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Overview and assumptions

Structure learning: Let (G,P) be a causal DAG model over
X1, . . . ,Xp. Given data xi = (xi1, . . . , xip) ∼ (G,P), i = 1, . . . , n,
how to estimate the DAG G?

Constraint-based methods: Conditional independence tests
against Xi ⊥ Xj | XS for all i , j ,S .

Score-based methods: Optimizing a scoring function over
graph space.

Hybrid methods: First use constraint-based method to prune
the search space, and then apply a score-based method to
search for the optimal DAG.

See, e.g. Aragam et al. (2019) Section 1 for recent literature.

Data types:

Observational data (no intervention)

Experimental data (intervention available)
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Overview and assumptions

Main assumptions: (1) causal sufficiency; (2) faithfulness.

Definition 1 (Causal sufficiency)

A set of variables V is causally sufficient if every common cause of
any two or more variables in V is also in V .

For G, this means that every common ancestor of two or more
nodes is observed.

In SEM Xi = fi (PAi , εi ), i ∈ V , causal sufficiency implies εi ’s
are mutually independent.
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Overview and assumptions

Definition 2 (Faithfulness)

For a graphical model (G,P), we say the distribution P is faithful
to the graph G if for every triple of disjoint sets A,B,S ⊂ V ,

XA ⊥ XB | XS ⇔ S separates (d-separates) A and B.

Conditional independence (CI) in P ⇔ d-separation in G, i.e.

IP(A,B|S)⇔ DG(A,B|S).

Given G, almost all parameter values in the SEMs will define a
faithful P.
Structure learning: use CI relations learned from data to infer
edges in G.
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Equivalence class and CPDAG

Suppose we only have observational data. What can be learned?

Definition 3 (Markov equivalence)

Two DAGs G and G′ on the same set of nodes V are Markov
equivalent if DG(X ,Y |Z )⇔ DG′(X ,Y |Z ) for any X ,Y ∈ V and
Z ⊆ V \ {X ,Y }.

Two DAGs are Markov equivalent if and only if they have the
same skeletons and the same v -structures.

A v -structure is a triplet {i , j , k} ⊆ V of the form i → k ← j :
i and j are nonadjacent; k is called an uncovered collider.

Equivalent DAGs form an equivalence class.

DAGs in the same equivalence class cannot be distinguished
from observational data. Thus we can only learn the
equivalence class of G from observational data.
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Equivalence class and CPDAG

How to represent an equivalence class? CPDAG (Completed
partially DAG).

Two types of edges in a DAG G:
A directed edge i → j is compelled in G if for every DAG G′
equivalent to G, the edge i → j exists in G′.
If an edge is not compelled in G, then it is reversible.

Definition 4 (CPDAG or essential graph)

The CPDAG of an equivalence class is the PDAG consisting of a
directed edge for every compelled edge in the equivalence class,
and an undirected edge for every reversible edge in the equivalence
class.
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Equivalence class and CPDAG

Equivalence class [G1] = {G1,G2,G3} and CPDAG G:

G1
1

2 3

4

5

G2
1

2 3

4

5

G3
1

2 3

4

5

G∗
1

2 3

4

5

Red: compelled edges, same orientation in all equivalent DAGs.
Black: reversible edges, either direction occurs in at least one
equivalent DAG.
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Equivalence class and CPDAG

Characterization of CPDAGs (or essential graphs):

Theorem 1 (Andersson et al. (1997))

A graph G is a CPDAG for some DAG if and only if G satisfies the
following conditions:

1 G is a chain graph.

2 Gτ is chordal for every chain component τ of G.
3 The configuration a→ b − c does not occur as an induced

subgraph of G.
4 Every arrow a→ b in G is strongly protected.
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Equivalence class and CPDAG

Chordal graph: An undirected graph is chordal if every cycle of
length n ≥ 4 possesses a chord, that is an edge between two
nonconsecutive vertices on the cycle. (Triangulated graph)

An arrow a→ b is strongly protected in G if it occurs in at
least one of the following configurations as an induced
subgraph:
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Constraint-based learning

Theorem 2 (Spirtes et al. (1993))

Suppose (G,P) satisfies the faithfulness assumption. Then there is
no edge between a pair of nodes X ,Y ∈ V if and only if there
exists a subset Z ⊆ V \ {X ,Y } such that IP(X ,Y |Z ).

Constraint-based methods:

1 Find the skeleton of G by CI tests;

2 Identify v -structures;

3 Orient other edges.

Output: CPDAG (or PDAG)
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Constraint-based learning

Outline of PC algorithm (Spirtes and Glymour 1991):

1: E ← edge set of the complete undirected graph on V .
2: for (i , j) ∈ E do
3: Search for a subset Sij of either Ni (E ) or Nj(E ) such that

Xi ⊥ Xj | Sij . If found, E ← E \ {(i , j), (j , i)} and store Sij .

4: end for
5: Identify v -structures based on E and {Sij}.
6: Orient as many edges in E as possible by Meek’s rules.

Notes:

1 Line 3: Ni (E ) = {Xk : (i , k) ∈ E}.
2 For loop: implemented in ascending order of |Sij | = ℓ for

ℓ = 0, . . . , ℓmax.

3 Line 1 to 4: Estimate skeleton sk(Ĝ) of G.
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Constraint-based learning

Edge orientation steps:

1 Identify v -structures (Line 5) given sk(Ĝ):
For all nonadjacent pair (i , j) with a common neighbor k ,
orient i − k − j as i → k ← j if k /∈ Sij .
Because otherwise, Xi ̸⊥ Xj | Sij , contradiction. After this
step, we obtain a PDAG.

2 Meek’s rules (Line 6): In the resulting PDAG, orient as many
undirected edges as possible by repeated application of four
rules (Meek 1995).
Basic idea: If orienting an undirected edge i − j into i → j
would result in additional v -structures or a directed cycle,
then orient it into i ← j .
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Constraint-based learning

Meek’s rules:

R1: ⇒ R2: ⇒

R3:
⇒

R4:
⇒

dashed line in R4: undirected or directed with either orientation
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Constraint-based learning

Conditional independence tests (H0 : X ⊥ Y | S):
Gaussian data: partial correlation cor(X ,Y | S) = 0.

1 Sample covariance matrix Σ̂ from data columns of (X ,Y ,S).

2 Ω̂ = (ωij)← Σ̂−1 and ρ̂XY |S = −ω12/
√
ω11ω22.

3 Fisher z-transformation,

z(X ,Y |S) = 1

2
log

(
1 + ρ̂XY |S

1− ρ̂XY |S

)
and

√
n − |S | − 3 · z(X ,Y |S) | H0 ∼ N (0, 1).

Discrete data: G 2 or χ2 test for conditional independence.

G 2(X ,Y ;S = s) = 2
∑
x ,y

Oxys log(Oxys/Exys),

G 2(X ,Y ;S) =
∑
s

G 2(X ,Y ;S = s) | H0 ∼ χ2
(|X |−1)(|Y |−1)|S |,

Exys : expected counts under H0; Oxys : observed counts.
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Constraint-based learning

Correctness and consistency:

Let Ĝn be the estimated graph by PC from a sample of size n and
C be the CPDAG of G. Suppose that P is faithful to G.

1 CI oracles (Spirtes et al. 1993; Meek 1995): If all CI tests are
perfect (CI oracles), then Ĝn = C and all found separating sets
|Sij | ≤ max{|PAi |, |PAj |}.

2 Large-sample limit: When the sample size n→∞, all CI tests
involved will be perfect (no type I or II error) with high
probability. Then the PC algorithm estimates the CPDAG of
G consistently, i.e.

lim
n→∞

P(Ĝn = C) = 1.
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Score-based learning

Score-based methods:

Ĝ = argmax
G∈Space

S(G ,D). (1)

1 D = (xij)n×p = [X1 | . . . | Xp] i.i.d. data from (G,P).
2 S(G ,D) is a scoring function: log-likelihood of D given a

graph G with a penalty term on model complexity (number of
edges or number of free parameters). For example,

SBIC(G ,D) = log p(D | θ̂,G )− d

2
log n, (2)

θ̂: MLE of parameters under G , d = dimension of θ.

3 Space of graphs: DAGs, equivalence class (CPDAGs) or
topological sorts.
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Score-based learning

BIC score for Gaussian DAGs:

Liner SEM for data columns Xj ∈ Rn, j ∈ [p]:

Xj =
∑
i∈PAj

βijXi + εj , εj ∼ Nn(0, ω
2
j In).

Decomposable:

SBIC(G ,D) =

p∑
j=1

s(Xj ,PA
G
j ) (3)

=
∑
j

log p(Xj | β̂j , ω̂2
j ,PA

G
j )−

1

2
|PAG

j | log n.

(β̂j , ω̂
2
j ): MLEs in Gaussian regression Xj ∼ PAG

j .
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Score-based learning

Bayesian Dirichlet score for discrete DAGs (Heckerman et al.
1995):

Multinomial distribution: θijk = P(Xi = k | PAi = j).
Parameter for [Xi | PAi ] is a qi × ri table:

Θi =

{
θijk : j ∈ [qi ], k ∈ [ri ], such that

ri∑
k=1

θijk = 1

}
.

Assume a conjugate prior over Θi given G

Θi | PAi ∼ Product-Dirichlet((αijk)qi×ri )⇔
θij = (θij1, . . . , θijri ) | PAi ∼ind Dirichlet(αij1, . . . , αijri ).

Choose αijk = α/(ri · qi ).
Assume a prior over G : P(G ) ∝ λd(G), λ ∈ (0, 1) and
d(G ) =

∑p
i=1 riqi number of parameters.
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Score-based learning

Given (G ,D), how to compute the BD score: (PAi ≡ PAG
i )

Contingency tables: Nijk = #{PAi = j &Xi = k} in D. For
each node, a qi × ri table: Ni = {Nijk : j ∈ [qi ], k ∈ [ri ]}.
Marginal likelihood of Nij (one row) given PAi :

P(Nij | PAi ) =

∫
P(Nij | θij)π(θij | PAi )dθij

=
Γ(α/qi )

Γ(Nij• + α/qi )

ri∏
k=1

Γ(Nijk + α/(qi ri ))

Γ(α/(qi ri ))
,

where Nij• =
∑

k Nijk (row sum).

Marginal likelihood of Ni (the whole table):

P(Ni | PAi ) =

qi∏
j=1

P(Nij | PAi ).
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Score-based learning

Marginal likelihood of D (all p tables, one for each node):

P(D | G ) =

p∏
i=1

P(Ni | PAi ).

Posterior distribution

P(G | D) ∝ P(G )P(D | G )

=

p∏
i=1

λqi ri

qi∏
j=1

Γ(α/qi )

Γ(Nij• + α/qi )

ri∏
k=1

Γ(Nijk + α/(qi ri ))

Γ(α/(qi ri ))
.

BD score is decomposable:

SBD(G ,D) := logP(G ) + logP(D | G ) =

p∑
i=1

s(Ni ,PAi ). (4)
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Score-based learning

Properties of the scoring functions (3) and (4):

Score-equivalent: For any two Markov equivalent DAGs G1

and G2, we have S(G1,D) = S(G2,D).

Consistent (Chickering 2002): A scoring function S(G , •) is
consistent if the following two properties hold for Dn ∼iid P:

1 If P ∈ G \ H, then limn P{S(G ,Dn) > S(H,Dn)} = 1.
2 If P ∈ G ∩ H and d(G ) < d(H), i.e. G has fewer parameters,

then limn P{S(G ,Dn) > S(H,Dn)} = 1.

Haughton (1988) established:

1 SBIC(G , •) (2) is consistent for exponential family.

2 SBD(G ,Dn) = SBIC(G ,Dn) + Op(1) = Op(n) + Op(1).

Thus, both (3) and (4) are consistent scoring functions.
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Score-based learning

Consistency of score-based learning:

Theorem 3

Suppose P is faithful to G and Dn ∼iid P. If S(G , •) is consistent
and score-equivalent, then

lim
n→∞

P
{
argmax

G
S(G ,Dn) = C

}
= 1,

where C = [G] :={G : G ≃ G} is the Markov equivalence class of G.

Zhou, Q Graphical Models 22/35



Score-based learning

Space and search:

DAG space: greedy hill climbing (Heckerman et al. 1995;
Gámez et al. 2011), stochastic search (e.g. Zhou (2011)).

Topological sorts: Larranaga et al. (1996); Teyssier and Koller
(2005).
Define score for a sort π ∈ P (space of permutations): Then
search for π̂ = argmaxπ∈P S(π,D).

Equivalence classes: Greedy Equivalence Search (GES)
(Chickering 2002).
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Score-based learning

Search over topological sorts:

Define score for a sort π ∈ P (space of permutations):

S(π,D) := max
G∈D(π)

S(G ,D),

where D(π) is the set of DAGs that can be sorted by π.

S(π,D) can be calculated by dynamic programming when
|PAi | ≤ d (small) for all i .

Then search for π̂ = argmaxπ∈P S(π,D) by optimization over
permutation space.
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Score-based learning

GES (Greedy Equivalence Search):

Define score for an equivalence class E :

S(E ,D) :=S(G ,D), ∀G ∈ E .

S(E ,D) is well-defined if S(G ,D) is score-equivalent.

Neighbors: E ′ ∈ N+(E) iff there is G ∈ E to which a single
edge addition results in a G ′ ∈ E ′. Similarly define N−(E) via
single edge deletion.

Two phases of greedy search from an initial empty graph:
Phase 1: E t+1 ← argmax{S(E ,D) : E ∈ N+(E t)}.
Phase 2: E t+1 ← argmax{S(E ,D) : E ∈ N−(E t)}.
In the large sample limit n→∞, Ê found by GES with the
BIC or the BD score is the true equivalence class (pr → 1).
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Continuous relaxation of score

Continuous relaxation of the scoring function:

Consider Gaussian DAGs for simplicity. The BIC score
SBIC (G ,D) (3) is over a discrete space and hard to optimize.

B = (βij) = [β1 | · · · | βp] and Ω = diag(ω2
j ).

Maximum regularized likelihood (Fu and Zhou 2013; Aragam
and Zhou 2015):

(B̂, Ω̂) = argmax
B∈B,Ω

p∑
j=1

log p(Xj | Xβj , ω
2
j )− λnρ(βj). (5)

1 B: weighted adjacency matrices of DAGs, so that
PAj = supp(βj) and supp(B) defines a DAG G .

2 ρ(βj) =
∑

i ρ(|βij |): continuous function, e.g. ℓ1 or concave.
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Continuous relaxation of score

Compare regularizers: ℓ1, concave, and ℓ0.

Black: ℓ0 penalty; Teal: ℓ1 penalty; Blue: MCP; Red, dashed:
Capped-ℓ1 penalty.
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Continuous relaxation of score

Maximizing regularized log-likelihood (5)

Apply continuous optimization, such as block-wise coordinate
descent, subject to acyclicity constraint (supp(B) defines a
DAG), e.g. Fu and Zhou (2013); Aragam and Zhou (2015).

Considering maximizing over topological sorts:

S(π,D) := max
B∈B(π),Ω

p∑
j=1

log p(Xj | Xβj , ω
2
j )− λnρ(βj).

B(π): weighted adjacency matrices compatible with π.
Computed via p regularized regression problems (lasso or
MCP) (Ye et al. 2021).

Reformulation of acyclicity constraint (Zheng et al. 2018):
B ∈ B if and only if h(B) = 0, where h(·) is differentiable.
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Learning with experimental data

Score-based learning with experimental data:

If Xi is under intervention, i.e. do(Xi = x∗): delete edges
Xk → Xi for all k ∈ PAi .

Let Oi be the row indices of the data matrix D for which
node Xi is not under intervention (i.e. observational). Replace
p(Xi | PAi ) by p(XOi i | PAOi i ).

1 Gaussian data: log-likelihood in (3) and (5) replaced by

ℓ(B,Ω;D) =

p∑
j=1

log p(XOj j | XOjβj , ω
2
j ). (6)

2 Multinomial data: Replace Nijk by

Nijk(Oi ) = #{rows ∈ Oi : PAi = j &Xi = k}.
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Learning with experimental data

Identifiability of causal DAGs:

Assumptions:

(A1) The true parameter Θ∗ is faithful to G.
(A2) The parameter for [Xj | PAj ] is identifiable.

(A3) Each node Xj is under intervention for nj ≫
√
n data points.

Theorem 4 (Gu et al. (2019))

Assume (A1), (A2) and (A3). Denote by ℓ(Θ;Dn) the
log-likelihood of the data Dn. For any Θ ̸= Θ∗,

lim
n→∞

P{ℓ(Θ∗;Dn) > ℓ(Θ;Dn)} = 1.

1 Gaussian data, ℓ(Θ;Dn) = (6).

2 Discrete data, ℓ(Θ;Dn) =
∑p

i=1

∑
j ,k Nijk(Oi ) log θijk .
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