Directed Mixed Graphs for Latent Variables

Qing Zhou

UCLA Department of Statistics

Stats 212 Graphical Models
Lecture Notes

Outline

1 Acyclic directed mixed graphs (ADMGs)
2 Factorizations on ADMGs
3 Generalized Cl constraints
4 Identification of causal effects
5 Linear SEM associated with ADMG
6 Ancestral graphs
7 The FCI algorithm

Acyclic directed mixed graphs

Latent projection of a DAG (Tian and Pearl 2002b):
Given a DAG with latent variables $\mathcal{G}(V \cup L)$, where V is observed and L latent, the latent projection $\mathcal{G}(V)$ is constructed as follows:
$1 \mathcal{G}(V)$ contains an edge $a \rightarrow b$ if there is a directed path $a \rightarrow \cdots \rightarrow b$ in $\mathcal{G}(V \cup L)$ with all intermediate vertices in L.
$2 \mathcal{G}(V)$ contains an edge $a \leftrightarrow b$ if there is a collider-free path $a \leftarrow \cdots \rightarrow b$ with all intermediate vertices in L.
Note: Step 1 adds all directed edges $a \rightarrow b$ in $\mathcal{G}(V \cup L)$ to $\mathcal{G}(V)$.

Acyclic directed mixed graphs

DAG $\mathcal{G}(V \cup L), V=\left\{X_{1}, X_{2}, X_{3}\right\}$ and $L=\left\{U_{1}, U_{2}, U_{3}\right\}$:

Latent projection $\mathcal{G}(V)$ is an acyclic directed mixed graph (ADMG):

Acyclic directed mixed graphs

Definitions. Let $\mathcal{G}=(V, E)$ be a directed mixed graph, i.e. a graph with two types of edges: directed (\rightarrow) or bidirected (\leftrightarrow).

- A path is a sequence of distinct adjacent edges, of any type or orientation, between distinct vertices. directed path: $a \rightarrow \cdots \rightarrow b$. bidirected path: $a \leftrightarrow \cdots \leftrightarrow b$.
- If $a \rightarrow b$, then a is a parent of b and b is a child of a.
- If there is a directed path from a to d or $a=d$, we say a is an ancestor of d and d is a descendant of a. Accordingly define non-descendant.
- If $a \leftrightarrow b$, then a is a sibling of b.
- notation: $\operatorname{pa}_{\mathcal{G}}(a), \operatorname{ch}_{\mathcal{G}}(a), \operatorname{an}_{\mathcal{G}}(a), \operatorname{de}_{\mathcal{G}}(a), \operatorname{nd}_{\mathcal{G}}(a)$, and $\operatorname{sib}_{\mathcal{G}}(a)$.

Acyclic directed mixed graphs

■ A directed cycle is a path of the form $v \rightarrow \cdots \rightarrow w$ along with an edge $w \rightarrow v$.

- An acyclic directed mixed graph (ADMG) is a mixed graph containing no directed cycles.
- A topological sort of an ADMG is defined in the same way as for a DAG: $a \rightarrow b$ implies $a \prec b$.

Acyclic directed mixed graphs

m-separation:
■ A vertex z is a collider on a path if $\rightarrow z \leftarrow, \leftrightarrow z \leftrightarrow, \rightarrow z \leftrightarrow$, or $\leftrightarrow z \leftarrow$; otherwise, z is a non-collider.

- m-connection: A path between a and b is m-connecting given C if (i) every non-collider on the path is not in C and (ii) every collider on the path is an ancestor of C

$$
\left(\operatorname{an}(C):=\cup_{a \in C} \operatorname{an}(a)\right)
$$

- m-separation: If there is no path m-connecting a and b given C, then a and b are m-separated given C.
- If \mathcal{G} is a DAG, m-separation is identical to d-separation.

Acyclic directed mixed graphs

m-separation:

Proposition 1 (Richardson et al. (2023))

Let $\mathcal{G}(V \cup L)$ be a DAG and $\mathcal{G}(V)$ be its latent projection. For disjoint subsets $A, B, C \subset V, A$ and B are d-separated given C in $\mathcal{G}(V \cup L)$ if and only if A and B are m-separated given C in $\mathcal{G}(V)$.

■ On every path between $a, b \in V$ in $\mathcal{G}(V \cup L)$, colliders (resp. non-colliders) in V are also colliders (resp. non-colliders) on a path in $\mathcal{G}(V)$.

- ADMG $\mathcal{G}(V)$ captures all conditional independence constraints among the observed variables V in the DAG $\mathcal{G}(V \cup L)$ with latent variables.

Acyclic directed mixed graphs

Districts in ADMG $\mathcal{G}(V)$:

- The district of vertex v, denoted $\operatorname{dis}_{\mathcal{G}}(v)$, is the set of vertices that are connected to v by a bidirected path (including v itself).
- A district of \mathcal{G} is a maximal bidirected-connected set of vertices.
- A district corresponds to a confounded component (c-component) (Tian and Pearl 2002b).
■ Districts specify variable partitions that define terms in the factorization of $\mathbb{P}(V)$.
Denote districts by $\mathcal{D}(\mathcal{G})=\{D: D$ is a district of $\mathcal{G}\}$.
Define $\operatorname{pa}_{\mathcal{G}}(D):=\left(\cup_{a \in D} \operatorname{pa}_{\mathcal{G}}(a)\right) \backslash D$.

Factorizations on ADMGs

District factorization:

- Districts of \mathcal{G} :
$D_{1}=\{1,3\}, D_{2}=\{2,4\}$.
- $\operatorname{pa}_{\mathcal{G}}\left(D_{1}\right)=\{2\}$,
$\operatorname{pa}_{\mathcal{G}}\left(D_{2}\right)=\{1,3\}$.
Using $a \leftrightarrow b \Leftrightarrow a \leftarrow u \rightarrow b$:

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{4}\right)= & {\left[\sum_{u_{1}} p\left(x_{1} \mid u_{1}\right) p\left(x_{3} \mid x_{2}, u_{1}\right) p\left(u_{1}\right)\right] \times } \\
& {\left[\sum_{u_{2}} p\left(x_{2} \mid x_{1}, u_{2}\right) p\left(x_{4} \mid x_{3}, u_{2}\right) p\left(u_{2}\right)\right] } \\
= & q_{1,3}\left(x_{1}, x_{3} \mid x_{2}\right) \times q_{2,4}\left(x_{2}, x_{4} \mid x_{1}, x_{3}\right) .
\end{aligned}
$$

Factorizations on ADMGs

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{4}\right) & =q_{1,3}\left(x_{1}, x_{3} \mid x_{2}\right) \times q_{2,4}\left(x_{2}, x_{4} \mid x_{1}, x_{3}\right) \\
& =q_{D_{1}}\left(x_{D_{1}} \mid \operatorname{pa}_{\mathcal{G}}\left(D_{1}\right)\right) \times q_{D_{2}}\left(x_{D_{2}} \mid \operatorname{pa}_{\mathcal{G}}\left(D_{2}\right)\right)
\end{aligned}
$$

For general case, district factorization:

$$
\begin{equation*}
\mathbb{P}(V)=\prod_{D \in \mathcal{D}(\mathcal{G})} q_{D}\left(x_{D} \mid \operatorname{pa}_{\mathcal{G}}(D)\right) \tag{1}
\end{equation*}
$$

■ Each factor $q_{Y}(y \mid W)$ is called a kernel, i.e. a probability density of Y with W being a parameter:
$\sum_{y} q_{Y}(y \mid W=w)=1, \forall w$.
■ $q_{Y}(y \mid W=w)=\mathbb{P}(Y=y \mid d o(w))$ and thus, in general $q_{Y}(y \mid W) \neq \mathbb{P}(Y=y \mid W=w)$.

Factorizations on ADMGs

Express $q_{D}\left(x_{D} \mid \operatorname{pa}_{\mathcal{G}}(D)\right)$ as $\prod_{i \in D} p\left(x_{i} \mid \cdots\right)$:
■ The Markov blanket of $a \in V$ in ADMG \mathcal{G} is

$$
\mathrm{mb}(a, \mathcal{G}):=\operatorname{pa}_{\mathcal{G}}(D) \cup(D \backslash\{a\}),
$$

where $D=\operatorname{dis}_{\mathcal{G}}(a)$. We have $a \perp \operatorname{nd}(a) \mid \mathrm{mb}(a)$.

- Suppose that $1 \prec \cdots \prec p=|V|$ is a topological sort of \mathcal{G}. Let $V_{i}=\{1, \ldots, i\}$ and \mathcal{G}_{i} be the induced subgraph on V_{i}. Then $X_{i} \perp X_{k} \mid \mathrm{mb}\left(i, \mathcal{G}_{i}\right), k<i:$

$$
\begin{equation*}
q_{D}\left(x_{D} \mid \operatorname{pa}_{\mathcal{G}}(D)\right)=\prod_{i \in D} p\left(x_{i} \mid \operatorname{mb}\left(i, \mathcal{G}_{i}\right)\right) . \tag{2}
\end{equation*}
$$

■ Putting together into (1), we get

$$
\begin{equation*}
\mathbb{P}(V)=\prod_{i \in V} p\left(x_{i} \mid \operatorname{mb}\left(i, \mathcal{G}_{i}\right)\right) . \tag{3}
\end{equation*}
$$

Factorizations on ADMGs

$$
\begin{aligned}
& \text { Sort: } 1 \prec 2 \prec 3 \prec 4 . \\
& \mathrm{mb}\left(1, \mathcal{G}_{1}\right)=\varnothing \\
& \mathrm{mb}\left(2, \mathcal{G}_{2}\right)=\{1\}, \\
& \mathrm{mb}\left(3, \mathcal{G}_{3}\right)=\{1,2\}, \\
& \mathrm{mb}\left(4, \mathcal{G}_{4}\right)=\{1,2,3\} .
\end{aligned}
$$

$$
\begin{align*}
& q_{1,3}\left(x_{1}, x_{3} \mid x_{2}\right)=p\left(x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \tag{4}\\
& q_{2,4}\left(x_{2}, x_{4} \mid x_{1}, x_{3}\right)=p\left(x_{2} \mid x_{1}\right) p\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right) . \tag{5}\\
\Rightarrow & p(x)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right) .
\end{align*}
$$

This does NOT imply any conditional independence among X_{1}, \cdots, X_{4}.
In particular, $X_{1} \not \perp X_{4} \mid S$ for any $S \subseteq\left\{X_{2}, X_{3}\right\}$ (m-connected) even though no edge between X_{1} and X_{4}.

Generalized CI constraints

No edge between X_{1} and X_{4} encodes a generalized conditional independence a.k.a. Verma constraint (Verma and Pearl 1990).
Represent $q_{2,4}\left(x_{2}, x_{4} \mid x_{1}, x_{3}\right)=p\left(x_{2}, x_{4} \mid d o\left(x_{1}, x_{3}\right)\right)$ by a conditional ADMG (CADMG) with graph $\mathcal{G}^{\mid W}(W=\{1,3\})$ by cutting all edges with an arrow into W :

- Two types of vertices in a CADMG $\mathcal{G}(V, W)$:
(i) Random $V=\{2,4\}$; (ii) Fixed $W=\{1,3\}$.
- Kernel $q_{V}\left(x_{V} \mid x_{W}\right)$ is an (intervention) distribution for V after fixing W.
- We may further fix other random vertices if they are fixable.

Generalized CI constraints

Definition 1

The set of fixable vertices in a CADMAG $\mathcal{G}(V, W)$ is $F(\mathcal{G}):=\left\{v \in V: \operatorname{dis}_{\mathcal{G}}(v) \cap \operatorname{de}_{\mathcal{G}}(v)=\{v\}\right\}$.
v is fixable if none of its descendants is in the same district.

Fixable vertices $=\{2,4\}$.

Fix vertex 2: (i) $\mathcal{G}(V=\{4\}, W=\{1,2,3\})$

(ii) New kernel district-factorized according to $\mathcal{G}(\{4\},\{1,2,3\})$:

$$
\begin{equation*}
q_{4}\left(x_{4} \mid x_{2}, x_{1}, x_{3}\right)=f_{4}\left(x_{4} \mid x_{3}\right) . \quad \text { nested factorization } \tag{6}
\end{equation*}
$$

Generalized CI constraints

The new kernel $q_{4}\left(x_{4} \mid x_{2}, x_{1}, x_{3}\right)$ is defined by the fixing operator:

Definition 2

Given a kernel $q_{v}\left(x_{V} \mid W\right)$ associated with a CADMG $\mathcal{G}=\mathcal{G}(V, W)$, for any fixable vertex $r \in F(\mathcal{G})$, the fixing operator ϕ_{r} yields a new kernel

$$
\begin{equation*}
q_{V \backslash r}\left(x_{V \backslash r} \mid r, W\right)=\phi_{r}\left(q_{V} ; \mathcal{G}\right):=\frac{q_{V}\left(x_{V} \mid W\right)}{q_{V}\left(x_{r} \mid m b(r, \mathcal{G}), W\right)} \tag{7}
\end{equation*}
$$

- $q_{V}\left(x_{r} \mid \operatorname{mb}(r, \mathcal{G}), W\right)$ is a conditional distribution calculated from $q_{V}\left(x_{V} \mid W\right)$.
- If r is fixable, then r can be sorted as the last vertex in its district and its causal effect $\mathbb{P}(V \backslash r \mid d o(r) ; \mathcal{G})$ on $V \backslash r$ can be calculated by (7).

Generalized CI constraints

Apply ϕ_{2} on $q_{2,4}\left(x_{2}, x_{4} \mid x_{1}, x_{3}\right)(\mathrm{mb}(2, \mathcal{G})=\{1,4,3\})$:

$$
\begin{aligned}
q_{4}\left(x_{4} \mid x_{2}, x_{1}, x_{3}\right) & =\phi_{2}\left(q_{2,4} ; \mathcal{G}\right)=\frac{q_{2,4}\left(x_{2}, x_{4} \mid x_{1}, x_{3}\right)}{q_{2,4}\left(x_{2} \mid x_{4}, x_{1}, x_{3}\right)} \\
& =q_{2,4}\left(x_{4} \mid x_{1}, x_{3}\right) \\
& =\sum_{x_{2}^{\prime}} q_{2,4}\left(x_{2}^{\prime}, x_{4} \mid x_{1}, x_{3}\right) \\
& =\sum_{x_{2}^{\prime}} p\left(x_{2}^{\prime} \mid x_{1}\right) p\left(x_{4} \mid x_{1}, x_{2}^{\prime}, x_{3}\right) . \quad \text { by }(5)
\end{aligned}
$$

By nested factorization (6):

$$
\sum_{x_{2}^{\prime}} p\left(x_{2}^{\prime} \mid x_{1}\right) p\left(x_{4} \mid x_{1}, x_{2}^{\prime}, x_{3}\right)=f_{4}\left(x_{4} \mid x_{3}\right)
$$

does not depend on x_{1}, which is a GCl constraint.

Generalized CI constraints

Nested factorization:

- Suppose $p(x)$ factorizes by a DAG $\mathcal{G}(V \cup L)$ and $\mathcal{G}=\mathcal{G}(V)$ is the ADMG defined by latent projection.
■ For a valid fixing sequence $w=\left(w_{1}, \ldots, w_{r}\right)$, let $\phi_{w}(\mathcal{G})$ be the CADMG after fixing w sequentially and $\mathcal{D}_{w}=\mathcal{D}\left(\phi_{w}(\mathcal{G})\right)$ be the districts of (random vertices) in $\phi_{w}(\mathcal{G})$.

Theorem 1 (Richardson et al. (2023))

For any valid fixing sequence w,

$$
\phi_{w}\left(p\left(x_{V}\right) ; \mathcal{G}\right)=\prod_{D \in \mathcal{D}_{w}} f_{D}^{w}\left(x_{D} \mid \operatorname{pa}_{\mathcal{G}}(D)\right)
$$

for some kernels $f_{D}^{w}\left(x_{D} \mid \operatorname{pa}_{\mathcal{G}}(D)\right)$.

Generalized CI constraints

Algorithm to find systematically Cl and GCl constraints implied by ADMG: Tian and Pearl (2002b).

Input: ADMG $\mathcal{G}(V)$; assume V is sorted, $1 \prec \ldots \prec p$.
Output: Cl and GCI constraints on $p\left(x_{V}\right)$ implied by $\mathcal{G}(V)$.
For $i=1$ to p,
Part 1: Cl constraints $X_{i} \perp X_{k} \mid \mathrm{mb}\left(i, \mathcal{G}_{i}\right), k<i, k \notin \mathrm{mb}\left(i, \mathcal{G}_{i}\right)$.
Part 2: $S \leftarrow \operatorname{dis}_{\mathcal{G}_{i}}(i)$ and $G \leftarrow \phi_{[i] \backslash}\left(\mathcal{G}_{i}\right)([i]=\{1, \ldots, i\})$.
For each descendent set $D \subset S$ s.t. $i \notin D$: Let $D^{\prime}=S \backslash D$.
$1 \sum_{x_{D}} q_{S}=q_{D^{\prime}}($ fixing $D) ; G^{\prime}=\phi_{D}(G)$.
2 If G^{\prime} has 2 or more districts, $E \leftarrow \operatorname{dis}_{G^{\prime}}(i)$ and $q_{D^{\prime}} / \sum_{x_{i}} q_{D^{\prime}}$ is a function of $\mathrm{mb}\left(i, G^{\prime}\right)=E \cup \mathrm{pa}_{G^{\prime}}(E)$.
3 Repeat part 2 with $S \leftarrow E$ and $G \leftarrow \phi_{S \backslash E}(G)$.

Identification of causal effects

Identification of causal effects given an ADMG $\mathcal{G}(V)$:

- Let $k \in V$ be a single variable and $S \subset V$.
- The causal effect of X_{k} on S is identifiable (from observational data) if $\mathbb{P}\left(S \mid d o\left(X_{k}\right)\right)$ can be computed from the joint distribution $\mathbb{P}(V)$.

Theorem 2 (Tian and Pearl (2002a))

If there is no bidirected path connecting X_{k} to any of its children in $\mathcal{G}_{\text {an }(S)}$, then the causal effect of X_{k} on S is identifiable.

- Recent results: Theorem 48 in Richardson et al. (2023), Corollary 16 in Bhattacharya et al. (2022).

Identification of causal effects

Constructive proof of Theorem 2:
1 Let $V=\operatorname{an}(S), \mathcal{G}=\mathcal{G}_{\operatorname{an}(S)}$ and $M=V \backslash\{S \cup k\}$. Then

$$
p\left(x_{S} \mid d o\left(x_{k}\right)\right)=\sum_{x_{M}} p\left(x_{V \backslash k} \mid d o\left(x_{k}\right)\right) .
$$

2 Let $D=\operatorname{dis}_{\mathcal{G}}(k) \in \mathcal{D}=\mathcal{D}(\mathcal{G})$. Since $\operatorname{ch}(k) \cap D=\varnothing$,

$$
p\left(x_{V \backslash k} \mid d o\left(x_{k}\right)\right)=\sum_{x_{k}^{\prime}} q_{D}\left(x_{D} \mid \operatorname{pa}_{\mathcal{G}}(D)\right) \prod_{D^{\prime} \in \mathcal{D}} q_{D^{\prime}}\left(x_{D^{\prime}} \mid \operatorname{pa}_{\mathcal{G}}\left(D^{\prime}\right)\right)
$$

If X_{k} is fixable, we may instead apply fixing operator:

$$
p\left(x_{V \backslash k} \mid \operatorname{do}\left(x_{k}\right)\right)=\phi_{k}(p(x) ; \mathcal{G})=\frac{p\left(x_{V}\right)}{p\left(x_{k} \mid \mathrm{mb}(k, \mathcal{G})\right)}
$$

Identification of causal effects

The identify algorithm by Tian and Pearl (2002a) reformulated with fixing operators: Theorem 48 in Richardson et al. (2023).

Let $\mathcal{G}=\mathcal{G}(V)$. For $A, Y \subset V$, want to identify $\mathbb{P}(Y \mid \operatorname{do}(A))$.
■ Let $Y^{*}=\operatorname{an}_{\mathcal{G}_{V \backslash A}}(Y) \supseteq Y$: there is a directed path from every $v \in Y^{*}$ to Y not blocked by A.
Since $V \backslash(A \cup Y)=\left[V \backslash\left(A \cup Y^{*}\right)\right] \cup\left(Y^{*} \backslash Y\right)$,

$$
\begin{aligned}
\mathbb{P}(Y \mid d o(A)) & =\sum_{V \backslash(A \cup Y)} \mathbb{P}(V \backslash A \mid d o(A)) \\
& =\sum_{Y^{*} \backslash Y} \sum_{V \backslash\left(A \cup Y^{*}\right)} \mathbb{P}(V \backslash A \mid d o(A)) \\
& =\sum_{Y^{*} \backslash Y} \mathbb{P}\left(Y^{*} \mid d o(A)\right), \quad\left(Y^{*} \text { is ancestral }\right) .
\end{aligned}
$$

Identification of causal effects

■ Let $\mathcal{D}^{*}=\mathcal{D}\left(\mathcal{G}_{Y^{*}}\right)$. District factorization on $\mathcal{G}_{Y^{*}}$ shows

$$
\mathbb{P}\left(Y^{*} \mid \operatorname{do}(A)\right)=\prod_{D \in \mathcal{D}^{*}} \mathbb{P}\left[D \mid d o\left(\operatorname{pa}_{\mathcal{G}}(D)\right)\right]
$$

■ If every D is intrinsic (i.e. $V \backslash D$ is fixable), then $\mathbb{P}\left[D \mid \operatorname{do}\left(\operatorname{pa}_{\mathcal{G}}(D)\right)\right]=\phi_{V \backslash D}(\mathbb{P}(V) ; \mathcal{G})$, and

$$
\begin{equation*}
\therefore \quad \mathbb{P}(Y \mid \operatorname{do}(A))=\sum_{Y^{*} \backslash Y} \prod_{D \in \mathcal{D}^{*}} \phi_{V \backslash D}(\mathbb{P}(V) ; \mathcal{G}) \tag{8}
\end{equation*}
$$

Otherwise, $\mathbb{P}\left[D \mid d o\left(\operatorname{pa}_{\mathcal{G}}(D)\right)\right]$ is not identifiable for some D, and $\mathbb{P}(Y \mid \operatorname{do}(A))$ is not identifiable.

Identification of causal effects

Find $p\left(x_{4} \mid d o\left(x_{2}\right)\right)$.
$Y=\{4\}, A=\{2\}$
$Y^{*}=\{3,4\}$
$\mathcal{D}^{*}=\left\{D_{1}, D_{2}\right\}=\{\{3\},\{4\}\}$

$$
p\left(x_{3} \mid d o\left(x_{2}\right)\right)=\phi_{1,2,4}\left(p\left(x_{V}\right) ; \mathcal{G}\right)=\phi_{1}\left(q_{1,3}\left(x_{1}, x_{3} \mid x_{2}\right) ; \mathcal{G}^{\mid 2,4}\right)
$$

$$
=\sum_{x_{1}} p\left(x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right)
$$

$$
p\left(x_{4} \mid d o\left(x_{3}\right)\right)=\phi_{2,1,3}\left(p\left(x_{V}\right) ; \mathcal{G}\right)=\phi_{2}\left(q_{2,4}\left(x_{2}, x_{4} \mid x_{1}, x_{3}\right) ; \mathcal{G}^{\mid 1,3}\right)
$$

$$
=\sum_{x_{2}^{\prime}} p\left(x_{2}^{\prime} \mid x_{1}\right) p\left(x_{4} \mid x_{1}, x_{2}^{\prime}, x_{3}\right) .
$$

$\therefore \quad p\left(x_{4} \mid d o\left(x_{2}\right)\right)=\sum_{x_{3}} p\left(x_{3} \mid d o\left(x_{2}\right)\right) p\left(x_{4} \mid d o\left(x_{3}\right)\right)$.

Linear SEM associated with ADMG

Given an ADMG \mathcal{G} with directed edge set E_{d} and bidirected edge set E_{b}, define linear SEM

$$
\begin{align*}
& X_{j}=\sum_{i \in \operatorname{pa}_{\mathcal{G}}(j)} \beta_{i j} X_{i}+\varepsilon_{j}, \quad j=1, \ldots, p \tag{9}\\
& \left(\varepsilon_{1}, \ldots, \varepsilon_{p}\right) \sim \mathcal{N}_{p}(0, \Omega)
\end{align*}
$$

■ $B \in \mathcal{B}\left(E_{d}\right):=\left\{\left(\beta_{i j}\right)_{p \times p}: \beta_{i j}=0\right.$ if $\left.i \rightarrow j \notin E_{d}\right\}$.
■ $\Omega \in \mathcal{P}\left(E_{b}\right):=\left\{\left(\omega_{i j}\right)_{p \times p}: \omega_{i j}=0\right.$ if $\left.i \leftrightarrow j \notin E_{b}\right\}$.
The linear SEM (9) defines a family of multivariate Gaussian distributions $\mathcal{N}_{p}(0, \Sigma)$ with

$$
\Sigma=\Sigma_{\mathcal{G}}(B, \Omega):=(\mathbf{I}-B)^{-\mathrm{T}} \Omega(\mathbf{I}-B)^{-1}
$$

Linear SEM associated with ADMG

Definition 3 (Identifiability)

The linear SEM for an ADMG \mathcal{G} is said to be identifiable if $\Sigma_{\mathcal{G}}(B, \Omega)$ is an injective (one-to-one) map from $\mathcal{B}\left(E_{d}\right) \times \mathcal{P}\left(E_{b}\right)$ to the set of positive definite matrices.

Reachable closure (Shpitser et al. 2018).

Definition 4

For a CADMG $\mathcal{G}(V, W)$, a reachable subset $C \subseteq V$ is called a reachable closure for $S \subseteq C$ if the set of fixable vertices in $\phi_{V \backslash C}(\mathcal{G})$ is a subset of S.

- Reachable closure is unique for any $S \subseteq V$, denoted $\langle S\rangle$.
$\square\langle S\rangle$ is the set of random vertices in $\phi_{\neg S}(\mathcal{G})$ (fixing as many vertices in $V \backslash S$ as possible).

Linear SEM associated with ADMG

Graphical criterion for identifiability:

Theorem 3 (Drton et al. (2011))

The linear SEM for an ADMG $\mathcal{G}(V)$ is identifiable if and only if $\langle v\rangle=\{v\}$ for all $v \in V$.

- Identifiability means that given $\mathcal{G}(V)$ and Σ, there is a unique set of parameters (B, Ω) for the linear SEM. Thus, given $\mathcal{G}(V)$ and data, one may estimate (B, Ω).
■ Example: $a \rightarrow s \leftarrow b$ and $b \leftrightarrow a \leftrightarrow s$.
- $\langle s\rangle=\{a, b, s\}$ (a, b are not fixable in $V \backslash s$).
- $\mathcal{G}_{a, b, s}$ contains a sink node s and its parents a, b in the same district.
- Linear SEM is not identifiable.

Ancestral graphs

Motivations.
■ A class of ADMGs that represents conditional independences among V in a DAG $\mathcal{G}(V, L)$ with latent variables L.

- Retains the ancestral relationships and hence causal relations among V.
- Its equivalence class can be constructed from Cl relations learned from observational data.
- Does not preserve all confounding structures in $\mathcal{G}(V, L)$, i.e. bidirected edges in the latent projection.
- Does not represent GCl (Verma) constraints: potential loss of efficiency.

Ancestral graphs

Definitions. Let $\mathcal{G}=(V, E)$ be an ADMG.

- An almost directed cycle occurs when $a \leftrightarrow b$ and $a \in \operatorname{an}_{\mathcal{G}}(b)$ (removing the arrowhead at b results in a directed cycle).
■ Let $L \subset V$. An inducing path relative to L is a path on which every intermediate vertex $\notin L$ is a collider and every collider is an ancestor of an endpoint. If $L=\varnothing$, call it an inducing path.

Almost directed cycle:
 (2, 3, 4, 2).
Inducing path: $1 \rightarrow 2 \leftrightarrow 4$
$\Rightarrow 1$ and 4 not m-separated by any subsets.

Ancestral graphs

Definition 5 (MAG)

A mixed graph is a maximal ancestral graph (MAG) if
(i) it does not contain any directed or almost directed cycles (ancestral);
(ii) there is no inducing path between any two non-adjacent vertices (maximal).

Constructing MAG \mathcal{M} from DAG $\mathcal{G}=\mathcal{G}(V, L)$:
1 For each pair $a, b \in V, a$ and b are adjacent in \mathcal{M} iff there is an inducing path between them relative to L in \mathcal{G}.
2 For each adjacent pair (a, b) in \mathcal{M}, orient $a \rightarrow b$ in \mathcal{M} if $a \in \operatorname{an}_{\mathcal{G}}(b)$; orient $b \rightarrow a$ in \mathcal{M} if $b \in \operatorname{an}_{\mathcal{G}}(a)$; orient $a \leftrightarrow b$ otherwise.

Ancestral graphs

DAG $\mathcal{G}(V \cup L)$

MAG

Every edge among V in a DAG (trivial inducing path) is an edge in MAG.
Inducing paths relative to L :
$1 \rightarrow 2 \leftarrow L \rightarrow 4 \Rightarrow 1 \rightarrow 4$ in \mathcal{M}
$2 \leftarrow L \rightarrow 4 \Rightarrow 2 \rightarrow 4$ in \mathcal{M}
1,2 are ancestors of 4 .

Ancestral graphs

Equivalence class of a MAG:
■ Two MAGs are Markov equivalent if they have the same set of m-separations.
Sufficient and necessary conditions: same skeleton and v-structures, and share some covered colliders (Proposition 2, Zhang (2008b)).
■ The equivalence class $[\mathcal{M}]$ of a MAG \mathcal{M} is represented by a partial ancestral graph \mathcal{P} :
i \mathcal{P} has the same adjacencies (skeleton) as \mathcal{M};
ii A mark of arrowhead is in \mathcal{P} iff it is shared by all MAGs in $[\mathcal{M}]$;
iii A mark of tail is in \mathcal{P} iff it is shared by all MAGs in $[\mathcal{M}]$.
Edge marks in (ii) and (iii) are invariant across [\mathcal{M}]; other variable marks are represented by \circ in \mathcal{P}.

Ancestral graphs

Example PAG (Zhang 2008a)

I: income, S: smoking, PSH: parent smoking habits, G: genotype, L: lung cancer
$\square I \circ \rightarrow S=I \rightarrow S$ or $I \leftrightarrow S$.

- preserve the 3 v -structures at the collider S .

■ no directed or almost directed cycles among G, S, L.

The FCl algorithm

Constraint-based learning of MAGs by the FCI (fast causal inference) algorithm (Spirtes et al. 1999):

Use Cl constraints learned from observational data to construct the equivalence class of a MAG represented by a PAG:

- skeleton;

■ invariant marks (arrowheads and tails).

The FCI algorithm

Algorithm outline
1: $E \leftarrow$ edge set of the complete undirected graph on V. Every edge is $\mathrm{o}-\mathrm{o}$.
2: for $(i, j) \in E$ do
3: \quad Search for a subset $S_{i j}$ such that $X_{i} \perp X_{j} \mid S_{i j}$. If found, $E \leftarrow E \backslash\{(i, j),(j, i)\}$ and store $S_{i j}$.
4: end for
5: Orient edges in v-structures based on E and $\left\{S_{i j}\right\}$.
6: Apply orientation rules R1 to R4 (Zhang 2008b) until none of them applies.
7: Apply orientation rules R8 to R10 (Zhang 2008b) until none of them applies.

The FCI algorithm

Suppose \mathcal{M} is the true MAG, and assume we have Cl oracle.

- Line 1 to 5: similar to the PC algorithm.
- After Line 4: correctly construct the skeleton $\operatorname{sk}(\mathcal{M})$.
- After Line 6: identify all and only invariant arrowheads in $[\mathcal{M}]$.
- After Line 7: identify all and only invariant tails in $[\mathcal{M}]$.

Theorem 4 (Theorem 4, Zhang (2008b))

Given a perfect conditional independence oracle, the FCl algorithm returns the PAG for the true MAG \mathcal{M}.

References I

R. Bhattacharya, R. Nabi, and I. Shpitser. Semiparametric inference for causal effects in graphical models with hidden variables. Journal of Machine Learning Research, 23:1-76, 2022.
Mathias Drton, Rina Foygel, and Seth Sullivant. Global identifiability of linear structural equation models. The Annals of Statistics, 39(2):865-886, 2011.
Thomas Richardson, R.J. Evans, J.M. Robins, and I. Shpitser. Nested Markov properties for acyclic directed mixed graphs. Annals of Statistics, to appear, 2023.
I. Shpitser, R.J. Evans, and Thomas S. Richardson. Acyclic linear SEMs obey the nested markov property. Proceedings of the 34th Conference on Uncertainty in Artificial Intelligence, 2018.

References II

Peter Spirtes, Christopher Meek, and Thomas S Richardson. An algorithm for causal inference in the presence of latent variables and selection bias. Computation, Causation, and Discovery, pages 211-252, 1999.
Jin Tian and Judea Pearl. A general identification condition for causal effects. Proceedings of the AAAI, pages 567-573, 2002a. Jin Tian and Judea Pearl. On the testable implications of causal models with hidden variables. Proceedings of the 18th Conferences on Uncertainty in Artificial Intelligence, pages 519-527, 2002b.

Thomas Verma and Judea Pearl. Equivalence and synthesis of causal models. In Proceedings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence, pages 220-227, 1990.

References III

Jiji Zhang. Causal reasoning with ancestral graphs. Journal of Machine Learning Research, 9:1437-1474, 2008a.
Jiji Zhang. On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias. Artificial Intelligence, 172:1873-1896, 2008b.

