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Overview and assumptions

Structure learning: Let (G,P) be a causal DAG model over
X1,...,Xp. Given data x; = (Xj1,...,Xjp) ~ (G,P), i=1,...,n,
how to estimate the DAG G?

m Constraint-based methods: Conditional independence tests
against X; L Xj | Xs forall i,/,S.

m Score-based methods: Optimizing a scoring function over
graph space.

m Hybrid methods: First use constraint-based method to prune
the search space, and then apply a score-based method to
search for the optimal DAG.

See, e.g. Aragam et al. (2019) Section 1 for recent literature.
Data types:
m Observational data (no intervention)

m Experimental data (intervention available)
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Overview and assumptions

Main assumptions: (1) causal sufficiency; (2) faithfulness.

Definition 1 (Causal sufficiency)

A set of variables V is causally sufficient if every common cause of
any two or more variables in V is also in V.

m For G, this means that every common ancestor of two or more
nodes is observed.

m In SEM X; = fi(PA;,¢;), i € V, causal sufficiency implies ¢;'s
are mutually independent.
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Overview and assumptions

Definition 2 (Faithfulness)

For a graphical model (G, P), we say the distribution PP is faithful
to the graph G if for every triple of disjoint sets A, B,S C V,

Xa L Xg | Xs < S separates (d-separates) A and B.
m Conditional independence (Cl) in P < d-separation in G, i.e.
Ip(A, B|S) < Dg(A, B|S).

m Given G, almost all parameter values in the SEMs will define a
faithful P.

m Structure learning: use Cl relations learned from data to infer
edges in G.
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Equivalence class and CPDAG

Suppose we only have observational data. What can be learned?

Definition 3 (Markov equivalence)

Two DAGs G and G’ on the same set of nodes V are Markov
equivalent if Dg(X, Y|Z) < Dg/(X,Y|Z) for any X,Y € V and
ZCV\{X,Y}.

m Two DAGs are Markov equivalent if and only if they have the
same skeletons and the same v-structures.

m A v-structure is a triplet {/,j, k} C V of the form i — k + j:
i and j are nonadjacent; k is called an uncovered collider.

m Equivalent DAGs form an equivalence class.

m DAGs in the same equivalence class cannot be distinguished
from observational data. Thus we can only learn the
equivalence class of G from observational data.
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Equivalence class and CPDAG

How to represent an equivalence class? CPDAG (Completed
partially DAG).

Two types of edges in a DAG G:

m A directed edge i — j is compelled in G if for every DAG G’
equivalent to G, the edge i — j exists in G'.

m If an edge is not compelled in G, then it is reversible.

Definition 4 (CPDAG or essential graph)

The CPDAG of an equivalence class is the PDAG consisting of a
directed edge for every compelled edge in the equivalence class,
and an undirected edge for every reversible edge in the equivalence
class.
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Equivalence class and CPDAG

Equivalence class [G1] = {G1,G2,G3} and CPDAG G:

G1 G Gs3 g*
o o o o
e’e 999 e?e
6 5 5 6

Red: compelled edges, same orientation in all equivalent DAGs.
Black: reversible edges, either direction occurs in at least one
equivalent DAG.
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Equivalence class and CPDAG

Characterization of CPDAGs (or essential graphs):

Theorem 1 (Andersson et al. (1997))

A graph G is a CPDAG for some DAG if and only if G satisfies the
following conditions:

G is a chain graph.
G, is chordal for every chain component 7 of G.

The configuration a — b — ¢ does not occur as an induced
subgraph of G.

Every arrow a — b in G is strongly protected.
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Equivalence class and CPDAG

m Chordal graph: An undirected graph is chordal if every cycle of
length n > 4 possesses a chord, that is an edge between two
nonconsecutive vertices on the cycle. (Triangulated graph)

m An arrow a — b is strongly protected in G if it occurs in at
least one of the following configurations as an induced
subgraph:

(a):a—— b (b)ra——>b (c)ia——b (d):ca
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Constraint-based learning

Theorem 2 (Spirtes et al. (1993))

Suppose (G, P) satisfies the faithfulness assumption. Then there is
no edge between a pair of nodes X, Y € V if and only if there
exists a subset Z C V' \ {X, Y} such that Zp(X, Y|Z).
Constraint-based methods:

Find the skeleton of G by Cl tests;

Identify v-structures;

Orient other edges.
Output: CPDAG (or PDAG)
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Constraint-based learning

Outline of PC algorithm (Spirtes and Glymour 1991):

1: E < edge set of the complete undirected graph on V.

2: for (i,j) € E do

: Search for a subset Sj; of either N;(E) or N;(E) such that
Xi L Xj| Sjj. If found, E <= E\ {(i,j),(J,7)} and store Sj;.

4. end for

5: |dentify v-structures based on E and {S;j}.

6: Orient as many edges in E as possible by Meek's rules.

Notes:

Line 3: N;(E) = { Xk : (i, k) € E}.

For loop: implemented in ascending order of |S;;| = ¢ for
0=0,...,lmax-

Line 1 to 4: Estimate skeleton sk(G) of G.
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Constraint-based learning

Edge orientation steps:

Zhou, Q

~

Identify v-structures (Line 5) given sk(G):

For all nonadjacent pair (i,j) with a common neighbor k,
orient i —k —jasi— k<« jif k¢ 5.

Because otherwise, X; £ X; | Sjj, contradiction. After this
step, we obtain a PDAG.

Meek's rules (Line 6): In the resulting PDAG, orient as many
undirected edges as possible by repeated application of four
rules (Meek 1995).

Basic idea: If orienting an undirected edge i — j into i — j
would result in additional v-structures or a directed cycle,
then orient it into / < j.
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Constraint-based learning

Meek'’s rules:

R1: N
O
R3: R4:
=

dashed line in R4: undirected or directed with either orientation
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Constraint-based learning

Conditional independence tests (Hp : X L Y | S):
m Gaussian data: partial correlation cor(X, Y | S) = 0.
Sample covariance matrix ¥ from data columns of (X,Y,S).

Q= (w,J) — ¥ 1and ﬁxy|5 = 7&)12/\/@.
Fisher z-transformation,

z(X,Y|S) = % log (

and \/n—|S|—=3-z(X,Y|S) | Ho ~ N(0,1).

m Discrete data: G? or x? test for conditional independence.

G2(X7 Y, 5 — S) = 22 Oxys IOg(OXyS/Exys)y

X,y
G*(X,Y;8) =) GXX,YiS=5)| Ho~ X{xi-1)qvI-1)is):
S

1+ 5xy|s)
1 — pbxvs

E,ys: expected counts under Hp; Oys: observed counts.
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Constraint-based learning

Correctness and consistency:

Let é\,, be the estimated graph by PC from a sample of size n and
C be the CPDAG of G. Suppose that PP is faithful to G.

Cl oracles (Spirtes et al. 1993; Meek 1995): If all Cl tests are
perfect (Cl oracles), then 6,, = C and all found separating sets
|Sij| < max{|PA;[, [ PA;[}.

Large-sample limit: When the sample size n — oo, all Cl tests
involved will be perfect (no type | or Il error) with high
probability. Then the PC algorithm estimates the CPDAG of
G consistently, i.e.

-~

lim P(G, =C) =1.

n—o0
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Score-based learning

Score-based methods:

~

G = argmax S(G, D). (1)
GeESpace
D = (Xj)axp = [X1 | ... | Xp] i.i.d. data from (G, P).

S(G, D) is a scoring function: log-likelihood of D given a
graph G with a penalty term on model complexity (number of
edges or number of free parameters). For example,

~ d
Seic(G, D) = log p(D | 0, G) — - log n, (2)

f: MLE of parameters under G, d = dimension of 6.

Space of graphs: DAGs, equivalence class (CPDAGs) or
topological sorts.
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Score-based learning

BIC score for Gaussian DAGs:

m Liner SEM for data columns X; € R",j € [p]:
Xi= > BiXite, g ~Na(0,071).
iEPAj
m Decomposable:

Seic(G,D) =Y s(X;, PAf) (3)

j=1

~ 1
= Z log p(X; | ﬁj,wjz, PAJ-G) - §|PAJ-G] log n.
Jj

(@7@2) MLEs in Gaussian regression X; ~ PAJ-G.
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Score-based learning

Bayesian Dirichlet score for discrete DAGs (Heckerman et al.
1995):

m Multinomial distribution: 0 = P(X; = k | PA; = j).
Parameter for [X; | PAj] is a g; x r; table:

0;= {9ijk :J € [ai], k € [ri], such that ) _ 0 = 1}'

k=1
m Assume a conjugate prior over ©; given G

©; | PA; ~ Product-Dirichlet((cjik)g;xr;) <
9,'J' = ((9,:,'1, .. ,(9,:,',1.) | PA,' ~ind Dirichlet(a,-jl, - ’ani)‘

Choose ik = a/(r; - q;).
m Assume a prior over G: P(G) x \(6) )\ ¢ (0,1) and
d(G) = Y_"_, rigi number of parameters.
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Score-based learning

Given (G, D), how to compute the BD score: (PA; = PA?)
m Contingency tables: Ny = #{PA; =& X; = k} in D. For
each node, a g; x r; table: N; = {Njj : j € [qi], k € [ri]}.
m Marginal likelihood of Nj; (one row) given PA;:

P(N; | PA) = / P(Nj | ) (0 | PA;)d6;

_ /i) ﬁ F(Nijk + /(qiri))
F(Njo +a/qi) % Tle/(qini))

where Njjo = 3", Nijx (row sum).
m Marginal likelihood of N; (the whole table):
qi
P(N; | PA) = ] P(N; | PA)).
j=1
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Score-based learning

m Marginal likelihood of D (all p tables, one for each node):
P
P(D | G) =] P(N;| PA).
i=1
Posterior distribution

P(G | D) x ( )(DIG)

BT Tafa) o TNt a/(qn)
H” .Hr U.+a/q,>13 ra/(@n)

m BD score is decomposable:

Sep(G,D):=log P(G) +log P(D | G) = s(N;, PA). (4)
i=1
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Score-based learning

Properties of the scoring functions (3) and (4):

m Score-equivalent: For any two Markov equivalent DAGs G;
and G, we have S(Gi, D) = S(Gy, D).

m Consistent (Chickering 2002): A scoring function S(G, e) is
consistent if the following two properties hold for D,, ~;;y IP:
If P e G\ H, then lim,P{S5(G,D,) > S(H,D,)} = 1.
IfPe GNH and d(G) < d(H), i.e. G has fewer parameters,
then lim, P{S(G,D,) > S(H,D,)} = 1.

Haughton (1988) established:
Seic(G, ®) (2) is consistent for exponential family.
Sep(G,Dy) = Seic(G,Dp) + Op(1) = Op(n) + Op(1).
Thus, both (3) and (4) are consistent scoring functions.
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Score-based learning

Consistency of score-based learning:

Theorem 3

Suppose P is faithful to G and D, ~jig P. If S(G,e) is consistent
and score-equivalent, then

nhn;oIP{arggnaxS(G, D,) = C} = 1l

where C = [G]:={G : G ~ G} is the Markov equivalence class of G.
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Score-based learning

Space and search:

m DAG space: greedy hill climbing (Heckerman et al. 1995;
Gamez et al. 2011), stochastic search (e.g. Zhou (2011)).

m Topological sorts: Larranaga et al. (1996); Teyssier and Koller
(2005).
Define score for a sort m € P (space of permutations): Then
search for 7 = argmax,cp S(7, D).

m Equivalence classes: Greedy Equivalence Search (GES)
(Chickering 2002).
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Score-based learning

Search over topological sorts:
m Define score for a sort m € P (space of permutations):

S(m,D):= Greng(x 5(G,D),

where D(7) is the set of DAGs that can be sorted by .

m S(m,D) can be calculated by dynamic programming when
|PA;| < d (small) for all i.

m Then search for T = argmax,cp S(7, D) by optimization over
permutation space.
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Score-based learning

GES (Greedy Equivalence Search):

m Define score for an equivalence class &:
S(&,D):=5(G,D), VG e €.

S(€,D) is well-defined if S(G, D) is score-equivalent.
m Neighbors: & € N(&) iff there is G € £ to which a single

edge addition results in a G’ € £’. Similarly define N~ (&) via
single edge deletion.

m Two phases of greedy search from an initial empty graph:
Phase 1: £ < argmax{S(&,D) : £ € N*(&Y)}.
Phase 2: £11 < argmax{S(&,D) : £ e N~ (EH)}.

m In the large sample limit n — oo, & found by GES with the
BIC or the BD score is the true equivalence class (pr — 1).

Zhou, Q Graphical Models 25/35



Continuous relaxation of score

Continuous relaxation of the scoring function:

m Consider Gaussian DAGs for simplicity. The BIC score
Sgic(G, D) (3) is over a discrete space and hard to optimize.
m B=(Bj)=1[51]-|PBp] and Q = diag(wf).
Maximum regularized likelihood (Fu and Zhou 2013; Aragam
and Zhou 2015):

p
(B,Q) = argmaxz log p(X; | Xﬁj,wf) —Xap(B;). (5)

BEBQ

B: weighted adjacency matrices of DAGs, so that
PA; = supp(;) and supp(B) defines a DAG G.
p(B;) = >, p(|Bjj]): continuous function, e.g. ¢1 or concave.
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Continuous relaxation of score

Compare regularizers: ¢1, concave, and {y.

Black: fg penalty; Teal: /1 penalty; Blue: MCP; Red, dashed:
Capped-/¢; penalty.
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Continuous relaxation of score

Maximizing regularized log-likelihood (5)

m Apply continuous optimization, such as block-wise coordinate
descent, subject to acyclicity constraint (supp(B) defines a
DAG), e.g. Fu and Zhou (2013); Aragam and Zhou (2015).

m Considering maximizing over topological sorts:

S(m,D):= Bergax Zlogp(X | XBj,w J)—)\np(ﬁj).

B(7): weighted adjacency matrices compatible with 7.
Computed via p regularized regression problems (lasso or
MCP) (Ye et al. 2021).

Reformulation of acyclicity constraint (Zheng et al. 2018):
B € B if and only if h(B) = 0, where h(-) is differentiable.
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Learning with experimental data

Score-based learning with experimental data:

m If X; is under intervention, i.e. do(X; = x*): delete edges
X — X; for all k € PA;.

m Let O; be the row indices of the data matrix D for which
node X; is not under intervention (i.e. observational). Replace
p(Xi | PA?) by p(Xo,i | PAo;i)-

Gaussian data: log-likelihood in (3) and (5) replaced by

P
(B, ;D) = logp(Xo, | Xo,Bjw}). (6)
j=1
Multinomial data: Replace Ny by

NUk(O,) = #{FOWS € O;: PA; :_j&X, = k}
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Learning with experimental data

Identifiability of causal DAGs:

Assumptions:

(A1) The true parameter ©* is faithful to G.

(A2) The parameter for [X; | PA;] is identifiable.

(A3) Each node X is under intervention for n; > \/n data points.

Theorem 4 (Gu et al. (2019))

Assume (A1), (A2) and (A3). Denote by ¢(©; D,) the
log-likelihood of the data D,,. For any © # ©F,

lim P{¢(©*;D,) > ¢(©;D,)} =1.

n—o0

Gaussian data, ¢(©;D,) = (6).
Discrete data, £(©;D,) = >7_; >~ \ Nik(O;) log Ok
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