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Monte Carlo Simulation for Lasso-Type Problems
by Estimator Augmentation

Qing ZHOU

Regularized linear regression under the �1 penalty, such as the Lasso, has been shown to be effective in variable selection and sparse
modeling. The sampling distribution of an �1-penalized estimator β̂ is hard to determine as the estimator is defined by an optimization
problem that in general can only be solved numerically and many of its components may be exactly zero. Let S be the subgradient of the
�1 norm of the coefficient vector β evaluated at β̂. We find that the joint sampling distribution of β̂ and S, together called an augmented
estimator, is much more tractable and has a closed-form density under a normal error distribution in both low-dimensional (p ≤ n) and
high-dimensional (p > n) settings. Given β and the error variance σ 2, one may employ standard Monte Carlo methods, such as Markov
chain Monte Carlo (MCMC) and importance sampling (IS), to draw samples from the distribution of the augmented estimator and calculate
expectations with respect to the sampling distribution of β̂. We develop a few concrete Monte Carlo algorithms and demonstrate with
numerical examples that our approach may offer huge advantages and great flexibility in studying sampling distributions in �1-penalized
linear regression. We also establish nonasymptotic bounds on the difference between the true sampling distribution of β̂ and its estimator
obtained by plugging in estimated parameters, which justifies the validity of Monte Carlo simulation from an estimated sampling distribution
even when p � n → ∞.

KEY WORDS: Confidence interval; Importance sampling; Lasso; Markov chain Monte Carlo; P-value; Sampling distribution; Sparse
linear model.

1. INTRODUCTION

Consider the linear regression model,

y = Xβ + ε, (1.1)

where y is an n-vector, X an n× p design matrix, β = (βj )1:p

the vector of coefficients, and ε iid random errors with mean
zero and variance σ 2. Recently, �1-penalized estimation meth-
ods (Tibshirani 1996; Chen, Donoho, and Saunders 1999) have
been widely used to find sparse estimates of the coefficient vec-
tor. Given positive weights wj , j = 1, . . . , p, and a tuning pa-
rameter λ > 0, an �1-penalized estimator β̂ = (β̂j )1:p is defined
by minimizing the following penalized loss function,

�(β) = 1

2
‖y − Xβ‖2

2 + nλ

p∑
j=1

wj |βj |. (1.2)

By different ways of choosing wj , the estimator corresponds
to the Lasso (Tibshirani 1996), the adaptive Lasso (Zou 2006),
and the one-step linear local approximation (LLA) estimator
(Zou and Li 2008) among others. We call such an estimator a
Lasso-type estimator.

In many applications of �1-penalized regression, it is desired
to quantify the uncertainty in the estimates. However, except for
very special cases, the sampling distribution of a Lasso-type esti-
mator is complicated and difficult to approximate. Closed-form
approximations to the covariance matrices of the estimators in
Tibshirani (1996), Fan and Li (2001), and Zou (2006) are unsat-
isfactory, as they all give zero variance for a zero component of
the estimators and thus fail to quantify the uncertainty in vari-
able selection. Theoretical results on finite-sample distributions
and confidence sets of some Lasso-type estimators have been
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developed (Pötscher and Schneider 2009, 2010) but only under
orthogonal designs, which clearly limits general applications of
these results. The bootstrap can be used to approximate the sam-
pling distribution of a Lasso-type estimator, in which numerical
optimization is needed to minimize (1.2) for every bootstrap
sample. Although there are efficient algorithms, such as the
Lars (Efron et al. 2004), the homotopy algorithm (Osborne,
Presnell, and Turlach 2000), and coordinate descent (Friedman
et al. 2007; Wu and Lange 2008), to solve this optimization
problem, it is still time-consuming to apply these algorithms
hundreds or even thousands of times in bootstrap sampling. As
pointed out by Knight and Fu (2000) and Chatterjee and Lahiri
(2010), the bootstrap may not be consistent for estimating the
sampling distribution of the Lasso under certain circumstances.
To overcome this difficulty, a modified bootstrap (Chatterjee and
Lahiri 2011) and a perturbation resampling approach (Minnier,
Tian, and Cai 2011) have been proposed, both justified un-
der a fixed-p asymptotic framework. Zhang and Zhang (2014)
have developed methods for constructing confidence intervals
for individual coefficients and their linear combinations in high-
dimensional (p > n) regression with sufficient conditions for
the asymptotic normality of the proposed estimators. There are
several recent articles on significance test and confidence region
construction for sparse high-dimensional linear models (Javan-
mard and Montanari 2013a, 2013b; van de Geer et al. 2013;
Lockhart et al. 2014), all based on asymptotic distributions for
various functions of the Lasso. On the other hand, knowledge
on sampling distributions is also useful for distribution-based
model selection with �1 penalization, as demonstrated by stabil-
ity selection (Meinshausen and Bühlmann 2010) and the Bolasso
(Bach 2008).

A possible alternative to the bootstrap or resampling is to
simulate from a sampling distribution by Monte Carlo methods,
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such as Markov chain Monte Carlo (MCMC). An obvious ob-
stacle to using these methods for a Lasso-type estimator is that
its sampling distribution does not have a closed-form density. In
this article, we study the joint distribution of a Lasso-type esti-
mator β̂ and the subgradient S of ‖β‖1 evaluated at β̂. Interest-
ingly, this joint distribution has a density that can be calculated
explicitly assuming a normal error distribution, regardless of
the relative size between n and p. Thus, one can develop Monte
Carlo algorithms to draw samples from this joint distribution
and estimate various expectations of interest with respect to the
sampling distribution of β̂, which is simply a marginal distribu-
tion. This approach offers great flexibility in studying the sam-
pling distribution of a Lasso-type estimator. For instance, one
may use importance sampling (IS) to accurately estimate a tail
probability (small p-value) with respect to the sampling distribu-
tion under a null hypothesis, which can be orders of magnitude
more efficient than any method directly targeting at the sam-
pling distribution. Another potential advantage of this approach
is that, at each iteration, an MCMC algorithm only evaluates a
closed-form density, which is much faster than minimizing (1.2)
numerically as used in the bootstrap. Furthermore, our method
can be interpreted as an MCMC algorithm targeting at a multi-
variate normal distribution with locally reparameterized moves
and hence is expected to be computationally tractable.

The remaining part of this article is organized as follows.
After a high-level description of the basic idea, Section 2 de-
rives the density of the joint distribution of β̂ and S in the low-
dimensional setting with p ≤ n, and Section 3 develops MCMC
algorithms for this setting. The density in the high-dimensional
setting with p > n is derived in Section 4. In Section 5, we con-
struct applications of the high-dimensional result in p-value cal-
culation for Lasso-type inference by IS. Numerical examples are
provided in Sections 3 and 5 to demonstrate the efficiency of the
Monte Carlo algorithms. Section 6 provides theoretical justifica-
tions for simulation from an estimated sampling distribution of
the Lasso by establishing its consistency as p � n → ∞. Sec-
tion 7 includes generalizations to random designs, a connection
to model selection consistency, and a Bayesian interpretation
of the sampling distribution. The article concludes with a brief
discussion and some remarks. Technical proofs are relegated to
Section 8.

Notations for vectors and matrices are defined here. All vec-
tors are regarded as column vectors. Let A = {j1, . . . , jk} ⊆
{1, . . . , m} and B = {i1, . . . , i�} ⊆ {1, . . . , n} be two index
sets. For vectors v = (vj )1:m and u = (ui)1:n, we define
vA = (vj )j∈A = (vj1 , . . . , vjk ), v−A = (vj )j /∈A, and (vA,uB ) =
(vj1 , . . . , vjk , ui1 , . . . , ui� ). For a matrix M = (Mij )m×n, write
its columns as Mj , j = 1, . . . , n. Then, MB = (Mj )j∈B extracts
the columns in B, the submatrix MAB = (Mij )i∈A,j∈B extracts
the rows in A and the columns in B, and MA• = (Mij )i∈A ex-
tracts the rows in A. Furthermore, MT

B and MT
AB are understood

as (MB)T and (MAB)T, respectively. We denote the row space,
the null space, and the rank of M by row(M), null(M), and
rank(M), respectively. Denote by diag(v) the m×m diagonal
matrix with v as the diagonal elements, and by diag(M,M′) the
block diagonal matrix with M and M′ as the diagonal blocks,
where the submatrices M and M′ may be of different sizes and
may not be square. For a square matrix M, diag(M) extracts the
diagonal elements. Denote by In the n× n identity matrix.

2. ESTIMATOR AUGMENTATION

2.1 The Basic Idea

Let W = diag(w1, . . . , wp). A minimizer β̂ of (1.2) is given
by the Karush-Kuhn-Tucker (KKT) condition

1

n
XTy = 1

n
XTXβ̂ + λWS, (2.1)

where S = (Sj )1:p is the subgradient of the function g(β) =
‖β‖1 evaluated at the solution β̂. Therefore,{

Sj = sgn(β̂j ) if β̂j 
= 0,

Sj ∈ [−1, 1] if β̂j = 0,
(2.2)

for j = 1, . . . , p. Hereafter, we may simply call S the subgra-
dient if the meaning is clear from context. Lemma 1 reviews a
few basic facts about the uniqueness of β̂ and S.

Lemma 1. For any y, X and λ > 0, every minimizer β̂ of
(1.2) gives the same fitted value Xβ̂ and the same subgradient
S. Moreover, if the columns of X are in general position, then β̂

is unique for any y and λ > 0.

Proof. See Lemma 1 and Lemma 3 in Tibshirani (2013) for
proof of the uniqueness of the fitted value Xβ̂ and the uniqueness
of β̂. Since S is a (vector-valued) function of Xβ̂ from the KKT
condition (2.1), it is also unique for fixed y, X and λ. �

We regard β̂ and S together as the solution to Equation (2.1).
Lemma 1 establishes that (β̂,S) is unique for any y assuming the
columns of X are in general position (for a technical definition
see Tibshirani 2013), regardless of the sizes of n and p. We call
the vector (β̂,S) the augmented estimator in an �1-penalized
regression problem. The augmented estimator will play a central
role in our study of the sampling distribution of β̂.

Let U = 1
n

XTε = 1
n

XTy − Cβ, where C = 1
n

XTX is the
Gram matrix. By definition, U ∈ row(X). Rewrite the KKT
condition as

U = Cβ̂ + λWS − Cβ
�= H(β̂,S; β), (2.3)

which shows that U is a function of (β̂,S). On the other hand,
y determines (β̂,S) only through U, which implies that (β̂,S)
is unique for any U as long as it is unique for any y. Therefore,
under the assumptions for the uniqueness of β̂, H is a bijection
between (β̂,S) and U. For a fixed X, the only source of ran-
domness in the linear model (1.1) is the noise vector ε, which
determines the distribution of U. With the bijection between
U and (β̂,S), one may derive the joint distribution of (β̂,S),
which has a closed-form density under a normal error distribu-
tion. Then, we develop Monte Carlo algorithms to sample from
this joint distribution and obtain the sampling distribution of β̂.
This is the key idea of this article, which works for both the low-
dimensional setting (p ≤ n) and the high-dimensional setting
(p > n). Although the basic strategy is the same, the technical
details are slightly more complicated for the high-dimensional
setting. For the sake of understanding, we first focus on the low-
dimensional case in the remaining part of Section 2 and Section
3, and then generalize the results to the high-dimensional setting
in Section 4.

Before going through all the technical details, we take
a glimpse of the utility of this work in a couple concrete
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Figure 1. Demonstration of the Lasso sampler on a dataset with p = 100. (a) Scatterplot of the samples of β̂1 (x-axis) and β̂50 (y-axis); (b)
histogram of the subgradient S50; (c) two sample paths of β̂1 with diverse initial values; (d) a typical autocorrelation function.

examples. Given a design matrix X and a value of λ, our method
gives a closed-form joint density π for the Lasso-type estimator
β̂ and the subgradient S under assumed values of the true pa-
rameters (Theorems 1 and 2). Targeting at this density, we have
developed MCMC algorithms, such as the Lasso sampler in Sec-
tion 3.2, to draw samples from the joint distribution of (β̂,S).
Such MCMC samples allow for approximation of marginal dis-
tributions for a Lasso-type estimator. Figure 1 demonstrates the
results of the Lasso sampler applied on a simulated dataset with
n = 500, p = 100 and a normal error distribution. The scatter-
plot in Figure 1(a) confirms that β̂j indeed may have a positive
probability to be exactly zero in its sampling distribution. Ac-
cordingly, the distribution of the subgradient Sj in Figure 1(b)
has a continuous density on (−1, 1) and two point masses on ±1.
The fast mixing and low autocorrelation shown in the figure are
surprisingly satisfactory for a simple MCMC algorithm in such
a high-dimensional and complicated space (Rp × 2{1,...,p}, see
(2.4)). Exploiting the explicit form of the bijection H, we achieve
the goal of sampling from the joint distribution of (β̂,S) via an
MCMC algorithm essentially targeting at a multivariate normal
distribution (Section 3.5). This approach does not need numer-

ical optimization in any step, which makes it highly efficient
compared to bootstrap or resampling-based methods. Another
huge potential of our method is its ability to estimate tail proba-
bilities, such as small p-values in a significance test (Section 5).
Estimating tail probabilities is challenging for any simulation
method. With a suitable proposal distribution, having an explicit
density makes it possible to accurately estimate tail probabilities
by importance weights. For example, our method can estimate a
tail probability on the order of 10−20, with a coefficient of varia-
tion around 2, by simulating only 5000 samples from a proposal
distribution. This is absolutely impossible when bootstrapping
the Lasso or simulating from the sampling distribution directly.

2.2 The Bijection

In the low-dimensional setting, we assume that rank(X) =
p ≤ n, which guarantees that the columns of X are in general
position.

Before writing down the bijection explicitly, we first examine
the respective spaces for U and (β̂,S). Under the assumption
that rank(X) = p, the row space of X is simply Rp, which is
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the space for U. Let A = supp(β̂)
�={j : β̂j 
= 0} be the active

set of β̂ and I = {1, . . . , p} \ A be the inactive set, that is,
the set of the zero components of β̂. After removing the de-
generacies among its components as given in (2.2), the vector
(β̂,S) can be equivalently represented by the triple (β̂A,SI ,A).
They are equivalent because from (β̂A,SI ,A) one can unam-
biguously recover (β̂,S), by setting β̂I = 0 and SA = sgn(β̂A)
(2.2), and vice versa. It is more convenient and transparent to
work with this equivalent representation. One sees immediately
that (β̂A,SI ,A) lies in

	 = {(bA, sI , A) : A ⊆ {1, . . . , p},bA ∈ (R \ {0})|A|,
sI ∈ [−1, 1]p−|A|}, (2.4)

where I = {1, . . . , p} \ A. Hereafter, we always understand
(bA, sI , A) as the equivalent representation of (b, s) =
((bj )1:p, (sj )1:p) with supp(b) = A and sA = sgn(bA). Clearly,
	 ⊂ Rp × 2{1,...,p}, where 2{1,...,p} is the collection of all subsets
of {1, . . . , p}, and thus (β̂A,SI ,A) lives in the product space
of Rp and a finite discrete space.

Partition β̂ as (β̂A, β̂I ) = (β̂A, 0) and S as (SA,SI ) =
(sgn(β̂A),SI ). Then, the KKT condition (2.3) can be rewrit-
ten,

U = (CA | CI )

(
β̂A
0

)
+ λ(WA | WI )

(
SA
SI

)
− Cβ, (2.5)

= D(A)

(
β̂A
SI

)
+ λWAsgn(β̂A) − Cβ

�= H(β̂A,SI ,A; β),

(2.6)

where D(A) = (CA | λWI ) is a p × p matrix. Permuting the
rows of D(A), one sees that

| det D(A)| = det

(
CAA 0
CIA λWII

)
= λ|I| det(CAA)

∏
j∈I

wj > 0

(2.7)
if CAA > 0. Due to the equivalence between (β̂A,SI ,A) and
(β̂,S), the map H defined here is essentially the same as the one
defined in (2.3).

Lemma 2. If rank(X) = p, then for any β and λ > 0, the
mapping H : 	 → Rp defined in (2.6) is a bijection that maps
	 onto Rp.

Proof. For any U ∈ Rp, there is a unique solution (β̂,S) to
Equation (2.3) if rank(X) = p, and thus, a unique (β̂A,SI ,A) ∈
	 such that H(β̂A,SI ,A; β) = U. For any (β̂A,SI ,A) ∈ 	, H
maps it into Rp. �

It is helpful for understanding the map H to consider its
inverse H−1 and its restriction to A = A, where A is a fixed sub-
set of {1, . . . , p}. For any U ∈ Rp, if H−1(U; β) = (β̂A,SI ,A),
then the unique solution to Equation (2.5) is (β̂A,SI ,A). Given
a fixed A, (β̂A,SI ) lives in the subspace

	A = {(bA, sI ) ∈ Rp : bA ∈ (R \ {0})|A|, sI ∈ [−1, 1]p−|A|}.
(2.8)

Let HA(bA, sI ; β) = H(bA, sI , A; β) for (bA, sI ) ∈ 	A and
UA = HA(	A; β) be the image of 	A under the map HA. Now
imagine we plug different U ∈ Rp into Equation (2.5) and solve
for (β̂A,SI ,A). Then, the set 	A × {A} is the collection of all

possible solutions such that supp(β̂) = A, the set UA is the col-
lection of all U that give these solutions, and HA is a bijection be-
tween the two sets. It is easy to see that	 = ⋃

A 	A × {A}, that
is, {	A × {A}}, for A extending over all subsets of {1, . . . , p},
form a partition of the space 	. The bijective nature of H im-
plies that {UA} also form a partition of Rp, the space of U.
Figure 2 illustrates the bijection H for p = 2 and the space par-
titioning by A. In this case, HA map the four subspaces 	A for
A = ∅, {1}, {2}, {1, 2}, each in a different R2, onto the space of
U which is another R2.

Remark 1. The simple fact that H maps every point in 	
into row(X) = Rp is crucial to the derivation of the sampling
distribution of (β̂A,SI ,A) in the low-dimensional setting. This
means that every (bA, sI , A) ∈ 	 is the solution to Equation
(2.5) for U = u = H(bA, sI , A; β), and therefore one can simply
find the probability density of (β̂A,SI ,A) at (bA, sI , A) by the
density of U at u. This is not the case when p > n (Section 4).

2.3 The Sampling Distribution

Now we can use the bijection H to find the distribution
of (β̂A,SI ,A) from the distribution of U. Let ξk denote k-
dimensional Lebesgue measure.

Theorem 1. Assume that rank(X) = p and let fU be the prob-
ability density of U with respect to ξp. For (bA, sI , A) ∈ 	, the
joint distribution of (β̂A,SI ,A) is given by

P (β̂A ∈ dbA,SI ∈ dsI ,A = A)

= fU(H(bA, sI , A; β))| det D(A)|ξp(dbAdsI )
�=π (bA, sI , A)ξp(dbAdsI ), (2.9)

and the distribution of (β̂A,A) is a marginal distribution given
by

P (β̂A ∈ dbA,A = A)

=
[∫

[−1,1]p−|A|
π (bA, sI , A)ξp−|A|(dsI )

]
ξ|A|(dbA). (2.10)

Proof. Let u = H(bA, sI , A; β) = HA(bA, sI ; β). From (2.6)
and (2.8), one sees that for any fixed A, bj 
= 0 for all j ∈ A and
HA is differentiable. Differentiating u with respect to (bA, sI ),

du = ∂HA

∂(bA, sI )T

(
dbA
dsI

)
= D(A)

(
dbA
dsI

)

and thus ξp(du) = | det D(A)|ξp(dbAdsI ). Since H and HA :
	A → UA are bijections, a change of variable gives

P (β̂A ∈ dbA, SI ∈ dsI ,A = A) = P (U ∈ du)

= fU(H(bA, sI , A; β))| det D(A)|ξp(dbAdsI ).

Integrating (2.9) over sI ∈ [−1, 1]p−|A| gives (2.10). �

Remark 2. Equation (2.9) gives the joint distribution of
(β̂A,SI ,A) and effectively the joint distribution of (β̂,S). The
density π (bA, sI , A) is defined with respect to the product of
ξp and counting measure on 2{1,...,p}. Analogously, the sampling
distribution of β̂ is given by the distribution of (β̂A,A) in (2.10).
To be rigorous, (2.9) is derived by assuming that (bA, sI ) is an
interior point of	A. Note that (bA, sI ) ∈ 	A is not in the interior
if and only if |sj | = 1 for some j ∈ I , and thus the Lebesgue
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Figure 2. The bijection H, its restrictions HA, the four subspaces 	A (shaded areas) and the corresponding partition in the space of U for
p = 2.

measure of the set of these points is zero. Therefore, it will
cause no problem at all to use π as the density for all points
in 	. The joint distribution of (β̂A,SI ,A) has at least two nice
properties which make it much more tractable than the distribu-
tion of β̂. First, the density π does not involve multidimensional
integral and has a closed-form expression that can be calculated
explicitly if fU is given. Second, the continuous components
(β̂A,SI ) always have the same dimension (=p) for any value
of A, while β̂A lives in R|A| whose dimension changes with A.
These two properties are critical to the development of MCMC
to sample from π . See Section 3.1 for more discussion. We ex-
plicitly include the dominating Lebesgue measure to clarify the
dimension of a density.

Remark 3. The distribution of β̂ = (β̂1, . . . , β̂p) in (2.10) is
essentially defined for each A. In many problems, one may be
interested in the marginal distribution of β̂j such as for calcu-
lating p-values and constructing confidence intervals. To obtain
such a marginal distribution, we need to sum over all possible
active sets, which cannot be done analytically. Our strategy is
to draw samples from the joint distribution of (β̂A,SI ,A) by a
Monte Carlo method. Then from the Monte Carlo samples one
can easily approximate any marginal distribution of interest,
such as that of β̂j . This is exactly our motivation for estimator
augmentation, which is in spirit similar to the use of auxiliary
variables in the MCMC literature.

To further help our understanding of the density π , consider
a few conditional and marginal distributions derived from the
joint distribution (2.9). First, the sampling distribution of the
active set A is given by

P (A = A) =
∫
	A

π (bA, sI , A)ξp(dbAdsI )
�=ZA, (2.11)

where 	A is the subspace for (β̂A,SI ) defined in (2.8). In other
words, ZA is the probability of 	A × {A} with respect to the
joint distribution π . Second, the conditional density of (β̂A,SI )
given A = A (with respect to ξp) is

π (bA, sI | A) = 1

ZA
π (bA, sI , A) ∝ fU(H(bA, sI , A; β))

(2.12)
for (bA, sI ) ∈ 	A ⊂ Rp. Usingp = 2 as an illustration, the joint
density π is defined over all four shaded areas in Figure 2, while
a conditional density π (· | A) is defined on each one of them.
To give a concrete probability calculation, for a2 > a1 > 0,

P (β̂1 ∈ [a1, a2], β̂2 = 0) = P (β̂1 ∈ [a1, a2],A = {1})
=
∫ a2

a1

∫ 1

−1
π (b1, s2, {1})ds2db1,

which is an integral over the rectangle [a1, a2] × [−1, 1] in	{1}
(Figure 2). Clearly, this probability can be approximated by
Monte Carlo integration if we have enough samples from π .

Remark 4. We emphasize that the weights wj and the tun-
ing parameter λ are assumed to be fixed in Theorem 1. For the
adaptive Lasso, one may choose wj = |β̃j |−1 based on an ini-
tial estimate β̃j . The distribution (2.9) is valid for the adaptive
Lasso only if we ignore the randomness in β̃j and regard wj as
constants during the repeated sampling procedure.

2.4 Normal Errors

Denote by Nk(μ,�) the k-variate normal distribution with
mean μ and covariance matrix �, and by φk(z; μ,�) its
probability density function. If the error ε ∼ Nn(0, σ 2In) and
rank(X) = p, then U ∼ Np(0, σ

2

n
C). In this case, the joint den-

sity π (2.9) has a closed-form expression. Recall that sA =



1500 Journal of the American Statistical Association, December 2014

sgn(bA) and define

μ(A, sA; β) = [D(A)]−1 (Cβ − λWAsA) , (2.13)

�(A; σ 2) = σ 2

n
[D(A)]−1C[D(A)]−T. (2.14)

Corollary 1. If rank(X) = p and ε ∼ Nn(0, σ 2In), then the
joint density of (β̂A,SI ,A) is

π (bA, sI , A) = φp(z; μ(A, sA; β),�(A; σ 2))1((z, A) ∈ 	),
(2.15)

where z = (bA, sI ) ∈ Rp and 1(·) is an indicator function.

Proof. First note that

H(bA, sI , A; β) = D(A)[z − μ(A, sA; β)]. (2.16)

Under the assumptions, U ∼ Np(0, σ
2

n
C). By Theorem 1,

π (bA, sI , A)

= φp
(
D(A)[z − μ(A, sA; β)]; 0, n−1σ 2C

) | det D(A)|
= φp

(
z; μ(A, sA; β), n−1σ 2[D(A)]−1C[D(A)]−T)

= φp(z; μ(A, sA; β),�(A; σ 2))

for (bA, sI , A) = (z, A) ∈ 	. �

Without the normal error assumption, Corollary 1 is still
a good approximation when n is large and p is fixed, since√
nU

d→Np(0, σ 2C) assuming 1
n

XTX → C > 0 as n → ∞.
Note that both the continuous components z and the active set

A are arguments of the density (2.15). For different A and sA, the
normal density φp has different parameters. Given a particular
A∗ and s∗ ∈ {±1}|A∗|, let I ∗ = {1, . . . , p} \ A∗ and

	A∗,s∗ = {(bA∗, sI ∗ ) ∈ 	A∗ : sgn(bA∗ ) = s∗}. (2.17)

Then	A∗,s∗ × {A∗} is the subset of	 corresponding to the event
{A = A∗, sgn(β̂A∗) = s∗}. For z ∈ 	A∗,s∗ , the density π (z, A∗)
is identical to φp(z; μ(A∗, s∗; β),�(A∗; σ 2)), that is,

π (z, A∗)1(z ∈ 	A∗,s∗ ) = φp(z; μ(A∗, s∗; β),

�(A∗; σ 2))1(z ∈ 	A∗,s∗ ).

Intuitively, this is because H restricted toA = A∗ and sA∗ = s∗ is
simply an affine map [see (2.16)]. Consequently, the probability
of 	A∗,s∗ × {A∗} with respect to π is

P (A = A∗, sgn(β̂A∗ ) = s∗)

=
∫
	A∗ ,s∗

φp(z; μ(A∗, s∗; β),�(A∗; σ 2))ξp(dz), (2.18)

and [β̂A∗ ,SI ∗ | A = A∗, sgn(β̂A∗) = s∗] is the truncated
Np(μ(A∗, s∗; β),�(A∗; σ 2)) on 	A∗,s∗ . For p = 2, if A∗ = {1}
and s∗ = −1, the region	{1},−1 = (−∞, 0) × [−1, 1] is the left
half of the 	{1} in Figure 2 and the density π restricted to this
region is the same as the part of a bivariate normal density on
the same region.

If C = Ip and W = Ip, the Lasso is equivalent to soft-

thresholding the ordinary least-squares estimator β̂
OLS =

(β̂OLS
j )1:p. In this case, (2.13) and (2.14) have simpler forms:

μ(A, sA; β) =
(

βA − λsA
λ−1βI

)
,

�(A; σ 2) = σ 2

n

(
I|A| 0
0 λ−2I|I |

)
.

By (2.18) we find, for example,

P (A = A, sgn(β̂A) = (1, . . . , 1))

=
∏
j∈A

∫ ∞

0
φ

(
bj ;βj − λ,

σ 2

n

)
dbj

·
∏
j∈I

∫ 1

−1
φ

(
sj ;
βj

λ
,
σ 2

λ2n

)
dsj

=
∏
j∈A

P (β̂OLS
j > λ) ·

∏
j∈I
P
(|β̂OLS

j | ≤ λ
)
,

where the last equality is due to that β̂
OLS ∼ Np(β, n−1σ 2Ip).

One sees that our result is consistent with that obtained directly

from soft-thresholding each component of β̂
OLS

by λ.

2.5 Estimation

To apply Theorem 1 in practice, one needs to estimate fU and
β if they are not given. Suppose that fU is estimated by f̂U and
β is estimated by β̌. Then, the corresponding estimate of the
density π is

π̂(bA, sI , A) = f̂U(H(bA, sI , A; β̌))| det D(A)|. (2.19)

Since E(U) = 0 and Var(
√
nU) = σ 2C, estimating fU re-

duces to estimating σ 2 when ε is normally distributed or when
the sample size n is large. A consistent estimator of σ 2 can
be constructed given a consistent estimator of β. For example,
when p < n one may use

σ̂ 2 = ‖y − Xβ̌‖2
2

n− p
, (2.20)

provided that β̌ is consistent for β. If ε does not follow a normal
distribution, one can apply other parametric or nonparametric
methods to estimate fU. Here, we propose a bootstrap-based
approach under the assumption that U is elliptically symmetric.
That is, Ũ = C−1/2U is spherically symmetric: For v1, v2 ∈ Rp,
if ‖v1‖2 = ‖v2‖2 then fŨ(v1) = fŨ(v2), where fŨ is the den-
sity of Ũ. Generate bootstrap samples, ε(i) = (ε(i)

1 , . . . , ε
(i)
n )

for i = 1, . . . , K , by resampling with replacement from ε̂ =
(ε̂1, . . . , ε̂n) = y − Xβ̌, and calculate Ũ(i) = 1

n
C−1/2XTε(i) for

each i. Given 0 = h0 < h1 < · · · < hM < ∞, let Km = |{i :
hm−1 ≤ ‖Ũ(i)‖2 < hm}| for m = 1, . . . ,M . The density of Ũ
is then estimated by

f̂Ũ(v) ∝
M∑
m=1

Km

h
p
m − h

p

m−1

1(hm−1 ≤ ‖v‖2 < hm) (2.21)

for ‖v‖2 ∈ [0, hM ). The density for ‖v‖2 ≥ hM can be esti-
mated by linear extrapolation of log f̂Ũ. Finally, set f̂U(u) =
f̂Ũ(C−1/2u)(det C)−1/2.

In general, estimating fU is difficult when p is large. One may
have to assume some parametric density for U, which reduces
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the problem to the estimation of a few unknown parameters.
Besides normality, one may assume that U follows a multivariate
t distribution, which is motivated from a Bayesian perspective
to be discussed in Section 7.3.

Sampling from π or π̂ can be very useful for statistical
inference based on a Lasso-type estimator. We may directly
draw (β∗,S∗) from π̂ given (β̌, σ̂ ) and use the conditional
distribution [(β∗ − β̌) | β̌, σ̂ ] to construct confidence regions
around β̂. Under some assumptions, the conditional distribu-
tion [(β∗ − β̌) | β̌, σ̂ ] provides a valid approximation to the
true sampling distribution of (β̂ − β). We derive nonasymptotic
error bounds for this approximation in Section 6 after the de-
velopment of our method in the high-dimensional setting. If β

is specified in the null hypothesis in a significance test, then
samples from π can be used to calculate p-values. This aspect
will be explored in Section 5.

3. MCMC ALGORITHMS

In this section, we develop MCMC algorithms to sample
from π given β and fU (or σ 2). Before that, we first introduce a
direct sampling approach which includes the residual bootstrap
method as a special case.

Routine 1 (Direct sampler). Assume the error distribution is
D(0, σ 2In). For t = 1, . . . , L

1. draw ε(t) ∼ D(0, σ 2In) and set y(t) = Xβ + ε(t);

2. find the minimizer β̂
(t)

of (1.2) with y(t) in place of y;
3. if needed, calculate the subgradient vector S(t) =

(nλW)−1XT(y(t) − Xβ̂
(t)

).

This approach directly draws y(t) from its sampling distribu-
tion and requires a numerical optimization algorithm in Step 2
for each sample. Moreover, Step 1 will be complicated if we
cannot draw independent samples from D(0, σ 2In). If ε(t) is
drawn by resampling residuals, then Routine 1 is equivalent to
the bootstrap method of Knight and Fu (2000).

As the density π (bA, sI , A) (2.9) has a closed-form expres-
sion given β and fU, MCMC and IS can be applied to sample
from and calculate expectations with respect to the distribution.
These methods may offer much more flexible and efficient al-
ternatives to the direct sampling approach, although the samples
are either dependent or weighted. In what follows, we propose a
few special designs targeting at different applications to exem-
plify the use of MCMC methods. Examples of IS will be given
in Section 5 under the high-dimensional setting.

3.1 Reversibility

Our goal is to design a reversible Markov chain on the space
	, which is composed of a finite number of subspaces	A, each
having the same dimension p. Therefore, moves with an ordinary
Metropolis-Hastings (MH) ratio are sufficient, which can be
seen as follows. For any (bA, sI , A) ∈ 	, let θ = (θ1, . . . , θp)
with components given by

θj =
{
bj if j ∈ A
sj otherwise,

(3.1)

that is, θA = bA and θ I = sI . Then, our target distribution is
π (θA, θ I , A)ξp(dθ). Suppose that (θ, A) is the current state and

we have a proposal for a new state (θ †, A†). In general, the
proposal may only change some components of θ , say θj for j ∈
B ⊆ {1, . . . , p}, such that θ

†
−B = θ−B . Let q((θ , A), (θ †, A†))

be the density of this proposal with respect to ξ|B| and I † =
{1, . . . , p} \ A†. The MH ratio in terms of probability measures
is

min

{
1,
π (θ †

A† , θ
†
I † , A

†)ξp(dθ †)

π (θA, θ I , A)ξp(dθ )

q((θ †, A†), (θ , A))ξ|B|(dθB )

q((θ, A), (θ †, A†))ξ|B|(dθ
†
B )

}

= min

{
1,
π (θ †

A† , θ
†
I † , A

†)

π (θA, θ I , A)

q((θ †, A†), (θ , A))

q((θ , A), (θ †, A†))
ξp−|B|(dθ

†
−B )

ξp−|B|(dθ−B )

}
.

(3.2)

As θ
†
−B = θ−B , the dominating measures in (3.2) cancel out and

the ratio reduces to a standard MH ratio involving only densities.
Now we see that our strategy of estimator augmentation plays

two roles in MCMC sampling. First, SI plays the role of an aux-
iliary variable: The target distribution π for (β̂A,SI ,A) has a
closed-form density which allows one to design an MCMC al-
gorithm, while the distribution of interest, that for (β̂A,A), is a
marginal distribution of π without a closed-form density. Sec-
ond, SI also plays the role of dimension matching so that the
continuous components (β̂A,SI ) always have the same dimen-
sion in any subspace. This eliminates the need for reversible
jump MCMC (Green 1995). On the contrary, if we were to
sample (β̂A,A) (assuming a closed-form approximation to its
density), moves between two subspaces of different dimensions
would require reversible jumps, which are usually much harder
to design.

3.2 The MH Lasso Sampler

We develop an MH algorithm, called the MH Lasso sampler
(MLS), with coordinate-wise update. That is, to sequentially
update each θj , j = 1, . . . , p, while holding other components
fixed. Suppose the current state is (θ, A). We design four moves
to propose a new state (θ †, A†), which are grouped into two types
according to whetherA† = A or not. In the following proposals,
θ
†
j = b

†
j if j ∈ A† and θ †j = s

†
j otherwise.

Definition 1. Proposals in the MLS for a given j ∈
{1, . . . , p}.

• Parameter-update proposals: (P1) If j ∈ A, draw b
†
j ∼

N (bj , τ 2
j ). (P2) If j /∈ A, draw s

†
j ∼ Unif(−1, 1). Set

A† = A in both (P1) and (P2).
• Model-update proposals: (P3) If j ∈ A, set A† = A \ {j}

and draw s
†
j ∼ Unif(−1, 1). (P4) If j /∈ A, set A† = A ∪

{j} and draw b
†
j ∼ N (0, τ 2

j ).

The two parameter-update proposals, (P1) and (P2), are sym-
metric. They only change the value of θj and leave A† = A so
that det D(A†) = det D(A). From (2.9), one sees that the MH
ratio is simply

min

{
1,
fU(H(θ †

A, θ
†
I , A; β))

fU(H(θA, θ I , A; β))

}
,

which can be computed very efficiently, especially for a normal
error distribution. The proposal (P3) removes a variable from
the active set and (P4) adds a variable to the active set. Both
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propose moves between two subspaces. The two proposals are
the reverse of each other and have a simple one-dimensional
density. To be concrete, the MH ratio for proposal (P3) is

min

{
1,
π (θ †

A† , θ
†
I † , A

†)
π (θA, θ I , A)

· φ(bj ; 0, τ 2
j )

1/2

}
,

and analogously for proposal (P4). One needs to calculate the
ratio between two determinants for these MH ratios,

| det D(A†)|
| det D(A)| = det CA†A†

det CAA

(wjλ)|A|−|A†| (3.3)

by (2.7). As the two sets A andA† differ by only one element, the
ratio on the right-hand side can be calculated efficiently. When
|A| is large, we use the sweep operator to dynamically update
C−1
AA (the inverse of CAA) and obtain the ratio. See Appendix for

further details. In general, however, a model-update proposal is
more time-consuming than a parameter-update proposal.

This computational efficiency consideration motivates the fol-
lowing scheme in the MLS which uses both types of proposals.
Let K be an integer between 1 and p and α = (αj )1:p be a vector
with every αj > 0.

Routine 2 (MLS). Suppose the current state is (θ (t), A(t)).

1. Draw K elements without replacement from {1, . . . , p}
with the probability of drawing j proportional to αj for
each j. Let M (t) be the set of the K elements.

2. For j ∈ M (t), sequentially update each θj and the active
set A by an MH step with a model-update proposal.

3. For j /∈ M (t), sequentially update each θj by an MH step
with a parameter-update proposal.

After the above p MH steps in an iteration, the state is updated
to (θ (t+1), A(t+1)).

The MLS has three input parameters, K, α, and (τ 2
j )1:p. Spec-

ification of these parameters that gives good empirical perfor-
mance will be provided in the numerical examples (Section 3.6).

3.3 The Gibbs Lasso Sampler

Let aj = 1(j ∈ A) and a = (aj )1:p. Conditional densities
π (θj , aj | θ−j , a−j ) can be derived from the joint density π ,
which allows for the development of a Gibbs sampler. How-
ever, as each conditional sampling step involves calculation of
one-dimensional integrals and sampling from truncated distri-
butions, the Gibbs sampler is more time-consuming and less
efficient than the MLS for all examples on which we have tested
these algorithms.

3.4 Conditioning on Active Set

Suppose that we have constructed a Lasso-type estimate β̂
∗

from an observed dataset and the set of selected variables is
A∗, which defines an estimated model. One may want to study
the sampling distribution of the estimator given the estimated
model, that is, [β̂A∗ | A = A∗]. Confidence intervals of penal-
ized estimators have been constructed by approximating this
distribution via local expansion of the �1 norm (Fan and Li 2001;
Zou 2006). Since local approximation may not be accurate for
a finite sample, Monte Carlo sampling from this conditional
distribution may provide more accurate results. However, the

direct sampling approach is not applicable in practice, because
A = A∗ is often a rare event unless p is very small. On the con-
trary, it is very efficient to draw samples by an MH algorithm
from the conditional distribution

π (bA∗ , sI ∗ | A∗) ∝ fU(H(bA∗, sI ∗ , A∗; β)), (3.4)

where I ∗ = {1, . . . , p} \ A∗, according to (2.12). The distribu-
tion of interest, [β̂A∗ | A = A∗], is a marginal distribution of
(3.4). Since evaluation of this density does not involve calcula-
tion of determinants, each MH step is very fast.

Routine 3 (MLS given active set). Given the current state
(b(t)
A∗, s(t)

I ∗ ), sequentially draw b
(t+1)
j for each j ∈ A∗ by an MH

step with proposal (P1) and s(t+1)
j for each j /∈ A∗ with proposal

(P2) in one iteration.

3.5 Reparameterization View

To ease notation, write θ = (θA, θ I ) and HA(θ ) = H(θ, A) =
H(θA, θ I , A; β) for θ defined in (3.1). Suppose that (θ (t), A(t))
are simulated by the MLS (Routine 2) and let u(t) = H(θ (t), A(t)).
Since H is a bijection, u(t) is a Markov chain that leaves fU in-
variant. Therefore, the MLS can be understood as an MH algo-
rithm targeting at fU with moves designed under local reparam-
eterization, θ = H−1

A (u) for u ∈ UA = HA(	A; β) (2.8). The Ja-
cobian of this reparameterization is [D(A)]−1. Under this view,
the MH ratio for a proposal u† = H(θ †, A†) given the current u
is

min

{
1,
fU(u†)
fU(u)

q((θ †, A†), (θ , A))| det D(A)|−1

q((θ , A), (θ †, A†))| det D(A†)|−1

}
,

which of course coincides with (3.2). Moreover, when A = A†

such as in proposals (P1) and (P2), the Jacobian determinants
cancel out as we are using the same reparameterization H−1

A

for both the proposal and the current state. Otherwise, the ratio
of the Jacobian determinants accounts for the use of different
reparameterizations. Clearly, if u(t) ∼ fU then (θ (t), A(t)) ∼ π .

This view provides an insight into the computational effi-
ciency of the MLS. Under normal error assumption, fU is the
density of a multivariate normal distribution, for which a sim-
ple MH algorithm is computationally tractable and can be quite
efficient. We make a comparison with the direct sampler at
a conceptual level. The direct sampler draws U via a linear
transformation of ε ∼ Nn(0, σ 2In), which costs n draws from a
univariate normal distribution followed by a multiplication with
a size p × n matrix. After that, we find (θ , A) = H−1(U) by
numerical minimization due to the lack of a closed-form inverse
of the mapping H. The MLS draws p (<n) univariate proposals
in one iteration, and does not need any numerical procedure to
map u(t) back to the space 	 of (θ, A) since the moves are by
design in that space already. The mapping H from (θ (t), A(t))
to u(t) is simple and can be calculated analytically. This is fun-
damentally different from direct sampling which replies on a
numerical procedure to find the image of each draw of U un-
der the mapping H−1. The relatively time-consuming step in the
MLS is calculating the ratio (3.3) when a model-update proposal
is used, which can be done by at most sweeping a |A| × |A| ma-
trix on a single position (Appendix). Owing to sparsity, |A|
is usually much smaller than p, which greatly speeds up this
step. Since the target distribution in the space of U has a nice
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Table 1. Simulated datasets for MCMC

Dataset A B C D

(n, p, σ 2) (500, 100, 1) (500, 200, 1) (300, 100, 4) (300, 200, 4)
|A∗| 23 22 25 57

unimodal density, the chain u(t) often converges fast and has low
autocorrelation. Consequently, we expect to see efficiency gain
over direct sampling for the same amount of computing time,
which will be confirmed numerically in the next subsection.

As in the following routine, by a special initialization such
that (θ (1), A(1)) ∼ π , the MLS can reach equilibrium in one step,
which totally removes the need for burn-in iterations. This will
make our method suitable for parallel computing. See Section
7.4 for a more detailed discussion. However, to demonstrate the
efficiency of the MLS as an independent method, we did not use
Routine 4 in the numerical results.

Routine 4. Draw (b(1), s(1)) from the direct sampler and let
(θ (1), A(1)) be its equivalent representation. With (θ (1), A(1)) as
the initial state, generate (θ (t), A(t)) for t = 2, . . . , N by an
MCMC algorithm targeting at π .

3.6 Numerical Examples

We demonstrate with numerical examples the effectiveness
of the above MCMC algorithms by comparing against the direct
sampling approach. To this end, we simulated four datasets with
different combinations of n, p, and σ 2 (Table 1). The vector
of true coefficients β0 has 10 nonzero components, β0j = 1
for j = 1, . . . , 5 and β0j = −1 for j = 6, . . . , 10. Each row
of X was generated independently from Np(0,�X), where the
diagonal and the off-diagonal elements of �X are 1 and 0.25,
respectively. Given the design matrix X, the response vector y
was drawn from Nn(Xβ0, σ

2In).
The weights wj (1.2) were set to 1 for all the following

numerical results. The Lars package by Hastie and Efron was
applied to find the solution path for each dataset. The value
of λ was chosen by minimizing the Cp criterion implemented
in the package, which determined the estimated coefficients,
β̂

∗ = (β̂∗
1 , . . . , β̂

∗
p), of a dataset. The number of selected vari-

ables, |A∗|, for each dataset is given in Table 1. We considered
two types of error distributions, the normal distribution and the
elliptically symmetric distribution. Correspondingly, we calcu-
lated σ̂ 2 by (2.20) with β̌ = β̂

∗
or constructed f̂U by the ap-

proach in Section 2.5. For all the results, Step 2 of the direct
sampler (Routine 1) was implemented with the Lars package.

We first examined the performance of the MLS on sampling
from the joint distribution (2.9) given β̂

∗
and σ̂ 2 or f̂U. Letωj =

�(−|β̂∗
j |/ζj ) for j = 1, . . . , p, where ζj is the standard error of

β̂OLS
j and � is the cumulative distribution function of N (0, 1).

We set K = p/5 and αj ∝ ωj + ω0, where ω0 = ∑
j ωj/(5p)

serves as a baseline weight so that each variable has a reasonable
chance to be selected for model-update proposals. See Routine
2 for notations. Under this setting, if the estimate β̂∗

j is close
to zero relative to ζj , it will have a higher chance for model-
update proposals. The τj used in the proposals (Definition 1)
was set to 2ζj . The MLS was applied to each dataset 10 times
independently. Each run consisted ofL = 5, 500 iterations with

the first 500 as the burn-in period. In what follows, the sampler
is abbreviated as MLSn and MLSe under the normal and the
elliptically symmetric error distributions, respectively.

Figure 1(a) is the scatterplot of the samples of β̂1 and β̂50, and
illustrates that the distributions of some β̂j indeed have a point
mass at zero. The histogram of the subgradient S50 is shown in
Figure 1(b) with two point masses on ±1 and otherwise contin-
uous. Mixing of the MLS was fast, as demonstrated with two
chains in Figure 1(c), where the initial values were chosen to be
about 20 standard deviations away from each other. Figure 1(d)
shows the fast decay of the autocorrelation among the samples
of a β̂j , decreasing to below 0.05 in 10 to 15 iterations. The
acceptance rate of the model-update proposals was generally
between 0.2 and 0.4. For the parameter-update proposals, the
acceptance rate was between 0.2 and 0.4 for (P1) and was higher
than 0.6 for (P2), which is an independent proposal.

From the MCMC samples, we estimated the selection prob-
ability Ps,j = P (β̂j 
= 0), the 2.5% and the 97.5% quantiles of
β̂j , and the mean and the standard deviation of the conditional
distribution [β̂j | β̂j 
= 0] for each j. Since theoretical values
are not available, we applied the direct sampling approach to
simulate 5,000 independent samples for each dataset under the
normal error distribution. These independent samples were used
to estimate the above quantities as the ground truth. The MSEs
across 10 independent runs of the MLS were calculated, and re-
ported in Table 2 are the average MSEs over all j for estimating
the above five quantities. One clearly sees that all the estimates
were very accurate. The MSE of the MLSe was greater than,
but on the same order as, that of the MLSn for most estimates,
which is expected due to the loss of efficiency without assuming
a normal error distribution.

We compared the efficiency of the MLS against the direct
sampler (DSn) under the same amount of running time and
under the same normal error distribution. The DSn generated
around 500 samples in the same amount of time for 5,500 iter-
ations of the MLSn. The ratio of the MSE of the DSn to that
of the MLSn was calculated for each estimate (Table 2). For
most estimates, the MLSn seems to be more efficient and may
reduce the MSE by 10% to 60%. The improvement was more
significant for datasets A and B where the sample size n = 500.
For the other two datasets, the MLSn showed a higher MSE in
estimating selection probabilities but was more accurate for all
other estimates. Furthermore, if the error distribution is more
complicated such that one cannot simulate samples indepen-
dently from the distribution, the efficiency of the direct sampler
may be even lower. These results clearly confirm the notion that
the MLS can serve as an efficient alternative to the direct sam-
pling method for simulating from the sampling distribution of a
Lasso-type estimator.

Next, we implemented Routine 3 to sample from the con-
ditional distribution of β̂ given the model selected according
to the Cp criterion, that is, [β̂A∗ | A = A∗] with |A∗| given in
Table 1. The same parameter setting as that in the previous ex-
ample was used to run the MLSn and the MLSe. We estimated
the 2.5% and the 97.5% quantiles, the mean, and the standard
deviation of β̂j for j ∈ A∗. The model space is composed of
2p models, and the probability of the model A∗, P (A = A∗), is
practically zero for the datasets used here. Therefore, the direct
sampling approach is not applicable. This shows the advantage
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Table 2. MSE comparison for simulation from the joint sampling distribution

Method Ps 2.5% 97.5% mean SD

A
MLSn 3.38 × 10−4 1.82 × 10−5 1.79 × 10−5 4.36 × 10−6 2.78 × 10−6

MLSe 1.29 1.20 1.19 0.97 1.38
DSn 1.11 2.28 2.45 2.23 2.53

B
MLSn 2.13 × 10−4 2.89 × 10−5 1.74 × 10−5 1.22 × 10−5 8.44 × 10−6

MLSe 1.20 1.07 1.10 1.08 1.30
DSn 1.26 1.97 1.89 2.29 2.74

C
MLSn 4.14 × 10−4 1.23 × 10−4 1.24 × 10−4 3.20 × 10−5 2.28 × 10−5

MLSe 1.55 2.09 1.78 1.03 2.46
DSn 0.47 1.18 1.33 1.24 1.39

D
MLSn 4.34 × 10−4 2.96 × 10−4 2.85 × 10−4 6.37 × 10−5 5.02 × 10−5

MLSe 2.74 3.81 3.61 1.17 5.70
DSn 0.69 1.52 1.34 1.21 1.57

NOTE: For the MLSe and the DSn, reported is the ratio of MSE to that of the MLSn. The sweep operator was used in the MLS to calculate determinant ratios for dataset D.

and flexibility of the Monte Carlo algorithms. Since we cannot
construct ground truth for this example, the accuracy of an es-
timate is measured by its variance across 10 independent runs
of the MLS, averaging over j ∈ A∗ (Table 3). The variance of
every estimate was on the order of 10−5 or smaller for datasets
A, B, and C and was on the order of 10−4 or smaller for dataset
D under both error models. This highlights the stability of the
MLS in approximating sampling distributions across different
runs. There were cases in which the variance of the MLSe was
smaller. This does not necessarily suggest that the MLSe pro-
vided a more accurate estimate, as the loss of efficiency without
the normal error assumption is likely to result in a higher bias.

4. HIGH-DIMENSIONAL SETTING

Recent efforts have established theoretical properties of �1-
penalized linear regression in high dimension with p > n

(Meinshausen and Bühlmann 2006; Zhao and Yu 2006; Zhang
and Huang 2008; Bickel, Ritov, and Tsybakov 2009). Under this

Table 3. Variance comparison for conditional sampling given
active set

Method 2.5% 97.5% mean SD

A
MLSn 1.21 × 10−5 1.28 × 10−5 2.21 × 10−6 1.03 × 10−6

MLSe 0.90 1.02 0.92 1.05

B
MLSn 1.47 × 10−5 1.19 × 10−5 3.19 × 10−6 9.60 × 10−7

MLSe 1.22 1.15 1.02 1.23

C
MLSn 7.66 × 10−5 8.65 × 10−5 1.59 × 10−5 7.08 × 10−6

MLSe 1.07 0.95 1.01 1.00

D
MLSn 1.67 × 10−4 1.78 × 10−4 2.55 × 10−5 1.28 × 10−5

MLSe 0.77 0.97 0.77 0.79

NOTE: Variance of the MLSe is reported as the ratio to that of the MLSn.

setting, we assume rank(X) = n < p. Consequently, row(X) is
an n-dimensional subspace of Rp and the Gram matrix C has n
positive eigenvalues, denoted by�j > 0, j = 1, . . . , n. The as-
sociated orthonormal eigenvectors vj ∈ Rp, j = 1, . . . , n, form
a basis for row(X). Choose orthonormal vectors vp+1, . . . , vp
to form a basis for the null space of X, null(X), and let V =
(v1| . . . |vp). Then, R = {1, . . . , n} andN = {n+ 1, . . . , p} in-
dex the columns of V that form respective bases for row(X) and
null(X).

Assumption 1. Every n columns of X are linearly independent
and every (p − n) rows of VN are linearly independent.

The first part of this assumption is sufficient for the columns
of X being in general position, which guarantees that (β̂,S) is
unique for any y andλ > 0 (Lemma 1). The second part will ease
our derivation of the joint density of the augmented estimator.
Note that Assumption 1 holds with probability one if the entries
of X are drawn from a continuous distribution on Rn×p.

4.1 The Bijection

Although U = 1
n

XTε is a p-vector, by definition it always
lies in row(X). Therefore, VT

NU = 0 and the n-vector R = VT
RU

gives the coordinates of U with respect to the basis VR . If
ε follows a continuous distribution on Rn, then R has a proper
density with respect to ξn. For example, if ε ∼ Nn(0, σ 2In), then
R ∼ Nn(0, σ

2

n
�) with � = diag(�1, . . . , �n). Now R plays the

same role as U does in the low-dimensional case. We will use
the known distribution of R to derive the distribution of the
augmented estimator (β̂A,SI ,A).

However, a technical difficulty is that when p > n, the map
H defined in (2.6) is not a mapping from 	 to row(X) as
H(bA, sI , A; β) ∈ Rp is not necessarily in row(X) for every
(bA, sI , A) ∈ 	. We thus need to remove those “illegal” points
in 	 so that the image of H always lies in the row space of X.
This is achieved by imposing the constraint that

VT
NH(β̂A,SI ,A; β) = VT

NU = 0, (4.1)



Zhou: Monte Carlo Simulation for Lasso-Type Problems by Estimator Augmentation 1505

that is, the image of H must be orthogonal to null(X). It is more
convenient to use the equivalent definition of H in (2.3), that is,

H(β̂A,SI ,A; β) = Cβ̂ + λWS − Cβ. (4.2)

Because C(β̂ − β) = 1
n

XTX(β̂ − β) ∈ row(X), constraint (4.1)
is equivalent to

VT
NWS = VT

ANWAASA + VT
INWIISI = 0. (4.3)

In words, the constraint is that the vector WS must lie in row(X).
Therefore, we have a more restricted space for the augmented
estimator (β̂A,SI ,A) in the high-dimensional case,

	r = {
(bA, sI , A) ∈ 	 : VT

ANWAAsgn(bA) + VT
INWII sI = 0

}
.

(4.4)
Restricted to this space, H is a bijection.

Lemma 3. If p > n and Assumption 1 holds, then for any β

and λ > 0, the restriction of the mapping H (2.6) to	r , denoted
by H |	r , is a bijection that maps 	r onto row(X).

Proof. For any U ∈ row(X), there is a unique (β̂A,SI ,A)
such that U = H(β̂A,SI ,A; β) ∈ row(X) by Lemma 1. Thus,
(β̂A,SI ,A) satisfies the constraint (4.1) and lies in 	r . For any
(β̂A,SI ,A) ∈ 	r , VT

NH(β̂A,SI ,A; β) = 0 and H maps it into
row(X). �

Remark 5. Fixing A = A, (4.3) specifies |N | = p − n con-
straints, and thus, the continuous components (β̂A,SI ) ∈ Rp lie
in an n-dimensional subspace of 	A (2.8). The bijection H |	r
maps a finite number of n-dimensional subspaces onto row(X)
which is an Rn.

Now we represent the bijection H |	r in terms of its coordi-
nates with respect to VR and equate it with R = VT

RU:

R = VT
RH(β̂A,SI ,A; β)

�= Hr (β̂A,SI ,A; β). (4.5)

4.2 Joint Sampling Distribution

The distribution for (β̂A,SI ,A) ∈ 	r is completely given by
the distribution of R via the bijective map Hr : 	r → Rn. The
only task left is to determine the Jacobian of Hr , taking into
account the constraint (4.3). Left multiplying by VT

R both sides
of Equation (2.5), with the simple facts that VT

RWA = VT
ARWAA

and VT
RWI = VT

IRWII , gives

R = VT
RCAβ̂A + λVT

ARWAASA + λVT
IRWIISI − VT

RCβ.

(4.6)
For any fixed value of A, differentiating R and both sides of the
constraint (4.3) with respect to (β̂A,SI ) give, respectively,

dR = VT
RCAdβ̂A + λVT

IRWIIdSI , (4.7)

VT
INWIIdSI = 0. (4.8)

Therefore, the constraint implies that dSI is in null(VT
INWII ).

Lemma 4. If p > n and Assumption 1 is satisfied, then the
dimension of null(VT

INWII ) is n− |A| ≥ 0.

Proof. Under the assumption, the minimizer β̂ of (1.2) is
unique and always has an active set with size |A| ≤ min{n, p} =
n. See Lemma 14 in Tibshirani (2013). If Assumption 1 is
satisfied, any |N | rows of VN are linearly independent. Since

|I| = p − |A| ≥ p − n = |N |, the rank of the |N | × |I| ma-
trix, VT

INWII , is p − n. Then, it follows that the dimension of
null(VT

INWII ) is |I| − (p − n) = n− |A| ≥ 0. �

Let B(I) ∈ R|I|×(n−|A|) be an orthonormal basis for
null(VT

INWII ). Let dS̃ be the coordinates of dSI with respect
to the basis B(I), that is, dSI = B(I)dS̃. Note that dS̃ ∈ Rn−|A|

according to the above lemma. Then (4.7) becomes

dR = VT
RCAdβ̂A + λVT

IRWIIB(I)dS̃

= T(A)

(
dβ̂A
dS̃

)
, (4.9)

where T(A) = (VT
RCA | λVT

IRWIIB(I)), an n× n matrix, is
the Jacobian of the map Hr . The dimension of (dβ̂A, dS̃) is
always n for any A. This confirms the notion in Remark 5 that
the continuous components (β̂A,SI ) lie in an n-dimensional
subspace when A is fixed.

Now we are ready to derive the density for (β̂A,SI ,A) in
high dimension. For (bA, sI , A) ∈ 	r , dsI = B(I )d s̃ for some
d s̃ ∈ Rn−|A| and ξn−|A|(d s̃) gives the infinitesimal volume at sI
subject to constraint (4.4).

Theorem 2. Assume that p > n and Assumption 1 holds.
Let fR be the probability density of R with respect to ξn. For
(bA, sI , A) ∈ 	r , the joint distribution of (β̂A,SI ,A) is given
by

P (β̂A ∈ dbA,SI ∈ dsI ,A = A)

= fR(Hr (bA, sI , A; β))| det T(A)|ξn(dbAd s̃)
�=πr (bA, sI , A)ξn(dbAd s̃). (4.10)

Particularly, if ε ∼ Nn(0, σ 2In), then

πr (bA, sI , A) = φn
(
Hr (bA, sI , A; β); 0, n−1σ 2�

) | det T(A)|.
(4.11)

Proof. The proof is analogous to that of Theorem 1. Let
r = Hr (bA, sI , A; β) ∈ Rn. For any fixed A,

dr = T(A)

(
dbA
d s̃

)

from (4.9) and thus ξn(dr) = | det T(A)|ξn(dbAd s̃). With the
bijective nature of Hr and its restriction to any A, a change of
variable gives

P (β̂A ∈ dbA,SI ∈ dsI ,A = A) = P (R ∈ dr)

= fR(Hr (bA, sI , A; β))| det T(A)|ξn(dbAd s̃).

If ε ∼ Nn(0, σ 2In) then R ∼ Nn(0, σ
2

n
�), which leads to (4.11)

immediately. �

Remark 6. The density πr (bA, sI , A) does not depend on
which orthonormal basis we choose for null(VT

INWII ). If B′(I )
is another orthonormal basis, then B′(I ) = B(I )O, where O is
an (n− |A|) × (n− |A|) orthogonal matrix and | det O| = 1.
Correspondingly,

T′(A) = (VT
RCA | λVT

IRWIIB′(I )) = T(A)diag(I|A|,O),

and thus | det T′(A)| = | det T(A)|.
Remark 7. One may unify Theorems 1 and 2 with the use of

cumbersome notations, but the idea is simple. Note that T(A)
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and D(A) in (2.6) are connected by

T(A) = VT
R(CA | λWIB(I )) = VT

RD(A)diag(I|A|,B(I )).

If rank(X) = p ≤ n, the set N reduces to the empty set and
VR = V. Hence, the constraint (4.3) no long exists, the space
	r is the same as 	, and null(VT

INWII ) is simply R|I | for any
I = {1, . . . , p} \ A. Choosing B(I ) = I|I | leads to dsI = d s̃,
which shows that the probability in (4.10) reduces to that in
(2.9). In this case, T(A) = VTD(A), and thus a column of T(A)
gives the coordinates of the corresponding column of D(A) with
respect to the basis V.

In principle, one can develop MCMC algorithms to sample
from the joint distribution (4.10). Development of such an algo-
rithm is a little tedious because of the constraints in the definition
of	r and the use of different bases B(I ) in different subspaces.
However, the explicit density given in Theorem 2 allows us to
develop very efficient IS algorithms for approximating tail prob-
abilities with respect to the sampling distribution of a Lasso-type
estimator.

5. P-VALUE CALCULATION BY IS

To simplify description, we focus on the high-dimensional
setting with normal errors so that the distribution of interest is
πr (4.11). For a fixed X, the density πr , the bijection Hr (4.5)
and the matrix T (4.9) are written as πr (bA, sI , A; β, σ 2, λ),
Hr (bA, sI , A; β, λ), and T(A; λ), respectively, to explicitly in-
dicate their dependency on different parameters. Suppose we
are given a Lasso-type estimate β̂

∗
for an observed dataset

with a tuning parameter λ∗. Under the null model H : β =
β0, σ

2 = σ 2
0 , we want to calculate the p-value of some test

statistic T (β̂) ∈ R constructed from the Lasso-type estimator β̂

for λ = λ∗. Precisely, the desired p-value is

q∗ = P (|T (β̂)| ≥ T ∗;H, λ∗)

=
∫
	∗
r

πr (bA, sI , A; β0, σ
2
0 , λ

∗)ξn(dbAd s̃), (5.1)

where T ∗ = |T (β̂
∗
)| and 	∗

r = {(bA, sI , A) ∈ 	r : |T (b)| ≥
T ∗}. Even if we can directly sample from πr (•; β0, σ

2
0 , λ

∗),
estimating q∗ will be extremely difficult when it is very small.
With the closed-form density πr , we can use IS to solve this
challenging problem.

5.1 Importance Sampling

Our target distribution is πr (•; β0, σ
2
0 , λ

∗) and we propose to
use πr (•; β0, (σ 2)†, λ†) as a trial distribution to estimate expec-
tations with respect to the target distribution via IS. First, note
that the trial and the target distributions have the same support as
the constraint in (4.4) that defines the space	r only depends on
X. Thus, a sample from the trial distribution πr (•; β0, (σ 2)†, λ†)
also satisfies the constraint for the target distribution. Second,
one can easily simulate from the trail distribution by the direct
sampler (Routine 1). Third, the importance weight for a sam-
ple (bA, sI , A) from the trial distribution can be calculated effi-
ciently. Let (r1(β, λ), . . . , rn(β, λ)) = Hr (bA, sI , A; β, λ) ∈ Rn

and note that det T(A; λ) = λn−|A| det T(A; 1). Using the fact

that � = diag(�1, . . . , �n), the importance weight

φn
(
Hr (bA, sI , A; β0, λ

∗); 0, n−1σ 2
0 �
) | det T(A; λ∗)|

φn
(
Hr (bA, sI , A; β0, λ†); 0, n−1(σ 2)†�

) | det T(A; λ†)|

∝ exp

[
n

2(σ 2)†

n∑
i=1

r2
i (β0, λ

†)
�i

− n

2σ 2
0

n∑
i=1

r2
i (β0, λ

∗)

�i

]

×
(
λ∗

λ†

)n−|A|
�=w(bA, sI , A; σ 2

0 , λ
∗). (5.2)

Essentially, for each sample, we only need to compute the image
of the map Hr and two sums of squares.

Routine 5. Draw (bA, sI , A)(t), t = 1, . . . , L, from the trial
distribution πr (•; β0, (σ 2)†, λ†) by Routine 1. Then the IS esti-
mate for the p-value q∗ is given by

q̂(IS) =
∑L

t=1w((bA, sI , A)(t); σ 2
0 , λ

∗)1(|T (b(t))| ≥ T ∗)∑L
t=1w((bA, sI , A)(t); σ 2

0 , λ
∗)

.

(5.3)

The key is to choose the parameters (σ 2)† and λ† in the trial
distribution so that we have a substantial fraction of samples
for which |T (b(t))| ≥ T ∗. Next, we discuss some guidance on
tuning these parameters.

5.2 Tuning Trial Distributions

We illustrate our procedure for tuning the trial distribution as-
suming β0 = 0, that is, the null hypothesis is H0 : β = 0, σ 2 =
σ 2

0 . In this case, the problem is difficult when P (β̂ = 0) is close
to one under the target distribution πr (•; 0, σ 2

0 , λ
∗). In other

words, λ∗ is too big to obtain any nonzero estimate of the coef-
ficients and consequently the p-value P (|T (β̂)| ≥ T ∗;H0, λ

∗)
becomes a tail probability. Thus, one may want to choose the
trial distribution πr (•; 0, (σ 2)†, λ†) under which there is a higher
probability for nonzero β̂. In general, we achieve this by choos-
ing (σ 2)† = M†σ 2

0 (M† > 1) and then tuning λ† accordingly.
When we increase σ 2, the variance of U increases and thus U
will have a wider spread in row(X). This will increase the vari-
ance of the augmented estimator (β̂A,SI ,A). As illustrated in
Figure 2, a larger variance in U will lead to a more uniform
distribution over different subspaces {	A}.

The following simple procedure is used to determine λ† given
(σ 2)†, which works very well based on our empirical study.

Routine 6. Draw y(t) fromNn(0, (σ 2)†In) and calculate λ(t) =
n−1‖W−1XTy(t)‖∞ for t = 1, . . . , Lpilot. Then, set λ† to the first
quartile of {λ(t) : t = 1, . . . , Lpilot}.

Setting β̂ = 0 in (2.1), we have

n−1‖W−1XTy‖∞ = λ‖S‖∞ ≤ λ,

which shows that the λ(t) calculated in Routine 6 is the min-
imum value of λ with which β̂ = 0 for y(t). Therefore, under
the trial distributionπr (•; 0, (σ 2)†, λ†),P (β̂ = 0) is around 25%
and there is a 75% of chance for β̂ to have some nonzero com-
ponents. This often results in a good balance between the dom-
inating region of the target distribution (β̂ = 0) and the region
of interest 	∗

r for p-value calculation (5.1). For all numerical
examples in this article, we choose M† = 5 and Lpilot = 100.
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5.3 Multiple Tests

Consider multiple linear models with the same set of predic-
tors,

yk = Xβk + εk, k = 1, . . . , m, (5.4)

where yk ∈ Rn, βk ∈ Rp, and εk ∼ Nn(0, σ 2
k In). After proper

rescaling of yk and βk , we may assume that all σ 2
k are identical,

that is, σ 2
k = σ 2. Suppose we are interested in testing against

m null hypotheses Hk : βk = 0 and σ 2 = σ 2
0 , given Lasso-type

estimates β̂
∗
k with λ = λ∗

k for k = 1, . . . , m. There are m p-
values to calculate,

q∗
k = P (|T (β̂)| ≥ T ∗

k ;Hk, λ
∗
k), (5.5)

where T ∗
k = |T (β̂

∗
k)| for k = 1, . . . , m. This problem occurs in

various genomics applications. To give an example, yk may
be the expression level of gene k and X the expression levels
of p transcription factors across n individuals. The transcription
factors may potentially regulate the expression of a gene through
the linear model (5.4). Rejection of Hk indicates that gene k is
regulated by at least one of the p transcription factors.

To estimate all q∗
k , we only need to draw (bA, sI , A)(t),

t = 1, . . . , L, from one trial distribution πr (•; 0, (σ 2)†, λ†),
in which (σ 2)† = M†σ 2

0 and λ† is obtained by applying the
same tuning procedure (Routine 6) once. Then, we calcu-
late the importance weights by (5.2) for all target distribu-
tions, {w((bA, sI , A)(t); σ 2

0 , λ
∗
k)}1≤t≤L, k = 1, . . . , m, and con-

struct estimates for all q∗
k by (5.3).

Remark 8. Alternatively, one may apply the Lars algorithm
in the direct sampler to draw from the sampling distribution of
β̂ given β = 0 and σ 2 = σ 2

0 for all λ∗
k , as the Lars algorithm

provides the whole solution path. The computing time of both
methods is dominated by drawing samples and thus is compara-
ble. However, when q∗

k is small, the IS method will be orders of
magnitude more efficient than direct sampling, and when q∗

k is
not too small, the accuracy of the two methods is on the same or-
der. We will see this in the numerical examples. In addition, we
do not have to use the Lars algorithm to draw from the trial dis-
tribution since there is no need to compute the solution path for
IS. One thus has the freedom to choose other algorithms, such as
coordinate descent (Friedman et al. 2007; Wu and Lange 2008),
which may be more efficient when both n and p are large.

5.4 Numerical Examples

We first simulated two datasets to demonstrate the effective-
ness in p-value calculation by the IS method for individual tests.
Each row of X was generated from Np(0,�X), where the di-
agonal and the off-diagonal elements of �X are 1 and 0.05,
respectively. Given the predictors X, the response vector y was
drawn from Nn(Xβ0, σ

2
0 In). We set all weightswj = 1. Table 4

reports the values of n, p, σ 2
0 , and β0 for the two datasets. We

applied the Lars algorithm on the two datasets and chose λ∗ as
the first λ along the solution path such that the Lasso estimate
β̂

∗
gave the correct number of active coefficients (Table 4). It

turned out that β̂
∗

only included one true active coefficient for
both datasets. Let A∗ = supp(β̂

∗
) be the active set of β̂

∗
. We

designed the following test statistics, T1 = ‖β̂‖1, T2 = ‖β̂‖∞,

Table 4. Simulated datasets for individual tests

Dataset n p σ 2
0 β0 λ∗ λ†

E 5 10 1/4 (2,−2, 0, . . . , 0) 1.65 0.60
F 10 20 1/4 (1, 1,−1,−1, 0, . . . , 0) 0.315 0.57

and T̃j = |β̂j | for j ∈ A∗, and aimed to calculate p-values under
the null hypothesis H0 : β = 0 and σ 2 = σ 2

0 .
We chose (σ 2)† = 5σ 2

0 and used Routine 6 to choose λ† for
the trial distributions. The values of λ† for the two datasets are
given in Table 4. When (σ 2)† is sufficiently large for a dataset,
the λ† tuned by Routine 6 can be greater then λ∗ (dataset F).
The IS method (Routine 5) was applied with L = 5, 000 to esti-
mate p-values for all the above tests. This estimation procedure
was repeated 10 times independently to obtain the standard de-
viation of an estimated p-value. We quantify the efficiency of
an estimated p-value, q̂, by its coefficient of variation cv(q̂) =
SD(q̂)/E(q̂), where the standard deviation and the mean are
calculated across multiple runs. Table 5 summarizes the re-
sults, where A∗ = {2, 3} for dataset E and A∗ = {4, 9, 15, 17}
for dataset F. One sees that the IS estimates were very accu-
rate: Even for a tail probability as small as 10−21, the coefficient
of variation was less than or around 2. To benchmark the per-
formance, we approximated the coefficient of variation of the
estimate q̂(DS) constructed by direct sampling from the target
distribution, cv(q̂(DS)) = √

(1 − q̄)/(Lq̄) with q̄ = E(q̂(IS)). As
reported in the table, for estimating an extremely small p-value,
cv(q̂(DS)) can be orders of magnitude greater than that of an IS
estimate, and for a moderate p-value (around 10−2), the two
methods showed comparable performance.

Next, we simulated m = 50 datasets to test our p-value cal-
culation for the multiple testing problem. We used the design
matrix X in dataset F and σ 2

0 = 1/4. The response vector yk was
drawn fromNn(Xβk, σ

2
0 In), where the true coefficient vector βk

is given in Table 6 for k = 1, . . . , 50. For 10 datasets, βk = 0
and the null hypothesis is true. For 20 datasets, there are two
large coefficients, which represents the case that the true model
is sparse. The other 20 datasets mimic the scenario in which the
true model has many relatively small coefficients. We chose λ∗

k

as the first λ that gave two active coefficients along the solution
path and used T (β̂) = ‖β̂‖1 as the test statistic. Summaries of

Table 5. Estimation of p-values for datasets E and F

E(q̂ (IS)) SD(q̂ (IS)) cv(q̂ (IS)) cv(q̂ (DS))

E
T1 3.7 × 10−19 8.7 × 10−19 2.37 2.32 × 107

T2 5.7 × 10−15 6.2 × 10−19 1.09 1.88 × 105

T̃2 6.3 × 10−21 1.1 × 10−20 1.81 1.79 × 108

T̃3 8.4 × 10−15 9.8 × 10−15 1.16 1.54 × 105

F
T1 1.5 × 10−6 4.5 × 10−7 0.30 11.5
T2 1.2 × 10−3 1.2 × 10−4 0.11 0.41
T̃4 5.7 × 10−5 2.2 × 10−5 0.38 1.87
T̃9 1.1 × 10−2 1.3 × 10−3 0.12 0.14
T̃15 2.5 × 10−2 1.9 × 10−3 0.08 0.09
T̃17 4.8 × 10−5 1.5 × 10−5 0.31 2.04
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Table 6. Simulated datasets for multiple tests

Dataset βk Range of λ∗
k Range of T ∗

k

1–10 (0, . . . , 0) (0.16, 0.34) (0.08, 0.23)
11–30 (2,−2, 0, . . . , 0) (0.88, 1.31) (0.27, 0.84)
31–50 (1/4, . . . , 1/4) (0.70, 1.13) (0.04, 0.51)

λ∗
k and T ∗

k = ‖β̂∗
k‖1 for the 50 datasets are provided in Table 6

as well, from which we see that these datasets cover a wide
range of λ∗

k and T ∗
k . We chose (σ 2)† = 5σ 2

0 . As seen from Rou-
tine 6, for identical X and (σ 2)†, the tuning procedure is the
same. Therefore, we simply set λ† = 0.57, the value we used
for dataset F (Table 4).

We simulated L = 5, 000 samples from the trial distribution
and estimated the p-values for all the 50 datasets. This proce-
dure was repeated 10 times independently. The average over 10
runs of the estimated p-value, E(q̂(IS)

k ), is shown in Figure 3(a)
for k = 1, . . . , 50. As expected, most of the p-values for the
first 10 datasets were not significant, while those for the other
40 datasets ranged from 10−4 to 10−30, which confirms that
T (β̂) = ‖β̂‖1 is a reasonable test statistic. Again, we see that
even for p-values on the order of 10−30, the coefficient of varia-
tion of an IS estimate was at most around 3 (Figure 3(b)). This
provides huge gain in accuracy compared to direct sampling.
Figure 3(c) plots log10[cv(q̂(DS)

k )/cv(q̂(IS)
k )] for the 50 datasets,

where cv(q̂(DS)
k ) was approximated in the same way as in the

previous example. It is comforting to see that while the IS esti-
mates q̂(IS)

k showed huge improvement over the DS estimates in
estimating a tail probability, they were only slightly worse than
the DS estimates for an insignificant p-value. For the first 10
datasets, the coefficient of variation of q̂(IS)

k was at most 7.9 times
that of q̂(DS)

k . For majority of the other 40 datasets, the ratio of
cv(q̂(DS)

k ) over cv(q̂(IS)
k ) was between 100 and 1010.

(a)

−
25

−
5

(b)

0.
0

1.
5

3.
0

(c)

0
4

8

Figure 3. Estimation of p-values for 50 simulated datasets by IS
with a single trial distribution: (a) log10 E(q̂ (IS)

k ), (b) cv(q̂ (IS)
k ), and (c)

log10[cv(q̂ (DS)
k )/cv(q̂ (IS)

k )] for k = 1, . . . , 50. Each bar in a plot gives
the result for one dataset.

6. ESTIMATING SAMPLING DISTRIBUTIONS

For a vector v = (vj ), denote its active set by A(v) =
{j : vj 
= 0}. Let β0 = (β0j )1:p be the true coefficient vec-
tor and A0 = A(β0). Consider model (1.1) with β = β0 and
ε ∼ Nn(0, σ 2In). The penalized loss in (1.2) is, up to an addi-
tive constant,

1

2
‖y − Xβ‖2

2 − 1

2
‖y − Xβ0‖2

2 + nλ

p∑
j=1

wj (|βj | − |β0j |)

= n

2r2
n

δTCδ − n

rn
δTU + nλ

∑
j∈A0

wj
(|β0j + r−1

n δj | − |β0j |
)

+nλ
rn

∑
j /∈A0

wj |δj | �= V (δ; β0,U), (6.1)

where rn > 0, δ = (δj ) = rn(β − β0), and U = XTε/n. Assum-
ing V has a unique minimizer,

arg min
δ
V (δ; β0,U) = rn(β̂ − β0)

�= δ̂, (6.2)

where β̂ is the Lasso-type estimator that minimizes (1.2). Sup-
pose that β̌ and σ̂ are estimators of β0 and σ , following their
respective sampling distributions. Let

δ∗ = rn(β
∗ − β̌) = arg min

δ
V (δ; β̌,U∗), (6.3)

where U∗ = XTε∗/n and ε∗ | σ̂ ∼ Nn(0, σ̂ 2In). For random
vectors Z1 and Z2, we use ν[Z1] to denote the distribution of Z1

and ν[Z1 | Z2] to denote the conditional distribution of Z1 given
Z2. In general, ν[Z1 | Z2] is a random probability measure. The
goal of this section is to derive nonasymptotic bounds on the dif-
ference between ν[δ̂] and ν[δ∗ | β̌, σ̂ ], with all proofs relegated
to Section 8. Our results provide theoretical justifications for any
method that estimates the uncertainty in β̂ via simulation from
ν[δ∗ | β̌, σ̂ ]. In particular, for estimator augmentation, we draw
(β∗,S∗)|β̌, σ̂ 2 from an estimated sampling distribution whose
density is given by (2.15) or (4.11) with β = β̌ and σ 2 = σ̂ 2.

6.1 Relevant Existing Results

We compile relevant published results here. The following
restricted eigenvalue (RE) assumption is a special case of the
one used in Lounici et al. (2011), which extends the original
definition in Bickel, Ritov, and Tsybakov (2009).

Assumption 2 (RE(m, c0)). For some positive integer m ≤ p

and a positive number c0, the following condition holds:

κ(m, c0)

�= min
|A|≤m

min
δ 
=0

⎧⎨
⎩ ‖Xδ‖2√

n‖δA‖2
:
∑
j∈Ac

wj |δj | ≤ c0

∑
j∈A

wj |δj |
⎫⎬
⎭

> 0.

Lemma 5 is from Theorem 3.1 and its proof in Lounici et al.
(2011), regarding the Lasso as a special case of the group Lasso
(Yuan and Lin 2006) with the size of every group being one.

Lemma 5. Consider the model (1.1) with β = β0 and ε ∼
Nn(0, σ 2In), σ 2 > 0, and let p ≥ 2, n ≥ 1. Suppose that all
the diagonal elements of C are 1 and U = (Uj )1:p = 1

n
XTε. Let

q0 = |A0| ≤ q, where 1 ≤ q ≤ p, and Assumption RE(q, 3) be
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satisfied. Choose u > 1 and

λ ≥ λ0
�= 2σ

wmin

√
(2 + 5u logp)/n, (6.4)

where wmin = inf{wj : j = 1, . . . , p}. Then on the event E =
∩pj=1{|Uj | ≤ wjλ/2}, which happens with probability at least

1 − 2p1−u, for any minimizer β̂ of (1.2) we have

|A(β̂)| ≤ 64φmax

κ2(q, 3)

∑
A0

w2
j

w2
min

, (6.5)

‖β̂ − β0‖1 ≤ 16λ

κ2(q, 3)

∑
A0

w2
j

wmin
, (6.6)

where φmax is the maximum eigenvalue of C. If Assumption
RE(2q, 3) is satisfied, then on the same event,

‖β̂ − β0‖2 ≤ 4
√

10

κ2(2q, 3)

λ
∑

A0
w2
j

wmin
√
q

�= τ. (6.7)

As an immediate consequence of this lemma, the Lasso-type
estimator has the screening property assuming a suitable beta-
min condition.

Lemma 6. Let the assumptions in Lemma 5 be satisfied. If
infA0 |β0j | > τ , then on the event E , A0 ⊆ A(β̂) for any β̂. If
infA0 |β0j | > 2τ , then on the same event,{

j : |β̂j | > τ
} = A0.

6.2 Known Variance

In this subsection, we assume that the noise variance σ 2 is
known and fix σ̂ = σ in the definition of δ∗ (6.3). We first
regard β̌ = (β̌j )1:p as a fixed vector and find conditions which
are sufficient for the distribution of δ∗ to be close to that of δ̂.
Then, we construct an estimator that satisfies these conditions
with high probability. Let

η
�= sup
j∈A0

|β̌j − β0j |
|β0j | . (6.8)

Lemma 7. Assume that the columns of X are in general po-
sition. Fix σ̂ = σ . Suppose that β̌ is a fixed vector in Rp so that
(i) β̌j = 0 for all j /∈ A0 and (ii) η ∈ [0, 1) as defined in (6.8).
Let M1 > 0 and assume

inf
j∈A0

|β0j | > M1

rn(1 − η)
. (6.9)

Then, we have

ν[δ∗ | ‖δ∗‖∞ < M1] = ν[δ̂ | ‖δ̂‖∞ < M1].

One possible way to construct β̌ that satisfies with high prob-
ability conditions (i) and (ii) in Lemma 7 is to threshold the
Lasso-type estimator β̂ by a constant bth > 0, that is,

β̌j = β̂j1(|β̂j | > bth), j = 1, . . . , p. (6.10)

Theorem 3. Let the assumptions in Lemma 5 be satisfied and
assume that the columns of X are in general position. Choose

rn such that ‖δ̂‖∞ < M1 with probability at least 1 − α1. Fix
σ̂ = σ , define β̌ by (6.10) with bth = τ (6.7), and assume

inf
j∈A0

|β0j | > max

{
2τ,

M1

rn(1 − η)

}
. (6.11)

Then with probability at least 1 − 2p1−u, we have

sup
B∈Rp

|P (δ∗ ∈ B | β̌) − P (δ̂ ∈ B)| ≤ 2α1, (6.12)

where Rp is the σ -field of p-dimensional Borel sets.

Remark 9. Depending on the estimator β̌, the conditional
probability P (δ∗ ∈ B | β̌) is a random variable. The probability
1 − 2p1−u is with respect to the sampling distribution of y.
This theorem gives an explicit nonasymptotic bound (6.12) on
the difference between the two probability measures, ν[δ∗ | β̌]
and ν[δ̂], and justifies simulation from the estimated sampling
distribution with β = β̌.

Remark 10. Consider the asymptotic implications of Theo-
rem 3 by allowing q0, p → ∞ as n → ∞. Suppose that wmin

and wmax = supj wj stay bounded away from 0 and ∞. For

the Lasso, wmin = wmax = 1. Choose rn so that ‖δ̂‖∞ �P 1,
that is, the convergence rate of ‖β̂ − β0‖∞ is 1/rn. For any
α1 > 0, there isM1 < ∞ so that P (‖δ̂‖∞ < M1) ≥ 1 − α1. Let
q = q0 in Lemma 5 and assume that lim infn κ(m, 3) > 0 when
m = O(q0) = o(n). With a suitable choice of λ � √

(logp)/n,

τ � √
q0λ �

√
q0(logp)/n.

Because 1 �P rn‖β̂ − β0‖∞ = OP (rnτ ), we have r−1
n = O(τ ).

Thus, the order of rn satisfies

r−1
n = O(

√
q0(logp)/n) and rn = O(

√
n). (6.13)

Consequently, a sufficient condition for (6.11) is

inf
A0

|β0j | �
√
q0(logp)/n (6.14)

with the order of bth in between. Theorem 3 then implies that
(6.12) holds with probability at least 1 − 2p1−u → 1 as p →
∞. Choosing α1 arbitrarily close to zero, this demonstrates that

sup
B∈Rp

|P (δ∗ ∈ B | β̌) − P (δ̂ ∈ B)| P→ 0. (6.15)

As infA0 |β0j | may decay to zero at a rate slower than√
q0(logp)/n → 0, Theorem 3 applies in the high-dimensional

setting (p � n → ∞).

6.3 Unknown Variance

When σ 2 is unknown, recall that ε∗ | σ̂ ∼ Nn(0, σ̂ 2In) and
U∗ = XTε∗/n. Denote the components of U∗ by U ∗

j , j =
1, . . . , p. Define

δ∗
0 = arg min

δ
V (δ; β̌, (σ/σ̂ )U∗), (6.16)

whose distribution does not depend on σ̂ and is identical to
that of δ∗ when σ̂ is fixed to σ . Thus, results in Section 6.2
show that ν[δ∗

0 | β̌] is close to ν[δ̂]. We will further bound the
difference, δ∗ − δ∗

0, in this subsection. In other words, δ∗
0 serves
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as an intermediate variable between δ̂ and δ∗ to help quantify
the difference between their distributions.

Lemma 8. Assume that the columns of X are in general posi-
tion. Let β̌ and σ̂ be fixed such that |A(β̌)| ≤ q with 1 ≤ q ≤ p

and

max{|σ̂ /σ − 1| , |σ/σ̂ − 1|} ≤ ζ ∈ [0, 1). (6.17)

If Assumption RE(q, 3) is satisfied, then on the event
∩pj=1{|U ∗

j | ≤ (1 − ζ )wjλ/2},
1

n
‖X(δ∗ − δ∗

0)‖2
2 ≤ 32wmaxr

2
nλ

2ζ

wminκ2(q, 3)

∑
A0

w2
j . (6.18)

Based on (6.18), we can obtain an upper bound on ‖δ∗ −
δ∗

0‖2 via the restricted eigenvalues of C. Define the minimum
restricted eigenvalue of C for an integer m ≤ p by

φmin(m) = min
1≤|A(v)|≤m

vTCv

‖v‖2
2

, (6.19)

and let

M2 = 128φmax

κ2(q, 3)

∑
A0

w2
j

w2
min

,

which is twice the upper bound on |A(β̂)| in (6.5).

Theorem 4. Let the assumptions in Theorem 3 be satisfied
but without fixing σ̂ to σ . In addition, assume that (6.17) holds
with probability at least 1 − α2 and φmin(M2) > 0. Choose

λ ≥ 1 + ζ

1 − ζ
λ0, (6.20)

where λ0 is defined in (6.4). Then with probability at least
1 − (α2 + 2p1−u), we have

sup
B∈Rp

|P (δ∗
0 ∈ B | β̌) − P (δ̂ ∈ B)| ≤ 2α1 (6.21)

and

P

{
‖δ∗ − δ∗

0‖2
2 ≤ 32wmaxr

2
nλ

2ζ
∑

A0
w2
j

wminκ2(q, 3)φmin(M2)

∣∣∣∣∣ β̌, σ̂
}

≥ 1 − 2p1−u.

(6.22)

Remark 11. Assume that max{|σ̂ /σ − 1| , |σ/σ̂ − 1|} =
OP (ζn) with ζn → 0. Following the asymptotic framework in
Remark 10, we can establish by the same reasoning that

sup
B∈Rp

|P (δ∗
0 ∈ B | β̌) − P (δ̂ ∈ B)| P→ 0. (6.23)

Suppose that lim infn φmin(m) > 0 form = o(n) and that φmax is
bounded from above by a constant or at least does not diverge too
fast. Then, M2 = O(φmaxq0) = o(n) and φmin(M2) is bounded
from below by a positive constant. The upper bound in (6.22)
becomes O(r2

nλ
2ζnq0) = O(ζnq0 logp) as rn = O(

√
n) (6.13)

and λ2 � log(p)/n. If ζn = o(1/(q0 logp)), then (6.22) implies
that

P (‖δ∗ − δ∗
0‖2 > ε | β̌, σ̂ ) → 0

for any ε > 0. Combing with (6.23) this shows that, with
probability tending to one, ν[δ∗

J | β̌, σ̂ ] converges weakly to
ν[δ̂J ] for any fixed index set J ⊆ {1, . . . , p}. If σ is estimated

by the scaled Lasso (Sun and Zhang 2012), one may reach
ζn = O(q0(logp)/n) under certain conditions by their Theo-
rem 2 and it is then sufficient to have q0 logp � √

n. If p is
fixed, we only need ζn = o(1) and hence any consistent esti-
mator of σ will be sufficient. In this case, rn � √

n (6.13) and
with probability tending to one, ν[δ∗ | β̌, σ̂ ] converges weakly
to ν[δ̂].

The key assumptions on the underlying model are the RE
assumption on the Gram matrix C and beta-min and sparsity
assumptions on the true coefficients β0, which are comparable
to those in Lemma 5 and Lemma 6. There is an extra assumption
that φmin(M2) > 0 in Theorem 4, which is again imposed on the
restricted eigenvalues of C. If X is drawn from a continuous
distribution on Rn×p, then with probability one φmin(m) > 0
for any m ≤ n. It should be noted that we do not assume the
irrepresentable condition (Meinshausen and Bühlmann 2006;
Zhao and Yu 2006; Zou 2006), which is much stronger than the
assumptions on the restricted eigenvalues of C.

We compare our results to residual bootstrap for approxi-
mating the sampling distribution of the Lasso. To be precise, a
residual bootstrap is equivalent to Routine 1 with β estimated by
β̌ and ε(t) drawn by resampling residuals. Assuming p is fixed,
Knight and Fu (2000) argued that the residual bootstrap may
be consistent if β̌ is model selection consistent and Chatterjee
and Lahiri (2011) establish such fixed-dimensional consistency
when β̌ is constructed by thresholding the Lasso, in the same
spirit as (6.10). As discussed above, Theorem 4 applied to a
fixed p is clearly in line with these previous works. However, our
results are much more general by providing explicit nonasymp-
totic bounds that imply consistency when p � n → ∞. More
recently, Chatterjee and Lahiri (2013) have shown that the resid-
ual bootstrap is consistent for the adaptive Lasso (Zou 2006)
when p > n → ∞ under a number of conditions. A fundamen-
tal difference is that the weights wj are specified by an initial√
n-consistent estimator in their work and will not stay bounded

as n → ∞. Therefore, their results do not apply to the Lasso.
On the contrary, the results in this section are derived assuming
the weightswj are constants without being specified by any ini-
tial estimator. In addition, Chatterjee and Lahiri (2013) imposed
in their Theorem 5.1 that infA0 |β0j | ≥ K for some K ∈ (0,∞)
when p > n, which disallows the decay of the magnitudes of
nonzero coefficients as n grows. This is considerably stronger
than our assumption (6.14).

7. GENERALIZATIONS AND DISCUSSIONS

7.1 Random Design

We generalize the Monte Carlo methods to a random de-
sign, assuming that X is drawn from a distribution fX. The
distribution of the augmented estimator (β̂A,SI ,A), (2.9) and
(4.10), becomes a conditional distribution given X = x, written
as π (bA, sI , A | x) and πr (bA, sI , A | x), respectively.

In the low-dimensional setting, we may generalize the
MLS (Routine 2) to draw samples from π (bA, sI , A, x) =
π (bA, sI , A | x)fX(x) and approximate the sampling distribu-
tion of β̂. It may be difficult to assume or estimate a reliable
density for X, but it is sufficient for the development of an MH
sampler under a random design (rdMLS) if we can draw from
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fX(x). As seen below, we do not need an explicit form of fX(x)
for computing the MH ratio (7.1) and thus may draw x† by the
bootstrap.

Routine 7 (rdMLS). Suppose the current sample is
(bA, sI , A, x)(t).

1. Draw x† from fX, and accept it as x(t+1) with probability

min

{
1,
π ((bA, sI , A)(t) | x†)
π ((bA, sI , A)(t) | x(t))

}
; (7.1)

otherwise, set x(t+1) = x(t).
2. Regarding π (bA, sI , A | x(t+1)) as the target density, ap-

ply one iteration of the MLS (Routine 2) to obtain
(bA, sI , A)(t+1).

Generalization of the IS algorithm (Routine 5) is also straight-
forward. Draw x(t) from fX and draw (bA, sI , A)(t) from the trial
distribution given X = x(t). Calculate importance weights by
(5.2) with X = x(t), and apply the same estimation (5.3). Again,
an explicit expression for fX is unnecessary. But bootstrap sam-
pling from X is not a choice for the high-dimensional setting,
because a bootstrap sample from X violates Assumption 1.

7.2 Model Selection Consistency

The distribution of the augmented estimator may help estab-
lish asymptotic properties of a Lasso-type estimator. Here, we
demonstrate this point by studying the model selection consis-
tency of the Lasso. Our goal is not to establish new asymp-
totic results, but to provide an intuitive and geometric under-
standing of the technical conditions in existing work. Recall
that A and A0 are the respective active sets of β̂ and β0.
Let q0 = |A0| and s0 = sgn(β0A0 ). Without loss of generality,
assume A0 = {1, . . . , q0} and I0 = {q0 + 1, . . . , p}. We allow
both p and q0 to grow with n.

Definition 2 (sign consistency (Meinshausen and Yu
2009)). We say that β̂ is sign consistent for β0 if

P (A = A0, sgn(β̂A0
) = s0) → 1, as n → ∞. (7.2)

If β̂ is unique, the size of its active set |A| ≤ n (Lemma 4), and
thus D(A) is invertible from (2.7). Therefore, the definitions of
μ(A, sA; β) and �(A; σ 2) in (2.13) and (2.14) are also valid for
any (bA, sI , A) ∈ 	r when p > n. Rewrite the KKT condition
(2.6) as

� = [D(A)]−1U + μ(A,SA; β0), (7.3)

where � = (β̂A,SI ) ∈ Rp. Fixing A = A0 and SA0 = s0 in
(7.3), we define a random vector

Z = [D(A0)]−1U + μ(A0, s0; β0) (7.4)

via an affine map of U. Note that we always have E(U) = 0
and var(U) = σ 2

n
C ≥ 0, regardless of the sizes of n and p. When

p > n, var(U) is semipositive definite, meaning that components
of U are linearly dependent of each other, since U only lies
in row(X), a proper subspace of Rp. Consequently, E(Z) =
μ(A0, s0; β0)

�= μ0 and var(Z) = �(A0; σ 2)
�= �0 ≥ 0. Simple

calculation from (2.13) and (2.14) gives(
μ0
A0

μ0
I0

)
=
(

β0A0 − λC−1
A0A0

WA0A0 s0

W−1
I0I0

CI0A0 C−1
A0A0

WA0A0 s0

)
, (7.5)

�0 = σ 2

n

(
C−1
A0A0

0

0 λ−2W−1
I0I0

CI0|A0 W−1
I0I0

)
, (7.6)

where CI0|A0 = CI0I0 − CI0A0 C−1
A0A0

CA0I0 .

Lemma 9. If the columns of X are in general position and ε
is iid with mean zero and variance σ 2, then for any p ≥ 1 and
n ≥ 1,

P (A = A0, sgn(β̂A0
) = s0) = P (Z ∈ 	A0,s0 ), (7.7)

where 	A0,s0 is defined by (2.17).

Proof. If A = A0 and SA0 = s0, then � ∈ 	A0,s0 by defini-
tion. In this case, (7.3) reduces to (7.4) and we have Z = � ∈
	A0,s0 . Reversely, if Z ∈ 	A0,s0 , then (Z, A0) is a solution to
the KKT condition (7.3). By uniqueness, (�,A) = (Z, A0) and
therefore A = A0 and SA0 = s0. �

Consequently, to establish sign consistency, we only need
a set of sufficient conditions for P (Z ∈ 	A0,s0 ) → 1: (C1)
sgn(μ0

A0
) = s0. (C2) ‖μ0

I0
‖∞ ≤ c for some c ∈ (0, 1). (C3) Let

Zj and μ0
j be the jth components of Z and μ0, respectively. As

n → ∞,

P
(|Zj − μ0

j | < δj , ∀j) → 1, (7.8)

where δj = |μ0
j | for j ∈ A0 and δj = 1 − c for j ∈ I0.

The first two conditions ensure that μ0 = E(Z) lies in the
interior of 	A0,s0 . The third condition guarantees that Z always
stays in a box centered at μ0, and the box is contained in	A0,s0 if
(C1) and (C2) hold. These conditions have a simple and intuitive
geometric interpretation illustrated in Figure 4.

Lemma 10. Assume the columns of X are in general position
and ε is iid with mean zero and variance σ 2. If conditions (C1),
(C2), and (C3) hold, then β̂ is sign consistent for β0, regardless
of the relative size between p and n.

Now we may recover some of the conditions for establishing
consistency of the Lasso in the literature. In what follows, let

Figure 4. Geometric interpretation of the conditions for sign con-
sistency. Shaded area represents 	A0,s0 , where s0 = sgn(β0A0 ).
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W = Ip in (7.5) and (7.6). Condition (C2) is the strong irrep-
resentable condition (Meinshausen and Bühlmann 2006; Zhao
and Yu 2006; Zou 2006):

‖CI0A0 C−1
A0A0

s0‖∞ ≤ c ∈ (0, 1).

Assume that the minimum eigenvalue of CA0A0 is bounded from
below by φ0 > 0, which is equivalent to condition (6) in Zhao
and Yu (2006). Condition (C1) holds if

λ
∥∥C−1

A0A0
s0

∥∥
∞

infj∈A0 |β0j | ≤ λφ−1
0 ‖s0‖2

infj∈A0 |β0j | = φ−1
0 λ

√
q0

infj∈A0 |β0j | → 0. (7.9)

This shows that some version of a beta-min condition is neces-
sary to enforce a lower bound for infj∈A0 |β0j |. For example, we
may assume that

lim
n→∞ n

a1 inf
j∈A0

|β0j | ≥ M3, (7.10)

for some positive constants M3 and a1, which is the same as
(8) in Zhao and Yu (2006). Then, one needs to choose λ =
o(n−a1/

√
q0) → 0 for (C1) to hold.

Let d = (d1, . . . , dp) such that dA0 = σ 2diag(C−1
A0A0

) and
dI0 = σ 2diag(CI0|A0 ). To establish condition (C3), assume that
ε ∼ Nn(0, σ 2In) and diag(C) is bounded from above. Then,
all dj are bounded and let d∗ < ∞ be an upper bound of
{d1, . . . , dp}. Furthermore, Zj follows a univariate normal
distribution: For j ∈ A0, Zj ∼ N (μ0

j , n
−1dj ) and for j ∈ I0,

Zj ∼ N (μ0
j , n

−1λ−2dj ) according to (7.6) with W = Ip. By

(7.9) and (7.10), δj = |μ0
j | ≥ 1

2M3n
−a1 for j ∈ A0 as n → ∞,

and

P

(
sup
j∈A0

∣∣Zj − μ0
j

∣∣ ≥ 1

2
M3n

−a1

)

≤ 2q0 exp

(
−M

2
3n

1−2a1

8d∗

)
→ 0, (7.11)

as long as a1 < 1/2 and q0 < n. Since δj = 1 − c for all j ∈ I0,

P

(
sup
j∈I0

|Zj − μ0
j | ≥ 1 − c

)

≤ 2 exp

(
−nλ

2(1 − c)2

2d∗
+ logp

)
→ 0, (7.12)

if (logp)/(nλ2) → 0 and nλ2 → ∞. Clearly, the above two in-
equalities imply (7.8). Therefore, λ must satisfy

√
(logp)/n �

λ = o(n−a1/
√
q0), which implies that

√
q0(logp)/n = o(n−a1 ).

This is consistent with the beta-min condition in Meinshausen
and Bühlmann (2006): infj∈A0 |β0j | � √

q0(logp)/n. In sum-
mary, choosing a1, a2, a3 > 0 such that a2 + a3 < 1 − 2a1, the
Lasso can be consistent for model selection with q0 = O(na2 )
and p = O(exp(na3 )), both diverging with n. For more general
scaling of (n, p, q0), see the work by Wainwright (2009).

Remark 12. The term logp in (7.12) can be replaced by
log(p − q0), which will improve the bound if q0/p does not
vanish as n → ∞. Moreover, both inequalities (7.11) and (7.12)
are applicable to sub-Gaussian noise.

7.3 Bayesian Interpretation

It is well-known that the Lasso can be interpreted as the mode
of the posterior distribution of β under a Laplace prior. However,

the posterior distribution itself is continuous on Rp. If we draw
β from this posterior distribution, every component of β will
be nonzero with probability one. In this sense, sampling from
this posterior distribution does not provide a direct solution to
model selection, which seems unsatisfactory from a Bayesian
perspective. Here, we discuss a different Bayesian interpretation
of the Lasso-type estimator β̂ from a sampling distribution point
of view.

Assume that rank(X) = p < n and thus C is invertible. Under
the noninformative prior p(β, σ 2) ∝ 1/σ 2 and the assumption
that ε ∼ Nn(0, σ 2In), the conditional and marginal posterior
distributions of β are

β | σ 2, y ∼ Np

(
β̂

OLS
, n−1σ 2C−1), (7.13)

β | y ∼ tn−p
(
β̂

OLS
, n−1σ̂ 2C−1

)
, (7.14)

where σ̂ 2 is given by (2.20) with β̌ = β̂
OLS

and tn−p(μ,�) is
the multivariate t distribution with (n− p) degrees of freedom,
location μ, and scale matrix �.

Following the decision theory framework, let η ∈ Rp be a
decision regarding β that incurs the loss

�B(η,β) = 1

2
(η − β)TC(η − β) + λ‖Wη‖1. (7.15)

Since the covariance of β is proportional to C−1 with respect
to the posterior distribution (7.13) or (7.14), �B(η,β) is essen-
tially the squared Mahalanobis distance between η and β, plus
a weighted �1 norm of η to encourage sparsity. Denote by β̃ the
optimal decision that minimizes the loss �B for a given β, that
is, β̃ = arg minη �B(η,β). Let S̃ be the subgradient of ‖η‖1 at
β̃. The KKT condition for β̃ is

Cβ̃ + λWS̃ = Cβ. (7.16)

Since β is a random vector in Bayesian inference, the distribu-
tion of β determines the joint distribution of β̃ and S̃ via the
above KKT condition. Represent (β̃, S̃) by its equivalent form
(β̃Ã, S̃Ĩ , Ã) in the same way as for (β̂,S) in Section 2.

The conditional posterior distribution (7.13) implies that Cβ |
σ 2, y ∼ Np(Cβ̂

OLS
, n−1σ 2C). Thus, conditional on y and σ 2,

Equation (7.16) implies that

Cβ̃ + λWS̃ − Cβ̂
OLS d= U, (7.17)

where U ∼ Np(0, n−1σ 2C). One sees that (7.17) is identical

to the KKT condition (2.3) with β̂
OLS

in place of β. There-
fore, the conditional distribution [β̃Ã, S̃Ĩ , Ã | σ 2, y], deter-
mined by (7.17), is identical to the estimated sampling dis-
tribution π̂ (2.19) under a normal error distribution with β

estimated by β̂
OLS

, that is, β̌ = β̂
OLS

. Furthermore, Cβ | y ∼
tn−p(Cβ̂

OLS
, n−1σ̂ 2C) due to (7.14). By a similar reasoning, the

conditional distribution [β̃Ã, S̃Ĩ , Ã | y] is the same as π̂ if β̌ =
β̂

OLS
and if fU is estimated by the density of tn−p(0, n−1σ̂ 2C).

This motivates our proposal to use tn−p(0, n−1σ 2C) as a para-
metric model for U and estimate σ 2 from data to construct f̂U.
The above discussion also provides a Bayesian justification for
sampling from π̂ .

Under this framework, we may define a point estimator β̂
P =

(β̂P
j )1:p by the decision that minimizes the posterior expectation



Zhou: Monte Carlo Simulation for Lasso-Type Problems by Estimator Augmentation 1513

of the loss �B(η,β),

β̂
P �= arg min

η

∫
�B(η,β)p(β | y)dβ, (7.18)

provided that the expectation exists. Although β̂
P

minimizes
the posterior expected loss, its Bayes risk is not well-defined
due to our use of an improper prior. To avoid any potential

confusion, we call β̂
P

a posterior point estimator instead of a
Bayes estimator. Taking subderivative of �B(η,β) with respect
to η leads to the following equation to solve for the minimizer

β̂
P
:

Cβ̂
P + λWSP =

∫
Cβ · p(β | y)dβ = E(Cβ | y), (7.19)

where SP is the subgradient of ‖η‖1 at β̂
P
. Under the noninfor-

mative prior, the posterior mean E(β | y) = β̂
OLS

. In this case,
E(Cβ | y) = n−1XTy and Equation (7.19) is identical to the
KKT condition (2.1) for the Lasso-type estimator β̂. Therefore,
β̂ can be interpreted as the estimator (7.18) that minimizes the
posterior expected loss.

Remark 13. These results provide a Bayesian interpretation
of the Lasso-type estimator β̂ and its sampling distribution.
Assume a normal error distribution with a given σ 2 and the
noninformative prior. The posterior distribution of the optimal
decision, [β̃ | y], is identical to the sampling distribution of β̂

assuming β̂
OLS

is the true coefficient vector. Therefore, a poste-
rior probability interval for β̃, the optimal decision, constructed
according to [β̃ | y] is the same as the confidence interval con-

structed according to π̂ with β̌ = β̂
OLS

. Point estimation about
β also coincides between the Bayesian and the penalized least-

squares methods (β̂
P = β̂). Finally, if we set λ = 0 in the loss

(7.15), then the optimal decision β̃ is simply β. In this special
case, the aforementioned coincidences become the familiar cor-
respondence between the posterior distribution (7.13) and the

sampling distribution of β̂
OLS

and that between the posterior

mean and β̂
OLS

.

It is worth mentioning that, in a loose sense, this Bayesian
interpretation also applies when p > n. In this case, the pos-
terior distribution (7.13) does not exist, but [Cβ | σ 2, y] is a
well-defined normal distribution in row(X). From KKT condi-
tions (7.16) and (7.19), we see that the posterior point estimator

β̂
P

and the posterior distribution [β̃ | y] only depend on Cβ.
Therefore, they are well-defined and have the same coincidence
with the Lasso-type estimator and its sampling distribution.

7.4 Bootstrap Versus Monte Carlo

We have demonstrated that Monte Carlo sampling via es-
timator augmentation has substantial advantages in approx-
imating tail probabilities and conditional distributions, say
[β̂A | A = A], over direct sampling (or bootstrap). The MH
Lasso sampler also showed some improvement in efficiency
when compared against direct sampling in the low-dimensional
setting. Now we discuss some limitations of estimator augmen-
tation relative to bootstrap.

The joint density of the augmented estimator is derived for
a given λ, and thus does not take into account the randomness

in λ when it is chosen via a data-dependent way, say via cross-
validation. Denote by β̂(y, λ̂(y)) the Lasso-type estimator when
λ = λ̂(y), where λ̂(y) is estimated from the data y. We stress
that the density in Theorem 1 or Theorem 2 does not apply
to the sampling distribution of β̂(y, λ̂(y)) and it is only valid
for β̂(y, λ) with λ being fixed during the repeated sampling of
y. However, the direct sampler (or bootstrap in a similar way)
can handle data-dependent λ by adding one additional step to
determine λ̂(y(t)) after each draw of y(t) in Routine 1.

Bootstrap and the direct sampler can be parallelized. The IS
algorithm (Routine 5) can easily be parallelized as well, since
it uses the direct sampler to generate proposals and calculates
importance weights independently for each sample. An MCMC
algorithm needs a certain number of burn-in iterations before the
Markov chain reaches its stationary distribution. It seems that
naively running multiple short chains in parallel may impair
the overall efficiency due to the computational waist of multiple
burn-in iterations. Initialized with one draw from the direct sam-
pler, a Markov chain simulated by Routine 4, however, reaches
its equilibrium at the first iteration and thus is suitable for par-
allel computing. Its efficiency relative to direct sampling when
both are parallelized can be calculated as follows.

Suppose our goal is to estimate Eπ [g(β̂)] and assume that
varπ [g(β̂)] = 1 without loss of generality. Assume that the time
to run one iteration of the direct sampler allows for running m
iterations of an MCMC algorithm. Suppose that we have access
to K computing nodes and the available computing time from
each node allows for the simulation of (1 +N1) samples from
the direct sampler, where N1 may be small. Thus, on a single
node we can run N2 = mN1 MCMC iterations plus an initial
draw from the direct sampler in the same amount of time. In
other words, we can run Routine 4 for 1 +N2 iterations to draw
β (t) for t = 1, . . . , 1 +N2. Note that this Markov chain reaches
equilibrium from t = 1. Let ρt = cor(g(β(1)), g(β(t+1))) and

ψ(N ) = 1 + 2
N−1∑
t=1

(
1 − t

N

)
ρt

for an integer N ≥ 1. Then, we have

var

[
1

N2 + 1

N2+1∑
t=1

g(β(t))

]
= 1

N2 + 1
ψ(N2 + 1)

�=V2(N2 + 1).

Denote by V1(N ) = 1/N the variance in estimating g by the
mean of an iid sample of size N, and let

γ = lim
N→∞

V1(N )

V2(mN )
= m

ψ(∞)
.

The efficiency of Routine 4 relative to direct sampling is

V1(N1 + 1)

V2(N2 + 1)
= mN1 + 1

N1 + 1

1

ψ(N2 + 1)

>
N1

N1 + 1

m

ψ(N2 + 1)
≥ N1

N1 + 1
γ,

where we have assumed that ψ(N2 + 1) ≤ ψ(∞) for the last
inequality. This assumption holds ifψ(N ) is nondecreasing in N.
This derivation shows that Routine 4 will be more efficient than
the direct sampler on each computing node if N1 ≥ 1/(γ − 1),
which can be as small as 1 when γ > 2. We have observed
two decay patterns of the autocorrelation ρt of the MLS in
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the simulation study in Section 3.6. For some components of
β̂, ρt is always positive before it decays to zero, in which case
ψ(N ) is obviously nondecreasing. For other components, ρt first
decreases monotonely to zero and then shows small fluctuations
around zero. In the second case, we empirically observed that
ψ(N ) is nondecreasing as well. The efficiency comparison in
Table 2, with N1 and N2 = mN1 both large, suggests that for
most functions estimated there, γ ∈ (2, 3) for datasets A and
B and γ ∈ (1.2, 1.6) for the other two datasets. Therefore, as
long as we need to run a few iterations of the direct sampler
on each node, parallelizing Routine 4 can bring computational
gain. Of course, if the number of computing nodes K is so large
that only one draw is needed from each node, direct sampling
or bootstrap will be a better choice.

7.5 Concluding Remarks

Using the density of an augmented estimator, this article de-
velops MCMC and IS methods to approximate sampling dis-
tributions in �1-penalized linear regression. This approach is
clearly different from existing methods based on resampling or
asymptotic approximation. The numerical results have already
demonstrated the substantial gain in efficiency and the great
flexibility offered by this approach. These results are mostly for
a proof of principle, and there is room for further development
of more efficient Monte Carlo algorithms based on the densities
derived in this article.

In principle, the idea of estimator augmentation can be ap-
plied to the use of concave penalties in linear regression (Frank
and Friedman 1993; Fan and Li 2001; Friedman, Hastie, and
Tibshirani 2008; Zhang 2010) for studying the sampling dis-
tribution. However, there are at least two additional technical
difficulties for the high-dimensional setting. First, we need to
find conditions for the uniqueness of a concave-penalized es-
timator to construct a bijection between U and the augmented
estimator. Second, the constraint in (4.4) will become nonlin-
ear in general, even for a fixed sA, when a concave penalty is
used, which means that the sample space is composed of a finite
number of manifolds. Another future direction is to investigate
theoretically and empirically the finite-sample performance in
variable selection by the Lasso sampler which may take into
account the uncertainty in parameter estimation in a coherent
way.

8. PROOFS

Let n ≥ 1 and p ≥ 2 throughout this section.

8.1 Proof of Theorem 3

Lemma 11. Let Z ∈ Rp be a random vector, K ∈ Rp, and
ZK be the truncation of Z to K such that P (ZK ∈ B) = P (Z ∈
B | Z ∈ K) for B ∈ Rp. If P (Z ∈ K) ≥ 1 − α > 0, then

sup
B∈Rp

|P (ZK ∈ B) − P (Z ∈ B)| ≤ α.

Proof. For B ∈ Rp, P (Z ∈ B ∩K) = P (ZK ∈ B)P (Z ∈
K) and thus

0 ≤ P (ZK ∈ B) − P (Z ∈ B ∩K) = P (ZK ∈ B)

·P (Z ∈ Kc) ≤ α.

On the other hand,

0 ≤ P (Z ∈ B) − P (Z ∈ B ∩K) = P (Z ∈ B ∩Kc) ≤ α.

Therefore, |P (ZK ∈ B) − P (Z ∈ B)| ≤ α for any B and the
conclusion follows. �

Lemma 12. Assume that β̌ satisfies conditions (i) and (ii)
in Lemma 7, and let (6.9) be satisfied. Then, V (δ; β̌,u) =
V (δ; β0,u) for any u ∈ Rp if ‖δ‖∞ ≤ M1.

Proof. The assumptions on β̌ imply that A(β̌) = A0 and
sgn(β̌j ) = sgn(β0j ) for all j ∈ A0. By the definition of V (6.1)
it then suffices to show that∣∣β0j + r−1

n δj
∣∣− |β0j | = ∣∣β̌j + r−1

n δj
∣∣− |β̌j | (8.1)

for all j ∈ A0. By the definition of η in (6.8), for j ∈ A0

η|β0j | ≥ |β̌j − β0j | ≥ |β0j | − |β̌j |
and therefore

|β̌j | ≥ (1 − η)|β0j | > M1/rn ≥ |r−1
n δj |,

where we have used (6.9) and that ‖δ‖∞ ≤ M1. Consequently,
for j ∈ A0 we have

|β̌j + r−1
n δj | − |β̌j | = sgn(β̌j )δj /rn.

On the other hand, by (6.9) and η ∈ [0, 1), |β0j | > M1/rn ≥
|r−1
n δj | for j ∈ A0 and thus

|β0j + r−1
n δj | − |β0j | = sgn(β0j )δj /rn.

Now (8.1) follows since sgn(β̌j ) = sgn(β0j ) for all j ∈ A0. �

Proof of Lemma 7. Define δ̃ = arg minδ V (δ; β0,U∗), which

follows the same distribution as δ̂ (6.2). This is because U∗ d= U
by fixing σ̂ = σ and V (δ; β0,u) has a unique minimizer for
any u if the columns of X are in general position (Lemma 1).
Consequently,

ν[δ̂ | ‖δ̂‖∞ < M1] = ν[δ̃ | ‖δ̃‖∞ < M1].

Let K = {δ ∈ Rp : ‖δ‖∞ < M1}. According to Lemma 12,
V (δ; β̌,U∗) = V (δ; β0,U∗) for all δ ∈ K. As the unique mini-
mizer of V (δ; β̌,U∗) (6.3), ‖δ∗‖∞ < M1 implies that δ∗ is also a
local minimizer ofV (δ; β0,U∗). SinceV (δ; β0,U∗) is convex in
δ and has only a unique minimizer δ̃, we must have δ∗ = δ̃ and
‖δ̃‖∞ < M1. Furthermore, using the same argument in the other
direction, one can show that ‖δ̃‖∞ < M1 implies ‖δ∗‖∞ < M1,
and thus {‖δ̃‖∞ < M1} is equivalent to {‖δ∗‖∞ < M1}. This
completes the proof.

Proof of Theorem 3. Let E1 be the event that β̌ satisfies
conditions (i) and (ii) in Lemma 7 and E2 = {‖δ̂‖∞ < M1}. We
first show that (6.12) holds onE1. Obviously, (6.9) holds because
of (6.11). The argument in the proof of Lemma 7 implies that,
on event E1,

P (‖δ∗‖∞ < M1 | β̌) = P (‖δ̃‖∞ < M1)

= P (E2) ≥ 1 − α1, (8.2)

where the second equality is due to δ̃
d= δ̂. Let δ∗

K and δ̂K be the
respective truncations of δ∗ and δ̂ to K. Lemma 7 implies ν[δ∗

K |
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β̌] = ν[δ̂K] on event E1. A direct consequence is that on E1,
P (δ∗

K ∈ B | β̌) = P (δ̂K ∈ B) for any B ∈ Rp and therefore,

sup
B∈Rp

|P (δ∗ ∈ B | β̌) − P (δ̂ ∈ B)| ≤ 2α1

by Lemma 11 and (8.2).
Next we find a lower bound forP (E1). Since infA0 |β0j | > 2τ

(6.11), on event E , we have A(β̌) = A0, according to Lemma 6.
By construction β̌A0

= β̂A0
(6.10) and consequently

η = sup
j∈A0

|β̂j − β0j |
|β0j | ≤ ‖β̂ − β0‖2

infA0 |β0j | <
1

2
(8.3)

again on E . Thus, P (E1) ≥ P (E) ≥ 1 − 2p1−u.

8.2 Proof of Theorem 4

Lemma 13. Let γ be any minimizer of V (δ; β̌,u) for β̌ ∈ Rp

and u ∈ Rp. For any � ∈ Rp, we have

V (γ + �; β̌,u) ≥ V (γ ; β̌,u) + n

2r2
n

�TC�. (8.4)

Proof. Let b = r−1
n γ + β̌ = (bj )1:p and � = (�j )1:p. Direct

calculations give

V (γ + �; β̌,u) − V (γ ; β̌,u) = n

2r2
n

�TC(� + 2γ )

− n

rn
�Tu + nλ

p∑
j=1

wj (|bj + r−1
n �j | − |bj |).

The KKT condition for γ to minimize V (δ; β̌,u) is

C(b − β̌) + λWs − u = 0, (8.5)

where s = (sj )1:p is the subgradient of ‖β‖1 at b. By the defini-
tion of a subgradient,

|bj + r−1
n �j | − |bj | ≥ sj r

−1
n �j (8.6)

for all j = 1, . . . , p. Now we have

V (γ + �; β̌,u) − V (γ ; β̌,u)

≥ n

2r2
n

�TC� + n

r2
n

�TCγ − n

rn
�Tu + nλ

rn

p∑
j=1

wjsj�j

= n

2r2
n

�TC� + n

rn
�T[C(b − β̌) − u + λWs]

= n

2r2
n

�TC�,

where we have used (8.6) and (8.5). �

Lemma 14. Assume that |A(β̌)| ≤ q. Let c > 0, u =
(uj )1:p ∈ Rp, and γ be any minimizer of V (δ; β̌,u). If Assump-
tion RE(q, 3) is satisfied and |uj | ≤ wjλ/2 for all j = 1, . . . , p,
then

|V (γ ; β̌, cu) − V (γ ; β̌,u)| ≤ 8wmax|1 − c|
wminκ2(q, 3)

nλ2
∑
A0

w2
j .

(8.7)

Proof. Let b = r−1
n γ + β̌. Direct calculations give

|V (γ ; β̌, cu) − V (γ ; β̌,u)| = n

∣∣∣(1 − c)uT(b − β̌)
∣∣∣

≤ n|1 − c| · ‖u‖∞‖b − β̌‖1.

It is seen from (8.5) that b is a minimizer of the loss (1.2) if β̌

is the true coefficient vector and if XTε/n = u. Inequality (6.6)
in Lemma 5 applied under these assumptions leads to

‖b − β̌‖1 ≤ 16λ

κ2(q, 3)

∑
A0

w2
j

wmin

if |uj | ≤ wjλ/2 for all j. Moreover, ‖u‖∞ ≤ wmaxλ/2 and hence
(8.7) follows. �

Proof of Lemma 8. To simplify notation, let ĉ = σ/σ̂ and

h = 8wmaxζ

wminκ2(q, 3)
nλ2

∑
A0

w2
j .

If |U ∗
j | ≤ (1 − ζ )wjλ/2, then |U ∗

j | ≤ wjλ/2 and by (6.17)
|ĉU ∗

j | ≤ wjλ/2. Lemma 14 with (6.17) implies

|V (δ∗; β̌, ĉU∗) − V (δ∗; β̌,U∗)| ≤ h,

|V (δ∗
0; β̌,U∗) − V (δ∗

0; β̌, ĉU∗)| ≤ h.

Let � = δ∗ − δ∗
0. Now we have

V (δ∗; β̌,U∗) ≥ V (δ∗; β̌, ĉU∗) − h

≥ V (δ∗
0; β̌, ĉU∗) + n

2r2
n

�TC� − h

≥ V (δ∗
0; β̌,U∗) + n

2r2
n

�TC� − 2h,

where the second inequality is due to Lemma 13. Finally,
sinceV (δ∗

0; β̌,U∗) ≥ V (δ∗; β̌,U∗) by definition (6.3), �TC� ≤
4r2
nh/n which coincides with (6.18).

Proof of Theorem 4. Recall that E is the event ∩pj=1{|Uj | ≤
wjλ/2}. Since the distribution of δ∗

0 does not depend on σ̂ and
is identical to the distribution of δ∗ when σ̂ is fixed to the true
noise level σ , (6.21) follows immediately from (6.12) which
holds on E .

Let E3 be the event in (6.17) and E∗ be the event that
∩pj=1{|U ∗

j | ≤ (1 − ζ )wjλ/2}. By Lemma 6, on E we have

A(β̌) = A0, |A(β̌)| = q0 ≤ q and by (8.3)

inf
A0

|β̌j | ≥ 1

2
inf
A0

|β0j | > τ. (8.8)

Therefore, all the assumptions on β̌ and σ̂ in Lemma 8 are
satisfied on E ∩ E3, which happens with probability at least 1 −
(α2 + 2p1−u). Moreover, the conditional probability of (6.18)
given (β̌, σ̂ ) is at least

P (E∗ | σ̂ ) ≥ 1 − 2p1−u,

by choosing λ ≥ (σ̂ /σ )λ0/(1 − ζ ). For the lower bound of the
above probability, see (6.4) in Lemma 5 with (1 − ζ )wj in place
of wj and σ̂ in place of σ . As σ̂ /σ ≤ 1 + ζ on E3, it suffices to
choose λ as in (6.20). What remains is to show that � = δ∗ − δ∗

0
is M2-sparse on the event E∗. Then, (6.22) follows from (6.18)
and the definition of φmin(M2) (6.19). Regarding β̌ and σ̂ as the
true parameters, Lemma 6 with (8.8) implies thatA(β̌) ⊆ A(β∗)
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on E∗ and therefore, |A(δ∗)| ≤ |A(β∗)| ≤ M2/2 by (6.5). Since
E∗ with (6.17) implies |(σ/σ̂ )U ∗

j | ≤ wjλ/2 for all j, by a similar
reasoning we also have |A(δ∗

0)| ≤ M2/2 and thus |A(�)| ≤ M2

on E∗.

APPENDIX

Recall thatA† = A \ {j} in proposal (P3) andA† = A ∪ {j} in (P4).
Let B = A ∩ A†. For both proposals,

det CA†A†

det CAA

= (
Cjj − CjBC−1

BBCBj

)|A†|−|A| �=(rdet)
|A†|−|A|. (A.1)

Suppose that the matrix C−1
AA is given.

When (P3) is proposed, let k(j ) ∈ {1, . . . , |A|} index the position of
j in the set A and dk be the kth diagonal element of C−1

AA. Then, dk(j ) =
1/rdet and thus the ratio (A.1) is immediately obtained. If this proposal
is rejected, no further computation is necessary. If it is accepted, C−1

A†A†
can be obtained after a reverse sweeping of (−C−1

AA) on position k(j ).
When (P4) is proposed, rdet = Cjj − CjAC−1

AACAj and thus the ratio
(A.1) can be readily calculated. Again, if the proposal is rejected, no
further computation is needed. If it is accepted, add j to the last position
in the set A† and then sweep the matrix( −C−1

AA C−1
AACAj

CjAC−1
AA rdet

)

on the last position to obtain −C−1
A†A† . It is seen that for both proposals,

the ratio (A.1) can be calculated easily and sweeping on a single position
is all we need to update C−1

AA.

[Received October 2012. Revised June 2014.]
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Meinshausen, N., and Bühlmann, P. (2006), “High-Dimensional Graphs and
Variable Selection with the Lasso,” The Annals of Statistics, 34, 1436–1462.
[1504,1510,1512]
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