
1

Spectro-Temporal Models of Inferior Colliculus Neuron
Receptive Fields
S. Zayd Enam1,∗, Michael R. DeWeese1,2,
1 Redwood Center for Theoretical Neuroscience, University of California, Berkeley, CA,
United States of America
2 Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United
States of America
∗ E-mail: zayd@berkeley.edu

Abstract

Sparse codes for speech spectrograms qualitatively match properties of receptive fields of Inferior Col-
liculus (ICC) neurons. We find sparse codes of speech-spectrograms are well described by one of four
models and we find that these models also fit ICC spectro-temporal receptive fields (STRF) well. Further,
our models are able to express time-frequency inseparable receptive fields (e.g. frequency sweeps) that
previous models were unable to satisfactorily describe. Our models allow the accurate characterization
of high-dimensional STRFs with more natural parameterizations of the neuron’s behavior.

Author Summary

In this paper we propose parametric model classes for the STRF of auditory neurons. A STRF represents
the intensity of a neuron’s response to different values of frequency and time. To determine STRF model
classes we first fit model classes to the sparse codes of speech-spectrograms using non-linear least squares
methods. These sparse codes were also found to qualitatively match the STRFs of neurons recorded from
the Inferior Colliculus (ICC) of anesthetized animals [1]. In order to better quantitatively analyze these
comparisons we compared the best-fit parameters of our models for the sparse codes and the best-fit
parameters of our models when fit to STRFs generated from recordings of ICC neurons of anesthetized
cats [2]. We then analyzed both data sets in this parameter space. Our classes (Checkerboards, Harmonic
Stacks, Inhibited Harmonic Stacks, Frequency Sweeps and Phase Variant Checkerboards) accurately
model the STRFs of the sparse coded neurons and the experimentally recorded ICC neurons. Our
models are also able to capture time-frequency inseparable components of receptive fields that previous
models could not. In order to determine the quality of our models we examined various goodness-of-fit
measures and compared how well our models fit sparse codes of speech-spectrograms and ICC data.

Introduction

Previous work in visual neuroscience has shown that sparse codes for images of natural scenes can predict
the physiological properties of spatio-temporal receptive fields of V1 neurons [3] [4]. V1 simple cell recep-
tive fields have been shown to be modeled well by Gabor functions [5].The comparisons to physiological
data are determined by fitting Gabor functions to the learned sparse codes and to the recorded neuron
data. The two data sets can then be compared in this parameter space. These comparisons allow one
to characterize more interesting aspects of a neuron’s receptive field, including orientation and frequency
statistics across populations. In recent work on a training higher level theoretical models, Karklin and
Lewicki found a suitable hierarchical parameterization for natural images where they were able to classify
and cluster the image patches based on which parts of a natural scene they were extracted from. [6]

Similarly, in the auditory domain STRFs are a popular method of characterizing the complex time
frequency responses of auditory neurons to natural sounds [7]. Recent work has shown that overcomplete,
‘hard’ sparse codes for speech-spectrograms predict receptive fields of neurons in the ICC. [1]. However,
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fitting models to these receptive fields to compare them to physiological data has proven to be more
difficult than in the visual neuron case because 1) auditory receptive fields exhibit a wider diversity of
receptive field shapes and 2) in order to capture the salient features characterizing the neuron, auditory
receptive fields must be of larger dimensions (and often log-sampled in the frequency dimension). Indeed,
past attempts at fitting shapes to auditory receptive fields involved cutting the receptive field into one
dimensional slices along time and frequency and fitting 1-D Gabors to each slice (the resultant STRF is
computed as the outer product of the the two 1-D Gabors) [2] [8]. This is because the size of the receptive
fields makes fitting auditory receptive fields a difficult minimization problem over a large number of data
points (e.g. ≈ 400 × 200 data points as opposed to 16 × 16 patches of V1 receptive fields) and a large
number of simultaneously varying parameters of a non-convex model.

These 1-D outer product models are unsatisfactory because they are unable to meaningfully describe
structure in receptive fields that is any more complicated than checkerboards. Previous work using the
outer product model has attempted to decompose time-frequency inseparable receptive fields into time-
frequency separable components through the use of singular value decomposition (SVD). The resulting
decomposed dyads are fit using the above outer-product method. This method is suboptimal because the
SVD step creates artificial time-frequency separable receptive fields which are not good parameterizations
for any time-frequency modulation (even simple ubiquitous frequency sweeps). In this paper we show
how auditory STRFs can be fit by time-frequency inseparable 2-D models in a tractable manner.

Results

Our models can be split into four major classes of receptive fields each which of can be represented as
the product of analytical functions. Here we will give an overview of the model classes and then we will
discuss the possible ways that

Model Types

1. Checkerboard

Our first and simplest class is a 2-D checkerboard with a Gaussian window. While this model’s most
canonical shape is the actual checkerboard, it is also able to characterize many of the other shapes
identified by Carlson et al. These include onset and terminating shapes amongst some other unnamed
shapes identified [1]. The model can be characterized with the with following function over time t and
stimulus frequency f :

R(t, f) = a · cos(2πψt t+ φt) · cos(2πψf f + φf ) · exp

(
− (t− tc)2

2σ2
t

− (f − fc)2

2σ2
f

)
+ c (1)

In the above model the parameters ψt, φt and ψf , φf can be interpreted as the frequency and phase
of the sinusoidal responses in time and stimulus frequency. The parameters tc and fc correspond to the
center of the Gaussian window and σt and σf correspond to axis lengths of the window. The whole
receptive field is then scaled by parameter a and has a bias parameter c. The canonical Gabor shape
fitted to visual neuron receptive fields is simply a specific version of this model where fx and φx are
fixed to 0 [5]. An extension of this model is the replacement of the time and frequency variables with
(t − tc) · cos(θ) + (f − fc) · sin(θ) and −(t − tc) · sin(θ) + (f − fc) · cos(θ) respectively. This allows the
checkerboard to be oriented in directions non parallel to the time and frequency axis by adjusting the θ
parameter. While the original model can be represented as the outer-product of two Gabors, extending
the checkerboard with an orientation angle means this is no longer possible. We use this model and will
discuss it further in our third class of neurons, frequency sweeps.
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Sparse Coding

Figure 1. Checkerboard pattern receptive fields fit on checkerboard, onset and
terminating shape sparse codes of speech spectrograms: In the left box of each panel we display
the fitted model (with time from 0 to 216 msec plotted along the x axis and log-frequency from 100 to
4000 Hz plotted along the y axis), the middle box displays the sparse coded speech-spectrogram basis
function that was fit and the right box displays the absolute value of the resultant residual error when
the two are subtracted.

Often times it is common to represent a STRF with a log-sampled frequency axis in order to capture
behavior across a wide range of frequencies. In this case we simply take the f variable to a power and
the model we fit becomes:

R(t, f) = a · cos(2πψt t+ φt) · cos(2πψf 10f + φf ) · exp

(
− (t− tc)2

2σ2
t

− (10f − fc)2

2σ2
f

)
+ c (2)

2. Harmonic Stacks and Inhibited Harmonic Stacks

The next model class we describe models simple and inhibited harmonic stacks. Harmonic stacks represent
neural activation across multiple frequency bands for a single window of time. These frequency bands
are separated by gaps with no activation. A special type of harmonic stacks, inhibited harmonic stacks
flank a simple harmonic stack with one that is of negative amplitude. This inhibited stack can be present
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Figure 2. Checkerboard pattern receptive fields fit on receptive fields of Inferior
Colliculus Neurons: In the left box of each panel we display the fitted model (with time from 0 to
216 msec plotted along the x axis and log-frequency from 100 to 4000 Hz plotted along the y axis), the
middle box displays the sparse coded speech-spectrogram basis function that was fit and the right box
displays the absolute value of the resultant residual error when the two are subtracted.

pre or post the simple harmonic stack.

R(t, f) = a · cos(2πψt t+ φt) · |cos(2πψf f + φf )| · exp

(
− (t− tc)2

2σ2
t

− (f − fc)2

2σ2
f

)
+ c (3)

In the simple harmonic stack case fx and a are fixed to 0. Here our model is similar to the above
checkerboard model except that we take the absolute value of the resulting sinusoid in the frequency
dimension. This modification is necessary because the gaps between each positive lobe remain relatively
constant and are smaller than the period of the positive lobes (this characteristic of the harmonic stack
means it is not possible to model the structure by adding a simple out of phase sinusoid in the frequency
dimension). Because of this it is also possible to alter the period the positive lobes and the width of the
gaps as a function of frequency by adjusting the frequency parameter.
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Figure 3. Harmonic Stack Receptive Field fits: Learned Neuron Example fits to Inhibited
Harmonic Stacks. The left panels show example fits from the sparse coded speech-spectrograms and the
right example is an example inhibited harmonic stack from the ICC dataset.

3. Frequency Sweeps

Frequency sweeps are a canonical example of time-frequency inseparable receptive fields. Existing SVD
based methods to fit receptive fields break up the complex inseparable structure of the frequency sweeps
into components that don’t explain or effectively parameterize the ’sweep’ characteristic of these receptive
fields. Taking inspiration from the discussion of separable and inseparable components of STRFs in [9]
our approach attempts to model the time frequency inseparable receptive fields by breaking the receptive
field into two parts: 1) baseline activity that can be described by a time frequency separable model and
2) complex time-frequency inseparable activity. This effectively breaks the receptive field down to the
’sweep’ component and other baseline activity. The ’sweep’ component is often fit by an oriented Gabor
function and the other components of the receptive field are modeled by one of earlier models.
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Figure 4. Time-frequency separable and inseparable components of a frequency sweep:
Frequency sweeps are a common canonical shape found in auditory neuron STRFs [9] [10]. Existing
models to fit this would first attempt to decompose the STRF to its statistically significant
time-frequency separable dyads. The statistical significance can be estimated by a log plot of the
magnitude of singular values. Each dyad would then be individually fit by a outer product of 1-D
Gabors [2]. As can be seen by these dyads, this model does not capture the frequency sweep and it also
does not parameterize the frequency sweep in any natural way. Instead, the SVD step creates artificial
time-frequency separable components. In (i) we show the fit and absolute residual error of a 1-D Gabor
method on the most significant dyad. In (ii) we show the result of our method of fitting time-frequency
inseparable STRFs
.

4. Phase Variant Checkerboard

This last class is an extension of the standard Checkerboard model where the phase of the sinusoids is a
function of the current time or frequency.

R(t, f) = a · cos(2πψt t+ φt(f)) · cos(2πψf f + φf (t)) · exp

(
− (t− tc)2

2σ2
t

− (f − fc)2

2σ2
f

)
+ c (4)

These receptive fields are not that commonly seen in the sparse coded data set or in actual recorded
STRFs but they are present. Again, for these models, the complex phase change is decomposed by an
SVD step where it does not naturally represent the data. Here φx and φy represent functions dependent
on stimulus frequency f and time t. For φx and φy we used a summation of shifted Heaviside step
functions H with each time shift dependent upon the period of the corresponding sinusoid:

φt(f) =
∑
i

a · H(f − b

ψt
)
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Figure 5. Frequency Sweep receptive fields fits of sparse codes of speech spectrograms: In
the left box of each panel we display the fitted model (with time from 0 to 216 msec plotted along the x
axis and log-frequency from 100 to 4000 Hz plotted along the y axis), the middle box displays the
sparse coded speech-spectrogram basis function that was fit and the right box displays the absolute
value of the resultant residual error when the two are subtracted.

Here a represents a scaling variable and b represents a constant multiplier of the shift frequency.

Quality of Fits

In order to determine how well this model fits the data we examine root-mean-square-error (RMSE) as a
quality metric across each data set. We show that the root-mean-square-error of our model is low across
all fits for both data sets and that our models are quantitatively better compared to previous models at
fitting time-frequency inseparable STRFs.

Discussion

In this paper we show that neurons trained with a sparse coding network on speech-spectrogram data
can be modeled well by three novel model classes (one of which is a generalization of the canonical
Gabor function). Each model class is characterized with approximately 10 parameters. We also show
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Figure 6. Histogram plots of RMSE of fits: In the top row we show a histogram of RMSE errors
across the individual datasets where top-left plot is for the sparse-codes of speech-spectrogram and the
top-right plot is for the is for the ICC data. In the bottom row we plot the advantage of time-frequency
inseparable model. In the bottom-left we plot the RMSE error of fitting time-frequency inseparable
models to frequency sweeps and in the bottom-right we show the the best that time-frequency separable
models can do on the same receptive fields.

that the same models apply to biological neurons and model the spectro-temporal receptive fields of
experimentally recorded Inferior Colliculus neurons well. Furthermore we show that within these model
classes our parametrized best fits have similar distributions across both data sets. This provides evidence
for the validity of the learned speech spectrogram neurons.

Our optimization tools solve a fitting problem for a very large and non-convex parameter space. The
previous approach to fit visual or auditory receptive fields have either tackled much smaller receptive field
sizes [5] [11] or have approached larger problems by slicing the STRF into individual time and frequency
components and computing the resultant 2-D STRFs as the outer product of two one dimensional Gabors
[2]. The second approach is sub optimal because the resulting model is only able to capture time-
frequency separable components of the receptive field. In order to capture even simple time-frequency
modulations such as frequency modulation the receptive field must be artificially converted into time-
frequency separable subcomponents through the use of singular value decomposition. We have constructed
2-D receptive field models and have used effective optimization tools (parameter estimation, random
restarts, simulated annealing) to find accurate best-fit parameters for much larger receptive fields.

Existing work on fitting receptive fields of auditory neurons uses models that can capture only time-
frequency separable components of the receptive fields [2] [8]. Within our datasets we have many receptive
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fields that have non time-frequency separable components. Previous methods to tackle this problem have
attempted to model these inseparable components by decomposing the receptive field into time frequency
separable components using Singular Value Decomposition. This model does not accurately characterize
receptive fields as they do not capture the underlying dependent structure between time and frequency in
these receptive fields. Additionally these models increase the number of parameters required to fit each
receptive field as they are required to be broken up into multiple components that must each be fitted
separately.

A direction for future research that we are currently exploring is the space of possible sounds that
can be generated from these parameterized models.

Materials and Methods

Data

Recorded Inferior Colliculus Data

Our dataset consisted of 99 single unit recordings in the ICC of anesthetized cats. Sounds were presented
binaurally with an independent sound to each ear. From these separate single unit recording, contralat-
eral and ipsilateral STRFs were computed using spike-triggered averaging [12]. Dynamic moving ripple
stimulus was presented which consists of amplitude and frequency modulated sinusoids that model fea-
tures similar to those present in vocalizations. The STRFs consisted of either 400 samples in frequency
and 276 samples in time or 230 samples in frequency and 400 samples in time. Sampled frequencies
spanned from 0 Hz to 20 kHz with a time interval of 100 milliseconds.

Sparse Encoded Neurons

Our data consisted of receptive fields trained using an 4x over-complete representation of speech-spectrograms
constructed from the TIMIT dataset [1]. We randomly selected 99 receptive fields to use for statistical
comparisons. For each of the neurons we ran fitting procedures for multiple classes and selected the class
with the best fit (determined by a sum of square errors metric). The samples in frequency for the spec-
trograms were logarithmically spaced (log10) and as a result we modified our model to include this. The
data had 256 samples in frequency and 25 samples in time with the corresponding frequencies ranging
from 100 Hz to 4 kHz and a time interval of 216 milliseconds.

Parameter Estimation

Our models are highly non-convex and so were prone to many local minima issues. Along with this,
starting parameters for optimization greatly affected the ability to determine good fits and so they were
set using educated guesses based on pre-processing steps completed on each receptive field. The models
shared a set of similar parameters including: fx, fy, φx, φy, sinusoidal frequencies and phases in the time
and frequency axis of the spectrogram and xc, yc, σx, σy, center point and standard deviations of the
Gaussian envelope respectively. Extending previous work on parameter estimation in Gabor fitting, we
estimated the sinusoidal frequency parameters by determining the maximal power region in the 2-D
Fourier transform of the receptive field. The center point parameters for the Gaussian envelope were
determined by computing the maximum point of the Hilbert transform. σx, σy were estimated using the
second and first singular value of negative inverse Hessian matrix of the Hilbert transform. The starting
parameter for the constant multiplier a was selected based on the mean of the data. For cases of negative
harmonic stacks (where a < 0) the mean for the two classes of harmonic stacks was linearly separable on
normalized receptive fields and so was used to determine the sign of a.
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Model Fitting

In order to tackle the problems of local minima we used simulated annealing along with random restarts
for our optimization procedure. We setup a nonlinear least squares objective and function minimization
was done using a Trust Region minimization algorithm in MATLAB. For each receptive field we conducted
100 separate instances of objective minimization with a set of estimated starting parameters (methods
described above) or preset values for starting parameters. The preset values were selected based on
manually tweaking the model parameters to get a generally representative shape for most receptive
fields. For each minimization instance we add a randomness element to each starting parameter to allow
it to vary from its initial value. The iteration that converged to parameters with the lowest sum of square
error (SSE) was selected as the best fit parameters for our model. The process was then repeated for
different model classes and the model class which resulted in the best fit (determined by the root-mean-
square error (RMSE)) amongst the classes was chosen. In order to examine the quality of our fits we
used quantitative measures (SSE, RMSE) but also examined the error residuals of our receptive fields to
discern whether we were missing out on any structure in the original receptive field.
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