DAG, $\operatorname{An}(A)$ is A and the ancestors of A.

Markov properties

DAG and its moral graph:
DAG \mathcal{G}

Moral graph \mathcal{G}^{m}

In the moral graph \mathcal{G}^{m}, red edges added between all parents of node 1 .

Markov properties

d-separation from moral graphs:

DAG \mathcal{G}

- 2 and 3 are d-separated by \varnothing. $\operatorname{An}(\{2,3\})=\{2,3\}$
$\left(\mathcal{G}_{\{2,3\}}\right)^{m}$:
(2)
(3)
- 2 and 3 are not d-separated by 5 .
$\operatorname{An}(\{2,3,5\})=\{1,2,3,4,5,6\}$
In $\mathcal{G}^{m}, 2$ and 3 are not separated by 5.

Markov properties

Markov equivalence:

Definition 1 (Markov equivalence)

Two DAGs are called Markov equivalent if they imply the same set of d-separations.

A v-structure is a triplet $\{i, j, k\} \subseteq V$ of the form $i \rightarrow k \leftarrow j: i$ and j are nonadjacent; k is called an uncovered collider.

Theorem 2 (Verma and Pearl (1990))

Two DAGs are Markov equivalent if and only if they have the same skeleton and the same v-structures.

Markov properties

Markov equivalence, examples: $\mathcal{G}_{1}, \mathcal{G}_{2}, \mathcal{G}_{3}$ are equivalent DAGs.
\mathcal{G}_{1}

\mathcal{G}_{2}

\mathcal{G}_{3}

Red: compelled edges, same orientation in all equivalent DAGs. Black: reversible edges, either direction occurs in at least one equivalent DAG.

Markov properties

■ Definition of Bayesian networks: Given \mathbb{P} with density f and an ordering $(\sigma(1), \ldots, \sigma(p))$, we factorize f

$$
\begin{align*}
f(x) & =\prod_{j=1}^{p} f\left(x_{\sigma(j)} \mid x_{\sigma(1)}, \ldots, x_{\sigma(j-1)}\right) \\
& =\prod_{j=1}^{p} f\left(x_{\sigma(j)} \mid x_{A_{j}}\right) \tag{2}
\end{align*}
$$

where $A_{j} \subset\{\sigma(1), \ldots, \sigma(j-1)\}$ is the minimum subset such that (2) holds. Then the DAG \mathcal{G} with $\operatorname{pa}(\sigma(j))=A_{j}$ for all $j \in V$ is a Bayesian network of \mathbb{P}.
■ Cl : If \mathcal{G} is a BN of \mathbb{P}, then (DF) holds, so (DG), (DL), (DP) also hold.

Parameterizations

Parameterization: Given \mathcal{G}, to parameterize $\left[X_{j} \mid \mathrm{pa}(j)\right]$ as in (1).
(1) Gaussian BNs

- Structural equations:

$$
X_{j}=\sum_{i \in \mathrm{pa}(j)} \beta_{i j} X_{i}+\varepsilon_{j}, \quad j=1, \ldots, p
$$

Assume $\varepsilon_{j} \sim \mathcal{N}\left(0, \omega_{j}^{2}\right)$ and $\varepsilon_{j} \perp \mathrm{pa}(j)$.

- Put $B=\left(\beta_{i j}\right)$ and $\Omega=\operatorname{diag}\left(\omega_{1}^{2}, \ldots, \omega_{p}^{2}\right)$. Then

$$
X=B^{\top} X+\varepsilon, \quad \varepsilon \sim \mathcal{N}_{p}(0, \Omega)
$$

$\Rightarrow X \sim \mathcal{N}_{p}\left(0, \Theta^{-1}\right)$, where $\Theta=\left(I_{p}-B\right) \Omega^{-1}\left(I_{p}-B\right)^{\top}$
(Cholesky decomposition of Θ); see van de Geer and Bühlmann (2013); Aragam and Zhou (2015).

Parameterizations

$$
\begin{aligned}
& B_{0}=\begin{array}{cccc}
X_{1} & X_{2} & X_{3} & X_{4} \\
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\beta_{21}^{\mathbf{0}} & 0 & \beta_{23}^{\mathbf{0}} & 0 \\
0 & 0 & 0 & \beta_{34}^{\mathbf{0}} \\
0 & 0 & 0 & 0
\end{array}\right) \quad P_{\pi}=\left(\begin{array}{llll}
0 & 0 \\
1 & 0 & 0 & \mathbf{1} \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \\
& B_{\pi}=P_{\pi} B_{0} P_{\pi}^{\top}=\begin{array}{c}
X_{4} \\
X_{4} \\
X_{1} \\
X_{3} \\
X_{2}
\end{array}\left(\begin{array}{llll}
0 & X_{3} & X_{2} \\
0 & 0 & 0 & 0 \\
\beta_{34}^{0} & 0 & 0 & 0 \\
0 & \beta_{\mathbf{2 1}}^{0} & \beta_{23}^{0} & 0 \\
0
\end{array}\right)
\end{aligned}
$$

Ye et al. (2021)
■ An example DAG \mathcal{G} and its coefficient matrix $B_{0}=\left(\beta_{i j}^{0}\right)_{4 \times 4}$.
■ π is a reversed topological sort: $(2,3,1,4)$ is a sort.

- B_{π} permutes columns and rows of B_{0} according to π, and is strictly lower triangular. Similarly define Θ_{π} and Ω_{π}.
- $\Theta_{\pi}=\left(I-B_{\pi}\right) \Omega_{\pi}^{-1}\left(I-B_{\pi}\right)^{\top}$: Cholesky decomposition.

Parameterizations

(2) Discrete BNs

- Multinomial distribution: $\theta_{k m}^{(j)}=\mathbb{P}\left(X_{j}=m \mid \mathrm{pa}(j)=k\right)$. Parameter for $\left[X_{j} \mid \mathrm{pa}(j)\right]$ is a $K \times M$ table:

$$
\left\{\theta_{k m}^{(j)}: \sum_{m} \theta_{k m}^{(j)}=1, k=1, \ldots, K, m=1, \ldots, M\right\}
$$

K : number of all possible combinations of $\mathrm{pa}(j)$. (Too many parameters if a node has many parents.)

- Multi-logit regression model (Gu et al. 2019): Use generalized linear model for $\left[X_{j} \mid \mathrm{pa}(j)\right]$.

Parameterizations

Faithfulness:
Given a DAG model $(\mathcal{G}, \mathbb{P})$ where \mathbb{P} satisfies, say (DG).
Then graph separation \Rightarrow condition independence, but not \Leftarrow. If \mathbb{P} is faithful to \mathcal{G} then \Leftarrow holds as well. In this case, we have \Leftrightarrow.

Definition 2

For a DAG model $(\mathcal{G}, \mathbb{P})$, we say the distribution \mathbb{P} is faithful to the DAG \mathcal{G} if for every triple of disjoint sets $A, B, S \subset V$,

$$
A \perp B \mid S \Leftrightarrow S \text { d-separates } A \text { and } B .
$$

Parameterizations

How likely is \mathbb{P} faithful?
Gaussian DAGs.

- Given a DAG \mathcal{G}, consider all $B=\left(\beta_{i j}\right)$ such that $\beta_{i j} \neq 0 \Leftrightarrow i \rightarrow j$. Almost all such B and Ω will define a joint distribution \mathbb{P} that is faithful to \mathcal{G}.
- Counterexamples: The parameters $\left(\beta_{i j}\right)$ satisfy additional equality constraints that define Cl in \mathbb{P} not implied by any d-separation in \mathcal{G}.
- For example, path coefficients cancel from i to j. Then $X_{i} \perp X_{j}$ but the nodes i and j are not d-separated by \varnothing.

Overview of topics

Causal inference
■ Model causal relations among nodes: If $i \rightarrow j$, then i is a causal parent of j.

- Causal relation defined by experimental intervention (Pearl 2000).
- If $\mathrm{pa}(i)$ is fixed by intervention, then i will not be affected by interventions on $V \backslash\{\mathrm{pa}(i) \cup\{i\}\}$.
■ If $j \in M$ are under intervention, then modify factorization

$$
\begin{equation*}
f(x)=\prod_{j \notin M} f_{j}\left(x_{j} \mid \operatorname{pa}(j)\right) \prod_{j \in M} g_{j}\left(x_{j}\right) \tag{3}
\end{equation*}
$$

where $g_{j}(\bullet)$ is the density of X_{j} under intervention.

Overview of topics

Structure learning
Given $x_{i} \sim_{i i d} \mathbb{P}$ defined by a DAG \mathcal{G}, estimate the DAG $\widehat{\mathcal{G}}$. The sparser the $\widehat{\mathcal{G}}$, the more Cl relations learned from data.

- Score-based methods: Minimize a scoring function over DAGs; regularization to obtain sparse solutions.
- Constraint-based methods: Condition independence tests against $X_{i} \perp X_{j} \mid X_{S}$ for all i, j, S.
■ Hybrid methods: First use constraint-based method to prune the search space, and then apply a score-based method to search for the optimal DAG.
See, e.g. Aragam and Zhou (2015) Section 1.2.

Chain graphs

Reference: Lauritzen (1996) §3.2.3
A chain graph on V may contain two types of edges, undirected $(i-j)$ and directed $i \rightarrow j$.

- Partition $V=V_{1} \cup \cdots \cup V_{T}$.
- All edges between vertices in the same V_{t} are undirected.

■ All edges between two different subsets $V_{s}, V_{t}(s<t)$ are directed and pointing from V_{s} to V_{t}.

Special cases: undirected graphs $(T=1)$ and DAGs $\left(\left|V_{t}\right|=1\right.$ for all t).

Applications:

- Represent a larger class of distributions.
- Represent Markov equivalence class of a DAG.

Chain graphs

Connectivity components:

- A path from i to j is a sequence $a_{0}=i, \ldots, a_{n}=j$ of distinct vertices so that $\left(a_{k-1}, a_{k}\right) \in E$ for all $k=1, \ldots, n$.
- If there is a path from i to j, we say i leads to j and write $i \mapsto j$.
■ If $i \mapsto j$ and $j \mapsto i$, then we say i and j connect, write $i \leftrightarrow j$.
- The equivalence class [i]:=\{j,V:i↔j\} defined by connectivity is a connectivity component of \mathcal{G}.
- Examples:

1 If $i-j-k$, then $i \leftrightarrow k$ and $i, j, k \in[i]$.
2 For a DAG, every connectivity component consists of a single node.

Chain graphs

Characterizations of a chain graph:

- Have no directed cycles.
- Its connectivity components (called chain components) induce undirected subgraphs.

To find chain components:
1 Remove all directed edges;
2 Take connectivity components.

Chain graphs

Markov properties on chain graphs:

- Boundary $\mathrm{bd}(i)=\mathrm{pa}(i) \cup \mathrm{ne}(i)$.
- Ancestors an $(j)=\{i: i \mapsto j, j \nvdash i\}$.

■ Descendants de $(i)=\{j: i \mapsto j, j \nvdash i\}$.

- Non-descendants $\operatorname{nd}(i)=V \backslash(\operatorname{de}(i) \cup\{i\})$.
- If $\operatorname{bd}(i) \subset A$ for all $i \in A$, then A is an ancestral set.
- Moral graph:
(1) For each chain component C, add undirected edges between $\mathrm{pa}(C)=\cup_{i \in C \mathrm{~Pa}(i) \text {; }}$
(2) ignore all edge directions.

Chain graphs

Markov properties on a chain graph \mathcal{G} : A joint distribution \mathbb{P}

- satisfies the local chain Markov property if $i \perp \mathrm{nd}(i) \mid \operatorname{bd}(i)$ for all $i \in V$.
- satisfies the global chain Markov property if for any disjoint (A, B, S),

$$
S \text { separates } A \text { and } B \text { in }\left(\mathcal{G}_{\mathrm{An}(A \cup B \cup S)}\right)^{m} \Rightarrow A \perp B \mid S .
$$

Unify Markov properties for undirected graphs and DAGs.

Chain graphs

Example chain graph: $V_{1}=\{1,2,3\}, V_{2}=\{4\}, V_{3}=\{5,6\}$.

- Chain components: V_{1}, V_{2}, V_{3}.

■ Paths: $2 \mapsto 3,3 \mapsto 2,1 \mapsto 5,5 \nvdash 1$.
$\square \operatorname{bd}(1)=\{2,3\}, \operatorname{bd}(4)=\{1,2\}$, $b d(5)=\{4,6\}$

- $\operatorname{de}(3)=\{4,5,6\}, \operatorname{de}(5)=\varnothing$.
- Local Markov property:
$5 \perp\{1,2,3\} \mid\{4,6\}$.
- Global Markov property:
$2 \perp 3 \mid 1$, from $\left(\mathcal{G}_{\{1,2,3\}}\right)^{m}=2-1-3$
$2 \not \perp 3 \mid\{1,6\}$, from \mathcal{G}^{m}
$1 \perp 6 \mid\{3,4\}$, from \mathcal{G}^{m}
\mathcal{G}^{m} : add 3-4.

Chain graphs

Example application: Factor analysis.

$$
\begin{aligned}
& V=L \cup X \\
& L=\left(L_{1}, \ldots, L_{d}\right) \text { (latent factors) } \\
& X=\left(X_{1}, \ldots, X_{p}\right) \text { (observed variables) } \\
& L \sim \mathcal{N}(0, \Phi) \text { (oblique factor analysis) } \\
& X_{j}=\beta_{j}^{\top} L+\varepsilon_{j}, j=1, \ldots, p
\end{aligned}
$$

Other applications, see Lauritzen and Richardson (2002).

References I

Bryon Aragam and Qing Zhou. Concave penalized estimation of sparse Gaussian Bayesian networks. Journal of Machine Learning Research, 16:2273-2328, 2015.
Jiaying Gu, Fei Fu, and Qing Zhou. Penalized estimation of directed acyclic graphs from discrete data. Statistics and Computing, 29:161-176, 2019.
Steffen L. Lauritzen. Graphical Models. Oxford University Press, 1996. ISBN 0-19-852219-3.

Steffen L Lauritzen and Thomas S. Richardson. Chain graph models and their causal interpretations. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64: 312-361, 2002.
Judea Pearl. Causality: Models, reasoning and inference. Cambridge Univ Press, 2000.

References II

Sara van de Geer and Peter Bühlmann. ℓ_{0}-penalized maximum likelihood for sparse directed acyclic graphs. The Annals of Statistics, 41(2):536-567, 2013.
T. Verma and J. Pearl. Equivalence and synthesis of causal models. In Proceedings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence, pages 220-227, 1990.
Q. Ye, A.A. Amini, and Qing Zhou. Optimizing regularized cholesky score for order-based learning of Bayesian networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43:3555-3572, DOI: 10.1109/TPAMI.2020.2990820, 2021.

