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Graphoid axioms (Pearl (1988), §3.1.2.)

Cl statement defines a ternary relation: (X,Y | Z) for X L Y | Z.
Suppose X, Y, Z, W are disjoint subsets of random variables from
a joint distribution P. Then the Cl relation satisfies

C1l) symmetry: (X, Y | Z) = (Y, X | Z);

C2) decomposition: (X, YW | Z) = (X, Y | Z);

C3) weak union: (X, YW | Z) = (X, Y | ZW);

C4) contraction: (X,Y | Z)&(X,W | ZY) = (X, YW | Z).
If the joint density of IP wrt a product measure is positive and
continuous, then

(C5) intersection: (X, Y | ZW)&(X, W | ZY) = (X, YW | Z).
In the above, YW :=Y U W.
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Any ternary relation (A, B | C) that satisfies (C1) to (C4) is called
a semi-graphoid. If (C5) also holds, then it is called a graphoid.

Examples of graphoid:
Conditional independence of P (positive and continous).

Graph separation in undirected graph: (X, Y | Z) means
nodes Z separate X and Y,ie. X—Z-Y.

Graph separation provides an intuitive graphical interpretation for
the Cl axioms.
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Undirected graphs

Definition: A graph G = (V,E), V ={1,...,p} is a set of vertices
(or nodes) and E C V x V is a set of edges.
m Undirected edge i — j: (i,j) € E < (j,i) € E.
m Associate V to random variables X; (i =1,...,p) with joint
distribution P. Then (G, P) is called a graphical model. Often
use node i and X; interchangeably.

m Use graph separation to represent conditional independence
among Xi, ..., Xp.
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Undirected graphs

Reference: Lauritzen (1996), chapters 2 and 3.

Terminology for undirected graph G = (V, E)

m / and j are neighbors if (i,j) € E; ne(i) denotes the set of
neighbors of i.

m A path of length n from j to j is a sequence ag = /,...,ap, = J
of distinct vertices so that (ax_1,ax) € E forall k=1,...,n.

m A subset C C V separates a and b if all paths from a to b
intersect C.

m C separates A and B if C separates a and b for every a € A
and b€ B. Write A— C — B.

Zhou, Q Graphical Models 5/30



Markov properties

Markov properties on undirected graphs

Consider undirected graphical model (G, P). We say P satisfies
m (P) the pairwise Markov property wrt G if

()¢ E=iLlj|V\{ij}:=[V]
m (L) the local Markov property wrt G if
(i,J) ¢ E=1iLj|ne(i);

m (G) the global Markov property wrt G if for any disjoint
(A, B, C),

A-C-B=ALB|C.
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Markov properties

Factorization via cliques

m Complete subset and clique: A subset of C C V is complete if
the subgraph on C is complete. A complete subset that is
maximal (wrt C) is called a clique.

m (F) Factorization: [P factorizes according to G if for every
clique A, there exists ¥ a(xa) > 0, such that the joint density
of P has the form

f(x) = H Ya(xa),

AeC

where C is the set of cliques of G.
m Relations: (F) = (G) = (L) = (P).
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Markov properties

Examples.

m Markov chain

Cliques: {i,i+1},i=1,...,n—1.
(F) holds:

P(X1,. .., Xo) = POXO)P(Xa | X1)-- - P(Xy | Xo_1)
=1 ( X1, X2) - - - Yn—1(Xn—1, Xn).

Thus, (G) holds: For any i < j < k,

i—j—k:>XiJ_Xk|)(j.
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Markov properties

m Hidden Markov model {(Z;, Y;) : t =1,...,n}.

Cliques: {Z;, Zip1}t, t=1,...,n—=1,{Z, Ye},t =1,...,n
(F) holds: P(Y,Z) = P(Zl)P(Yl ‘ Z]_)]P)(Z2 ‘ Zl)IP)(Yz | Zz)
P(Z, | Zo1)P(Y | Zn)
n—1 n
= H fe(Zt, Zev1) Hgt(zh Yt)
t=1 t=1

Thus, (G) holds: V;_j, Y: and Vi, are mutually independent
conditional on Z; for i,j > 1, where V) = { Yk, Zx}.
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Markov properties

When does (F) < (G) < (L) < (P)?

If P has a positive and continuous density f with respect to a
product measure, then (F) < (P).

m Product measure: (1) X; € R, use Lebesgue measure; (2) X;
finite discrete, use counting measure.

m Conclusion implies (F) < (G) < (L) < (P).

m Counter example. Let p =5, Xi, X5 ~jig Bern(0.5), Xo = Xi,
Xz = Xs, and X3 = X5Xy. This defines P. Let G be a chain
E={(i,i+1):i=1,...,4}.

Then (L) holds but not (G). Because density (probability mass
function) is not positive on all possible values of X;'s.
(L): Xo L Xq | (X1, X3) true; (G): Xo L Xy | X3 false!
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Markov properties

Conditional independence graph (CIG):

m Definition: A CIG is a graphical model (G, P) such that (P)
holds. That is,

(i) E=iLj|V\{ij}:=[V]
m Sparser graph G implies more conditional independence (Cl)
relations.

m One can always choose the minimal G such that (P) holds to
be the CIG, i.e., replace = by <.

m Estimate the structure of G to detect Cl relations, assuming
we have observed iid data from P.
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Gaussian graphical models

A CIG with P = N,(0,X), £ > 0 (positive definite).

Suppose (Xi,...,Xp) ~ Np(0,X) with X > 0 and let
© = (gjk)pxp =YL Then

ij =0« )(1 1 Xk | X—{J'vk}' (1)

m O is called the precision matrix.

m According to (1), construct a graph G as
O #0 < (j, k) € E, (2)

i.e. (P) holds. Since P has a continuous and positive density,
(L), (G) and (F) hold.

m One can verify (F) directly as well.

Zhou, Q Graphical Models 12/30



Gaussian graphical models

Example: Given the following ©, construct G by (2).

x x x 0 0 ‘

R Q3
O=|% x x * 0 6

0 x * % *

0 0 0 % =«

m Find all S such that X; L Xs | S.
By (G), find all S that separates nodes 1 and 5:

S ={2,3},{4},{2,4},{3,4},{2,3,4}.
m Cliques: {1,2,3},{2,3,4},{4,5}; directly verify (F).
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Gaussian graphical models

Partial correlation and neighborhood regression

m Partial correlation between j and k given [V]j:

pik = —Ojk/\/0jiOkk-

Correlation calculated from X(; 4y vy, = Var(j, k | [V]jk).

m Neighborhood regression, regress X; on X_;:

Xj = BiXi+ej. (3)
i)

Then Bi; = —0j /8. (By symmetry Bj = —04;/0k.)
m Thus, we have

(j,k)§éE<:>0jk=0<:>pjk=0<:>,3kj:,3jk:0. (4)

Zhou, Q Graphical Models 14/30



Gaussian graphical models

Learning GGMs: Given x; ~jig Np(0,X), i = ., n, estimate

the structure of G < supp(©) = {(J, k) : Ojx # 0}.

Also called covariance selection (Dempster 1972).
m Log-likelihood

1
§x) = —g log det() —  tr(ST ),
where S = 3. x;xT is a p x p matrix (sufficient statistic).
m SME — S§/n (always exists).
m If n> p, inverte yMLE . OMLE

:( MLE)—l
Then obtain G by thresholding: E=

{U. k) 10} > 7).
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Gaussian graphical models

Regularized estimation under ¢; penalty (Yuan and Lin 2007;
Friedman et al. 2008; Banerjee et al. 2008)

m Element-wise {1 norm [|Of|1:=3_; [0l

m /; regularized estimate © = argming., (©),
2
f(©) = -6 + Alels
= —logdet(©) + tr(XMEQ) + A||9|;.

m f is convex, efficient algorithm.
m Well-defined for p > n.

m Sparse solution, HAJ-k = 0 for some (j, k).
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Gaussian graphical models

Estimate G from ©
mE= {(U, k) : éjk # 0}, but needs very strong assumptions
(irrepresentability) for P(E = Eg) — 1.

m Operator norm error:

16 — ©ll2 < \/d?log p/n. (5)

d: Maximum degree of G.
= Thresholding &: E = i(], k) : ;| > 7}. Weaker assumptions
(RE, beta-min) for P(E = Ey) — 1.
Choosing A by cross-validation, A/, then IP(E()\*CV) D E)—1
under certain conditions (RE, beta-min).
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Gaussian graphical models

Estimate G by neighborhood regression (Meinshausen and
BiihImann 2006)

m Apply model selection (e.g. lasso) for each neighborhood
regression (3) = B (j,k=1,...,p).

m Combine results to define G, e.g.,
E={(j.k): B #0, By # 0}.

m Approximate  if lasso is used in neighborhood regression.
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Discrete graphical models

Reference: Hastie et al. (2015), Ch 9.
Ising model:

m Xje{-1,+1},ie V =][p].
m Given an undirected graph G = (V, E), define a joint
distribution

P(x1,...,%p;0) = exp ZGX,—i— Z 01X Xic

ieVv (,k)eE

(6)
m Easy to verify (F) holds = (G), (L), (P).

m Example application: model social networks.
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Discrete graphical models

Example: Given the following G, define P(x1,...,%s) as in (6).

m Cliques:

(2) {1,2,3},{1,2,6},{1,4},{1,5}.
@“9 m Verify (F) = (G), (L), (P).
(1)

m Example Cl statements by (G):

Xy L X5 | Xy
e e X3 1 X6 | {X17X2}
{X21X37X6} 1 {X47X5} ’ Xl
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Discrete graphical models

Generalization:
m X;e{l,....m},ieV=]p].
m Given an undirected graph G = (V, E), define a joint
distribution

P(x1,...,xp;0) =

]_ m
S o Dl = D)+ 3 Bl = x0)

ieV z=1 (,k)eE
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Discrete graphical models

Learning graphs from data:
m Full likelihood-based learning is difficult: Z(#) no closed-form.

m More practical to do neighborhood regression. From (6), get
[Xi | X_;] which leads to a logistic regression model:

P(X;i=1]X_))
lo
g X;

= 20; + 20 X,
P( :—1|X_,-)] J-Enze(;) o

where ne(i) = {j € V : (i,j) € E} is the set of neighbors of
node i in G.
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Discrete graphical models

Learning graphs from data:

m For each i € [p], apply logistic regression X; on X_; with
variable selection to estimate N(i) (estimated neighbor set).

m For example, ¢1-regularized logistic regression or BIC stepwise
selection.

= Combine {N(i): i € V} to construct G.
= Sample size n = Q(d? log p) sufficient for G = G with high
probability.
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Faithfulness

Given a graphical model (G,P) where P satisfies, say (G).

Then graph separation = condition independence, but not <.

If P is faithful to G then < holds as well. In this case, we have <
(perfectness).

Definition 1

For a graphical model (G, P), we say the distribution PP is faithful
to the graph G if for every triple of disjoint sets A,B,S C V,

ALl B|S < S separates A and B.
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Faithfulness

How likely is P faithful?
Gaussian graphical models, P is Gaussian A/(0,X) = A/(0,071).
m Given G, consider all positive-definite © such that
supp(©) = EU{(i,i):i € [p]}. Then for almost all such ©,
the distribution NV(0,©71) is faithful to G.

m Counterexamples: The parameters in © satisfy additional
equality constraints that define Cl in P not implied by any
separation in G.
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Markov blanket

Definition 2 (Markov blanket)
A Markov blanket of i € V is any subset S C V_; such that

Xi LV_;\S|S. (7)

A Markov boundary is a minimal Markov blanket, i.e., none of its
proper subset satisfies (7).

m For an undirected graph model (G, P), ne(i) is a Markov
blanket of i (by local Markov property) and it is a Markov
boundary if P is faithful.

m Neighborhood regression: find Markov boundary (MB) of .
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Markov blanket

The grow-shrink algorithm (Margaritis and Thrun 1999)

Find MB of i € V:

Zhou, Q

O N a RN

S+ o.
while thereisj € V_;suchthatj /i |S do

S+ Su{j}. > Growing phase
end while
while thereis j € S such that j L i| S\ {j} do

S« S\{j}. > Shrinking phase
end while
MB(i) < S.
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Markov blanket

Notes:
After growing phase, S is a Markov blanket.

Line 6:
Suppose j has been removed from S. Consider k ¢ S U {j}.
By (C4) contraction of Cl axioms,

iLk|{Sj} & iLlj|S = il{kj}|S.

This means that S is still a Markov blanket of /.

Growing phase can be replaced by lasso or /1-regularized
logistic regression.
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