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Acyclic directed mixed graphs

Latent projection of a DAG (Tian and Pearl 2002b):
Given a DAG with latent variables G(V ∪ L), where V is observed
and L latent, the latent projection G(V ) is constructed as follows:

1 G(V ) contains an edge a→ b if there is a directed path
a→ · · · → b in G(V ∪ L) with all intermediate vertices in L.

2 G(V ) contains an edge a↔ b if there is a collider-free path
a← · · · → b with all intermediate vertices in L.

Note: Step 1 adds all directed edges a→ b in G(V ∪ L) to G(V ).
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Acyclic directed mixed graphs

DAG G(V ∪ L), V = {X1,X2,X3} and L = {U1,U2,U3}:

U1 U2

X2 X3U3X1

Latent projection G(V ) is an acyclic directed mixed graph (ADMG):

X2 X3X1
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Acyclic directed mixed graphs

Definitions. Let G = (V ,E ) be a directed mixed graph, i.e. a
graph with two types of edges: directed (→) or bidirected (↔).

A path is a sequence of distinct adjacent edges, of any type or
orientation, between distinct vertices.
directed path: a→ · · · → b. bidirected path: a↔ · · · ↔ b.

If a→ b, then a is a parent of b and b is a child of a.

If there is a directed path from a to d or a = d , we say a is an
ancestor of d and d is a descendant of a. Accordingly define
non-descendant.

If a↔ b, then a is a sibling of b.

notation: paG(a), chG(a), anG(a), deG(a), ndG(a), and
sibG(a).
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Acyclic directed mixed graphs

A directed cycle is a path of the form v → · · · → w along
with an edge w → v .

An acyclic directed mixed graph (ADMG) is a mixed graph
containing no directed cycles.

A topological sort of an ADMG is defined in the same way as
for a DAG: a→ b implies a ≺ b.
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Acyclic directed mixed graphs

m-separation:

A vertex z is a collider on a path if → z ←, ↔ z ↔, → z ↔,
or ↔ z ←; otherwise, z is a non-collider.

m-connection: A path between a and b is m-connecting given
C if (i) every non-collider on the path is not in C and (ii)
every collider on the path is an ancestor of C
(an(C ) :=∪a∈Can(a)).
m-separation: If there is no path m-connecting a and b given
C , then a and b are m-separated given C .

If G is a DAG, m-separation is identical to d-separation.
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Acyclic directed mixed graphs

m-separation:

Proposition 1 (Richardson et al. (2023))

Let G(V ∪ L) be a DAG and G(V ) be its latent projection. For
disjoint subsets A,B,C ⊂ V , A and B are d-separated given C in
G(V ∪ L) if and only if A and B are m-separated given C in G(V ).

On every path between a, b ∈ V in G(V ∪ L), colliders (resp.
non-colliders) in V are also colliders (resp. non-colliders) on a
path in G(V ).

ADMG G(V ) captures all conditional independence
constraints among the observed variables V in the DAG
G(V ∪ L) with latent variables.
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Acyclic directed mixed graphs

Districts in ADMG G(V ):

The district of vertex v , denoted disG(v), is the set of vertices
that are connected to v by a bidirected path (including v
itself).

A district of G is a maximal bidirected-connected set of
vertices.

A district corresponds to a confounded component
(c-component) (Tian and Pearl 2002b).

Districts specify variable partitions that define terms in the
factorization of P(V ).

Denote districts by D(G) = {D : D is a district of G}.
Define paG(D) :=(∪a∈DpaG(a)) \ D.
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Factorizations on ADMGs

District factorization:

3 41 2

Districts of G:
D1 = {1, 3},D2 = {2, 4}.
paG(D1) = {2},
paG(D2) = {1, 3}.

Using a↔ b ⇔ a← u → b:

p(x1, . . . , x4) =

[∑
u1

p(x1 | u1)p(x3 | x2, u1)p(u1)

]
×[∑

u2

p(x2 | x1, u2)p(x4 | x3, u2)p(u2)

]
=q1,3(x1, x3 | x2)× q2,4(x2, x4 | x1, x3).
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Factorizations on ADMGs

p(x1, . . . , x4) = q1,3(x1, x3 | x2)× q2,4(x2, x4 | x1, x3)
= qD1(xD1 | paG(D1))× qD2(xD2 | paG(D2)).

For general case, district factorization:

P(V ) =
∏

D∈D(G)

qD(xD | paG(D)). (1)

Each factor qY (y |W ) is called a kernel, i.e. a probability
density of Y with W being a parameter:∑

y qY (y |W = w) = 1, ∀w .

qY (y |W = w) = P(Y = y | do(w)) and thus, in general
qY (y |W ) ̸= P(Y = y |W = w).

Zhou, Q Graphical Models 10/38



Factorizations on ADMGs

Express qD(xD | paG(D)) as
∏

i∈D p(xi | · · · ):
The Markov blanket of a ∈ V in ADMG G is

mb(a,G) := paG(D) ∪ (D \ {a}),

where D = disG(a). We have a ⊥ nd(a) | mb(a).

Suppose that 1 ≺ · · · ≺ p = |V | is a topological sort of G. Let
Vi = {1, . . . , i} and Gi be the induced subgraph on Vi . Then
Xi ⊥ Xk | mb(i ,Gi ), k < i :

qD(xD | paG(D)) =
∏
i∈D

p(xi | mb(i ,Gi )). (2)

Putting together into (1), we get

P(V ) =
∏
i∈V

p(xi | mb(i ,Gi )). (3)
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Factorizations on ADMGs

3 41 2

Sort: 1 ≺ 2 ≺ 3 ≺ 4.
mb(1,G1) = ∅,
mb(2,G2) = {1},
mb(3,G3) = {1, 2},
mb(4,G4) = {1, 2, 3}.

q1,3(x1, x3 | x2) = p(x1)p(x3 | x1, x2), (4)

q2,4(x2, x4 | x1, x3) = p(x2 | x1)p(x4 | x1, x2, x3). (5)

⇒ p(x) = p(x1)p(x2 | x1)p(x3 | x1, x2)p(x4 | x1, x2, x3).

This does NOT imply any conditional independence among
X1, · · · ,X4.
In particular, X1 ̸⊥ X4 | S for any S ⊆ {X2,X3} (m-connected)
even though no edge between X1 and X4.

Zhou, Q Graphical Models 12/38



Generalized CI constraints

No edge between X1 and X4 encodes a generalized conditional
independence a.k.a. Verma constraint (Verma and Pearl 1990).

Represent q2,4(x2, x4 | x1, x3) = p(x2, x4 | do(x1, x3)) by a
conditional ADMG (CADMG) with graph G|W (W = {1, 3}) by
cutting all edges with an arrow into W :

3 41 2

Two types of vertices in a CADMG G(V ,W ):
(i) Random V = {2, 4}; (ii) Fixed W = {1, 3}.
Kernel qV (xV | xW ) is an (intervention) distribution for V
after fixing W .

We may further fix other random vertices if they are fixable.
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Generalized CI constraints

Definition 1

The set of fixable vertices in a CADMAG G(V ,W ) is
F (G) :={v ∈ V : disG(v) ∩ deG(v) = {v}}.

v is fixable if none of its descendants is in the same district.

3 41 2

Fixable vertices ={2, 4}.

Fix vertex 2: (i) G(V = {4},W = {1, 2, 3})

3 41 2

(ii) New kernel district-factorized according to G({4}, {1, 2, 3}):

q4(x4 | x2, x1, x3) = f4(x4 | x3). nested factorization (6)
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Generalized CI constraints

The new kernel q4(x4 | x2, x1, x3) is defined by the fixing operator:

Definition 2

Given a kernel qV (xV |W ) associated with a CADMG
G = G(V ,W ), for any fixable vertex r ∈ F (G), the fixing operator
ϕr yields a new kernel

qV \r (xV \r | r ,W ) = ϕr (qV ;G) :=
qV (xV |W )

qV (xr | mb(r ,G),W )
. (7)

qV (xr | mb(r ,G),W ) is a conditional distribution calculated
from qV (xV |W ).

If r is fixable, then r can be sorted as the last vertex in its
district and its causal effect P(V \ r | do(r);G) on V \ r can
be calculated by (7).

Zhou, Q Graphical Models 15/38



Generalized CI constraints

Apply ϕ2 on q2,4(x2, x4 | x1, x3) (mb(2,G) = {1, 4, 3}):

q4(x4 | x2, x1, x3) = ϕ2(q2,4;G) =
q2,4(x2, x4 | x1, x3)
q2,4(x2 | x4, x1, x3)

= q2,4(x4 | x1, x3)

=
∑
x ′2

q2,4(x
′
2, x4 | x1, x3)

=
∑
x ′2

p(x ′2 | x1)p(x4 | x1, x ′2, x3). by (5)

By nested factorization (6):∑
x ′2

p(x ′2 | x1)p(x4 | x1, x ′2, x3) = f4(x4 | x3)

does not depend on x1, which is a GCI constraint.
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Generalized CI constraints

Nested factorization:

Suppose p(x) factorizes by a DAG G(V ∪ L) and G = G(V ) is
the ADMG defined by latent projection.

For a valid fixing sequence w = (w1, . . . ,wr ), let ϕw (G) be
the CADMG after fixing w sequentially and Dw = D(ϕw (G))
be the districts of (random vertices) in ϕw (G).

Theorem 1 (Richardson et al. (2023))

For any valid fixing sequence w ,

ϕw (p(xV );G) =
∏

D∈Dw

f wD (xD | paG(D))

for some kernels f wD (xD | paG(D)).
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Generalized CI constraints

Algorithm to find systematically CI and GCI constraints implied by
ADMG: Tian and Pearl (2002b).

Input: ADMG G(V ); assume V is sorted, 1 ≺ . . . ≺ p.
Output: CI and GCI constraints on p(xV ) implied by G(V ).

For i = 1 to p,
Part 1: CI constraints Xi ⊥ Xk | mb(i ,Gi ), k < i , k /∈ mb(i ,Gi ).
Part 2: S ← disGi

(i) and G ← ϕ[i ]\S(Gi ) ([i ] = {1, . . . , i}).
For each descendent set D ⊂ S s.t. i /∈ D: Let D ′ = S \ D.

1
∑

xD
qS = qD′ (fixing D); G ′ = ϕD(G ).

2 If G ′ has 2 or more districts, E ← disG ′(i) and qD′/
∑

xi
qD′ is

a function of mb(i ,G ′) = E ∪ paG ′(E ).

3 Repeat part 2 with S ← E and G ← ϕS\E (G ).
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Identification of causal effects

Identification of causal effects given an ADMG G(V ):

Let k ∈ V be a single variable and S ⊂ V .

The causal effect of Xk on S is identifiable (from
observational data) if P(S | do(Xk)) can be computed from
the joint distribution P(V ).

Theorem 2 (Tian and Pearl (2002a))

If there is no bidirected path connecting Xk to any of its children
in Gan(S), then the causal effect of Xk on S is identifiable.

Recent results: Theorem 48 in Richardson et al. (2023),
Corollary 16 in Bhattacharya et al. (2022).
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Identification of causal effects

Constructive proof of Theorem 2:

1 Let V = an(S), G = Gan(S) and M = V \ {S ∪ k}. Then

p(xS | do(xk)) =
∑
xM

p(xV \k | do(xk)).

2 Let D = disG(k) ∈ D = D(G). Since ch(k) ∩ D = ∅,

p(xV \k | do(xk)) =
∑
x ′k

qD(xD | paG(D))
∏
D′∈D

qD′(xD′ | paG(D ′)).

If Xk is fixable, we may instead apply fixing operator:

p(xV \k | do(xk)) = ϕk(p(x);G) =
p(xV )

p(xk | mb(k ,G))
.
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Identification of causal effects

The identify algorithm by Tian and Pearl (2002a) reformulated
with fixing operators: Theorem 48 in Richardson et al. (2023).

Let G = G(V ). For A,Y ⊂ V , want to identify P(Y | do(A)).
Let Y ∗ = anGV\A(Y ) ⊇ Y : there is a directed path from every
v ∈ Y ∗ to Y not blocked by A.

Since V \ (A ∪ Y ) = [V \ (A ∪ Y ∗)] ∪ (Y ∗ \ Y ),

P(Y | do(A)) =
∑

V \(A∪Y )

P(V \ A | do(A))

=
∑
Y ∗\Y

∑
V \(A∪Y ∗)

P(V \ A | do(A))

=
∑
Y ∗\Y

P(Y ∗ | do(A)), (Y ∗ is ancestral).
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Identification of causal effects

Let D∗ = D(GY ∗). District factorization on GY ∗ shows

P(Y ∗ | do(A)) =
∏

D∈D∗

P[D | do(paG(D))].

If every D is intrinsic (i.e. V \ D is fixable), then
P[D | do(paG(D))] = ϕV \D(P(V );G), and

∴ P(Y | do(A)) =
∑
Y ∗\Y

∏
D∈D∗

ϕV \D(P(V );G). (8)

Otherwise, P[D | do(paG(D))] is not identifiable for some D,
and P(Y | do(A)) is not identifiable.
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Identification of causal effects

3 41 2

Find p(x4 | do(x2)).
Y = {4},A = {2}
Y ∗ = {3, 4}
D∗ = {D1,D2} = {{3}, {4}}

p(x3 | do(x2)) = ϕ1,2,4(p(xV );G) = ϕ1(q1,3(x1, x3 | x2);G|2,4)

=
∑

x1
p(x1)p(x3 | x1, x2).

p(x4 | do(x3)) = ϕ2,1,3(p(xV );G) = ϕ2(q2,4(x2, x4 | x1, x3);G|1,3)

=
∑

x ′2
p(x ′2 | x1)p(x4 | x1, x ′2, x3).

∴ p(x4 | do(x2)) =
∑

x3
p(x3 | do(x2))p(x4 | do(x3)).
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Linear SEM associated with ADMG

Given an ADMG G with directed edge set Ed and bidirected edge
set Eb, define linear SEM

Xj =
∑

i∈paG(j)

βijXi + εj , j = 1, . . . , p. (9)

(ε1, . . . , εp) ∼ Np(0,Ω).

B ∈ B(Ed) :={(βij)p×p : βij = 0 if i → j /∈ Ed}.
Ω ∈ P(Eb) :={(ωij)p×p : ωij = 0 if i ↔ j /∈ Eb}.

The linear SEM (9) defines a family of multivariate Gaussian
distributions Np(0,Σ) with

Σ = ΣG(B,Ω) :=(I− B)−TΩ(I− B)−1.
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Linear SEM associated with ADMG

Definition 3 (Identifiability)

The linear SEM for an ADMG G is said to be identifiable if
ΣG(B,Ω) is an injective (one-to-one) map from B(Ed)× P(Eb) to
the set of positive definite matrices.

Reachable closure (Shpitser et al. 2018).

Definition 4

For a CADMG G(V ,W ), a reachable subset C ⊆ V is called a
reachable closure for S ⊆ C if the set of fixable vertices in
ϕV \C (G) is a subset of S .

Reachable closure is unique for any S ⊆ V , denoted ⟨S⟩.
⟨S⟩ is the set of random vertices in ϕ¬S(G) (fixing as many
vertices in V \ S as possible).
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Linear SEM associated with ADMG

Graphical criterion for identifiability:

Theorem 3 (Drton et al. (2011))

The linear SEM for an ADMG G(V ) is identifiable if and only if
⟨v⟩ = {v} for all v ∈ V .

Identifiability means that given G(V ) and Σ, there is a unique
set of parameters (B,Ω) for the linear SEM. Thus, given
G(V ) and data, one may estimate (B,Ω).

Example: a→ s ← b and b ↔ a↔ s.

⟨s⟩ = {a, b, s} (a, b are not fixable in V \ s).
Ga,b,s contains a sink node s and its parents a, b in the same
district.
Linear SEM is not identifiable.
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Ancestral graphs

Motivations.

A class of ADMGs that represents conditional independences
among V in a DAG G(V , L) with latent variables L.

Retains the ancestral relationships and hence causal relations
among V .

Its equivalence class can be constructed from CI relations
learned from observational data.

Does not preserve all confounding structures in G(V , L), i.e.
bidirected edges in the latent projection.

Does not represent GCI (Verma) constraints: potential loss of
efficiency.
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Ancestral graphs

Definitions. Let G = (V ,E ) be an ADMG.

An almost directed cycle occurs when a↔ b and a ∈ anG(b)
(removing the arrowhead at b results in a directed cycle).

Let L ⊂ V . An inducing path relative to L is a path on which
every intermediate vertex /∈ L is a collider and every collider is
an ancestor of an endpoint. If L = ∅, call it an inducing path.

3 41 2

Almost directed cycle:
(2, 3, 4, 2).
Inducing path: 1→ 2↔ 4
⇒ 1 and 4 not m-separated by
any subsets.
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Ancestral graphs

Definition 5 (MAG)

A mixed graph is a maximal ancestral graph (MAG) if

(i) it does not contain any directed or almost directed cycles
(ancestral);

(ii) there is no inducing path between any two non-adjacent
vertices (maximal).

Constructing MAGM from DAG G = G(V , L):

1 For each pair a, b ∈ V , a and b are adjacent inM iff there is
an inducing path between them relative to L in G.

2 For each adjacent pair (a, b) inM,
orient a→ b inM if a ∈ anG(b); orient b → a inM if
b ∈ anG(a); orient a↔ b otherwise.
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Ancestral graphs

DAG G(V ∪ L)

L

3 41 2

MAG

3 41 2

Every edge among V in a DAG
(trivial inducing path) is an edge
in MAG.
Inducing paths relative to L:
1→ 2← L→ 4 ⇒ 1→ 4 inM
2← L→ 4 ⇒ 2→ 4 inM
1, 2 are ancestors of 4.
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Ancestral graphs

Equivalence class of a MAG:

Two MAGs are Markov equivalent if they have the same set of
m-separations.
Sufficient and necessary conditions: same skeleton and
v -structures, and share some covered colliders (Proposition 2,
Zhang (2008b)).

The equivalence class [M] of a MAGM is represented by a
partial ancestral graph P:

i P has the same adjacencies (skeleton) asM;
ii A mark of arrowhead is in P iff it is shared by all MAGs in [M];
iii A mark of tail is in P iff it is shared by all MAGs in [M].

Edge marks in (ii) and (iii) are invariant across [M]; other
variable marks are represented by ◦ in P.
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Ancestral graphs

Example PAG (Zhang 2008a)

I: income, S: smoking, PSH: parent smoking habits, G: genotype,
L: lung cancer

I◦→ S = I → S or I ↔ S .

preserve the 3 v-structures at the collider S.

no directed or almost directed cycles among G, S, L.
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The FCI algorithm

Constraint-based learning of MAGs by the FCI (fast causal
inference) algorithm (Spirtes et al. 1999):

Use CI constraints learned from observational data to construct the
equivalence class of a MAG represented by a PAG:

skeleton;

invariant marks (arrowheads and tails).
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The FCI algorithm

Algorithm outline

1: E ← edge set of the complete undirected graph on V . Every
edge is ◦−◦.

2: for (i , j) ∈ E do
3: Search for a subset Sij such that Xi ⊥ Xj | Sij . If found,

E ← E \ {(i , j), (j , i)} and store Sij .

4: end for
5: Orient edges in v -structures based on E and {Sij}.
6: Apply orientation rules R1 to R4 (Zhang 2008b) until none of

them applies.
7: Apply orientation rules R8 to R10 (Zhang 2008b) until none of

them applies.
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The FCI algorithm

SupposeM is the true MAG, and assume we have CI oracle.

Line 1 to 5: similar to the PC algorithm.

After Line 4: correctly construct the skeleton sk(M).

After Line 6: identify all and only invariant arrowheads in [M].

After Line 7: identify all and only invariant tails in [M].

Theorem 4 (Theorem 4, Zhang (2008b))

Given a perfect conditional independence oracle, the FCI algorithm
returns the PAG for the true MAGM.
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