A Supplemental Note on the paper "Modeling within-motif dependence for TFBS predictions" by Zhou and Liu

Qing Zhou

In this note, we give the details for calculating the BF in equation (5) of Zhou and Liu (2004). Since correlated pairs are non-overlapping, it suffices to illustrate the calculation by considering only two positions of a motif. Suppose we observe di-nucleotides $\mathbf{X}=$ $\left\{X_{n 1} X_{n 2}\right\}_{n=1}^{N}$. Let $\mathbf{X}_{k}=\left\{X_{n k}\right\}_{n=1}^{N}$ for $k=1,2$. Denote the marginal counts of \mathbf{X}_{k} by $N_{k}=\left[N_{k}(A), \cdots, N_{k}(T)\right]$ and the joint counts of X by $N_{12}=\left[N_{12}(A, A), \cdots, N_{12}(T, T)\right]$. Let H_{0} denote the hypothesis that the two positions are independent, and let H_{1} denote that they are correlated. Then the Bayes factor $B F\left(H_{1} ; H_{0}\right)$ is defined as

$$
\begin{equation*}
B F\left(H_{1} ; H_{0}\right)=\frac{P\left(\mathbf{X} \mid H_{1}\right)}{P\left(\mathbf{X} \mid H_{0}\right)} \tag{1}
\end{equation*}
$$

where $P\left(\mathbf{X} \mid H_{0}\right)=P\left(\mathbf{X}_{1} \mid H_{0}\right) P\left(\mathbf{X}_{2} \mid H_{0}\right)$ by the independence assumption. Then one can calculate

$$
\begin{align*}
P\left(\mathbf{X} \mid H_{1}\right) & =\int_{\Theta_{12}} P\left(\mathbf{X} \mid \Theta_{12}\right) \pi\left(\Theta_{12} \mid H_{1}\right) d \Theta_{12} \tag{2}\\
& =\frac{\Gamma\left(\sum_{i, j} \alpha_{12}(i, j)\right)}{\prod_{i, j} \Gamma\left(\alpha_{12}(i, j)\right)} \cdot \frac{\prod_{i, j} \Gamma\left(N_{12}(i, j)+\alpha_{12}(i, j)\right)}{\Gamma\left(N+\sum_{i, j} \alpha_{12}(i, j)\right)}
\end{align*}
$$

where $\pi\left(\Theta_{12} \mid H_{1}\right)=\operatorname{Dir}\left(\alpha_{12}(A, A), \cdots, \alpha_{12}(T, T)\right)$ is the prior distribution for Θ_{12} under H_{1}. Similarly one can calculate, for $k=1,2$,

$$
\begin{equation*}
P\left(\mathbf{X}_{k} \mid H_{0}\right)=\frac{\Gamma\left(\sum_{j} \alpha_{k}(j)\right)}{\prod_{j} \Gamma\left(\alpha_{k}(j)\right)} \cdot \frac{\prod_{j} \Gamma\left(N_{k}(j)+\alpha_{k}(j)\right)}{\Gamma\left(N+\sum_{j} \alpha_{k}(j)\right)} \tag{3}
\end{equation*}
$$

where α_{k} is the paramter for the prior Dirichlet distributions under H_{0}. We recommend to set $\alpha_{1}(i)=\sum_{j} \alpha_{12}(i, j)$ and $\alpha_{2}(j)=\sum_{i} \alpha_{12}(i, j)$ in the prior distributions. Thus $B F\left(H_{1} ; H_{0}\right)$ in equation (1) can be calculated by plugging in equations (2) and (3).

