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Abstract

We introduce a recently developed score-based framework for structure learning of
directed acyclic graphs (DAGs) on high-dimensional data. Compared to undirected
graphs—which are well understood and for which there are algorithms that scale to
millions of nodes—the situation for directed graphs is far less advanced, with meth-
ods still struggling to handle datasets with thousands of variables on commodity
hardware. To address this, we developed a novel framework for DAG learning that
simultaneously provides high-dimensional statistical guarantees, scalable computa-
tion to tens of thousands of nodes, and user-friendly software, in addition to being
able to learn causal networks in the presence of experimental data. Furthermore,
this framework avoids commonly used but uncheckable assumptions found in the
literature such as faithfulness and irrepresentability, giving a sense of what happens
when score-based methods are naïvely applied to high-dimensional datasets. In par-
ticular, our results yield—for the first time—finite-sample guarantees for structure
learning of Gaussian DAGs in high-dimensions via score-based estimation.

1 Introduction

Despite the popularity of high-dimensional graphical models, there is a dearth of fast algorithms and
guarantees for DAG learning in high-dimensions. Compared to their simpler undirected counterparts,
DAGs present new statistical and computational challenges. These challenges include:

• Nonconvexity. The acyclicity constraint imposes a combinatorial, nonconvex constraint on
the learning problem.

• Nonsmoothness. The acyclicity constraint also imposes a nonsmooth constraint, and this is
compounded by the use of nonsmooth regularizers in high-dimensions.

• Nonidentifiability. Bayesian network models are not unique, and in general each permutation
of the variables results in a different, minimal Bayesian network.

• Nonpolynomial complexity. Unlike learning undirected graphs, DAG learning is NP-hard [6].
Furthermore, reduction to neighbourhood regression involves solving a superexponential
number of regression problems, compared to linear for undirected graphs.

These challenges are exacerbated in pursuing score-based learning [9], even though it is well-known
to outperform other strategies [1] such as constraint-based learning [10].

In this work, we discuss our recent efforts towards understanding the statistical properties of score-
based learning on high-dimensional data with p� n. Specifically, we discuss the following topics:

• Theory. Our recent work [2] provides the first ever structure learning guarantees for score-
based learning in high-dimensions, and leverages a novel generalized neighbourhood regres-
sion framework that is of independent interest.

• Computation. Our recent efforts towards designing scalable approximate algorithms for
learning score-based estimators from data [1, 8]. These algorithms are based on an efficient
block coordinate descent scheme that scales to tens of thousands of variables.
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• Causal inference. Given experimental data with interventions, our framework can learn
causal networks [7, 8], which allow for an intuitive, causal interpretation of DAG models.

• Software. Finally, we recently released a software library sparsebn [3], which gives end
users push-button access to these methods, making it easy for practitioners to leverage our
methodology on real data.

This provides a unified theoretical, computational and algorithmic framework for learning Bayesian
networks from high-dimensional data. Recent work has covered some special cases [14, 11], however,
these works fail to address the most fundamental problem of structure learning and do not propose
tractable algorithms. To the best of our knowledge, this is the only such framework for score-based
learning that simultaneously covers datasets with p� n and p in the tens of thousands.

2 Overview

Let X = (X1, . . . , Xp). Our approach is based on the well-known structural equation model (SEM)
interpretation of DAG models. In this approach, we start by directly modeling each conditional
probability distribution P(Xj | pa(Xj); θj) via a generalized linear model. This yields a well-defined
likelihood, which will be employed in the score function defined below.

Assume that the graph is parametrized by a p× p weighted adjacency matrix B = (βkj)
p
k,j=1 and

let Dp denote the space of p× p weighted adjacency matrices that correspond to acyclic graphs. In
score-based learning, one defines a score function Q and attempts to solve the following program:

B̂ ∈ argmin
B∈Dp

Q(B). (1)

We define Q(B) = `(B) + ρλ(B), where ` is a loss function (e.g. negative log-likelihood or least
squares) and ρλ is a regularizer such as the `1 norm or the group `2 norm. The present work covers
Gaussian [1, 2] and discrete [8] models, although extensions to other probability models is natural.

2.1 Theory

The program (1) is a nonconvex, nonsmooth program that is very difficult to study. Moreover, due
to the nonidentifiability of DAG models [§2.1, 2], even defining a proper notion of consistency is
nontrivial. Owing to these challenges, until recently very little was known about the statistical and
computational properties of these models on finite-samples, even for simple Gaussian models. Chick-
ering [5] provided an asymptotic analysis of score-based learning under the restrictive faithfulness
assumption, however, this analysis has not been extended to the high-dimensional setting. This should
be contrasted with undirected graphical models, for which there has been a flurry of work and positive
results, starting with [12].

Our work [2] provides the first ever high-dimensional guarantees for B̂ under least-squares loss,
including the following:

• Finite-sample structure learning guarantees;
• `2 rates of convergence for parameter estimation;
• Oracle inequalities;
• Upper bounds on the sparsity of B̂.

These results do not assume faithfulness, and by leveraging nonconvex regularizers such as the MCP,
we are able to avoid restrictive incoherence and irrepresentability assumptions on the data matrix. In
proving these results, we have developed a novel neighbourhood regression analysis that provides
uniform, finite-sample guarantees over a family of penalized least squares estimators whose size
grows as O(p!). The key step is a monotonicity argument that reduces this superexponential class to
a more tractable polynomial class of size O(poly(p)) under a sparsity assumption. In addition, these
results can be applied to learning causal DAGs and conditional independence relations.

2.2 Computation

In addition to being difficult to analyze theoretically, the estimator B̂ is challenging to compute.
Exact algorithms exist for small problems with p in the hundreds [13], however, our main interest is
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Figure 1: (A) Timing comparison (in seconds). (solid black line) S = sparsebn method, (dashed
blue line) P = PC algorithm, (dotted green line) M = MMHC algorithm. (B) Improvements when
adding more interventions per node to four types of simulated networks (scale-free, solid green line;
small-world, dashed red line; polytree, dashed blue line; bipartite graph, dashed black line). (C)
Improvements when increasing the number of nodes under intervention.

in problems where p could very well be in the tens of thousands (e.g. genomics and medicine). In
this regime, exact algorithms are infeasible. In order to scale to large-scale problems, we propose an
approximate algorithm based on block coordinate descent:

1. Repeat outer loop until stopping criterion met:
2. Outer loop. For each pair (j, k), j 6= k:
(a) Minimize (1) with respect to (βkj , βjk), holding all other parameters fixed;
(b) If the edge k → j (resp. j → k) induces a cycle in the graph, set βkj ← 0 (resp. βjk ← 0) and

then update βjk (resp. βkj);
(c) Repeat inner loop until convergence:

3. Inner loop. Fix the edge set E from the outer loop and minimize (1) by cycling through the
edge weights βkj for (k, j) ∈ E.

By avoiding traditional greedy approaches, this algorithm is extremely efficient on high-dimensional
datasets for both continuous and discrete data [1, 8], and outperforms existing methods such as greedy
search (GES), max-min hill climbing (MMHC), and the PC algorithm (Figure 1(A)).

2.3 Causal inference

The injection of causal information has increasingly been acknowledged as a key ingredient in modern
machine learning applications [4]. DAGs are a popular representation of causal knowledge, and can be
learned from experimental interventions. To see how this can be accomplished, letM⊂ {1, . . . , p}
be the set of variables under intervention, so the joint probability decomposes as

P(X1, . . . , Xp) =
∏
i/∈M

P(Xi | pa(Xi))
∏
i∈M

P(Xi | •), (2)

where P(Xi | •) is the marginal distribution of Xi from which experimental samples are drawn. Thus,
experimental data sets generated from the true DAG G can be considered as data sets generated
from a DAG G′, where G′ is obtained by removing all directed edges in G pointing to the variables
under intervention. By leveraging the decomposition (2) in the likelihood, we are able to incorporate
experimental data (even when mixed with observational data) into the learning step. Figures 1(B-C)
illustrate the improvements when learning causal relationships under interventional data.

2.4 Software

Finally, we have developed the open-source sparsebn library for learning Bayesian networks [3].1
This is an R package that implements the methods discussed in the previous sections, with functions
for learning continuous and discrete networks in the presence of mixed observational and experimental
data. This allows practitioners to accurately learn large causal networks such as genetic networks,
which have important applications in understanding the genetic basis of disease.

1CRAN: https://cran.r-project.org/package=sparsebn, Source code: https://github.com/
itsrainingdata/sparsebn.
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3 Discussion

We have proposed a novel framework for learning DAGs in high-dimensions, which has important
applications in genomics, medicine, and computational biology. Our results have implications for
learning causal relationships in machine learning systems, as well as providing a powerful theoretical
framework for analyzing graphical models. One of the most useful contributions is a framework for
non-Gaussian models via generalized linear models, which is an interesting direction for future work.
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