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 What is machine learning?
 Objectives of machine learning
 Supervised and Unsupervised learning 
 Examples and approaches 

 Multivariate Linear regression
 Predicts any continuous valued target from vector of features
 Important:
 Simple to compute, parameters easy to interpret

 lllustrate basic procedure:  Model formulation, loss function, ...
 Many natural phenomena have a linear relationship

 Subsequent lectures build up theory behind such parametric 
estimation techniques

Previous lectures



 Principles of Supervised Learning
 Model Selection and Generalization (Alpaydin 2.7 & 2.8, Bishop 1.3)
 Overfitting and Underfitting

 Decision Theory (1.5 Bishop and Ch3 Alpaydin)
 Binary Classification
 Maximum Likelihood and Log likelihood
 Bayes Methods: MAP and Bayes Risk
 Receiver operating characteristic
 Minimum probability of error

 Issues in applying Bayesian classification
 Curse of Dimensionality
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 Two key concepts in ML:
 Memorization:  Finding an algorithm that fits training data well
 Generalization:  Gives good results on data not yet seen. Prediction.

 Example:  Suppose we have only three samples of fish
 Can we learn a classification rule? Sure

Memorization vs. Generalization
5

Class 1 (sea bass)

Class 2 (salmon)

Fish length

Fi
sh

  w
ei

gh
t



 Many possible classifier fit training data
 Easy to memorize the data set, but need to generalize to new data
 All three classifiers below (Classifier 1, C2, and C3) fit data

 But, which one will predict new sample correctly?
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 Which classifier predicts new sample correctly?
 Classifier 1 predicts salmon
 Classifier 2 predicts salmon
 Classifier 3 predicts sea bass

 We do not know which one is right:
 Not enough training data
 Need more samples to generalize

Memorization vs. Generalization
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Basic Tradeoff

 Generalization requires assumptions
 ML uses a model
 Basic tradeoff between three factors:

• Model complexity:  Allows to fit complex relationships
• Amount of training data
• Generalization error:  How model fits new samples

 This class:  Provides a principled ways to:
• Formulate models that can capture complex behavior
• Analyze how well they perform under statistical assumptions



 Example:  Consider fitting a polynomial 
 Assume a low-order polynomial

 Easy to train.  Less parameters to estimate
 But model does not capture full relation.  Underfitting

 Assume too high a polynomial
 Fits complex behavior
 But, sensitive to noise.  Needs many samples.  Overfitting

 This course:
 How to rigorously quantify model selection and algorithm performance

Generalization: Underfitting and Overfitting
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 Select a model:   �𝑦𝑦 = 𝑔𝑔(𝑥𝑥,𝜃𝜃)
 Describes how we predict target 𝑦𝑦 from features 𝑥𝑥
 Has parameters 𝜃𝜃

 Get training data:  𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛
 Select a loss function 𝐿𝐿(𝑦𝑦𝑖𝑖, �𝑦𝑦𝑖𝑖)
 How well prediction matches true value on the training data

 Design algorithm to try to minimize loss:

�̂�𝜃 = arg min
𝜃𝜃
�
𝑖𝑖=1

𝑛𝑛

𝐿𝐿(𝑦𝑦𝑖𝑖, �𝑦𝑦𝑖𝑖)

 The art principled methods to develop models and 
algorithms for often intractable loss functions and complex 
large is what machine learning is really all about.

Ingredients in Supervised Learning



 Principles of Supervised Learning
 Model Selection and Generalization
 Overfitting and Underfitting

 Decision Theory 
 Binary Classification
 Maximum Likelihood and Log likelihood
 Bayes Methods: MAP and Bayes Risk
 Receiver operating characteristic
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 Issues in applying Bayesian classification
 Curse of Dimensionality
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 How to make decision in the presence of uncertainty?
 History:  Prominent in WWII:

radar for detecting aircraft, codebreaking, decryption

 Observed data x ∈ X,  state y ∈ Y
 p(x|y): conditional distribution

Model of how the data is generated

 Example:  y ∈ {0, 1} (salmon vs. sea bass) or (airplane vs. bird, etc.)
x: length of fish

Decision Theory



 Which fish type is more likely to
given the observed fish length x?

If p( x | y = 0 ) > p( x | y = 1 ),
guess  salmon;
otherwise classify the fish as sea bass

 If   
𝑝𝑝 𝑥𝑥 𝑦𝑦=1 )
𝑝𝑝 𝑥𝑥 𝑦𝑦=0 )

> 1, guess sea bass  [likelihood ratio or LRT]

 equivalently: if   log 𝑝𝑝 𝑥𝑥 𝑦𝑦=1 )
𝑝𝑝 𝑥𝑥 𝑦𝑦=0 )

> 0 [log-likelihood ratio]

 �𝑦𝑦ML = 𝛼𝛼(𝑥𝑥) = 𝑆𝑆𝑆𝑆 arg max
𝑦𝑦

𝑝𝑝 𝑥𝑥 𝑦𝑦)

 Seems reasonable, but what if salmon may be much more likely than 
sea bass?

Maximum Likelihood (ML) Decision



 Introduce prior probabilities 𝑝𝑝 𝑦𝑦 = 0 and  𝑝𝑝(𝑦𝑦 = 1)
 Salmon more likely than sea bass:  𝑝𝑝 𝑦𝑦 = 0 > 𝑝𝑝(𝑦𝑦 = 1)

 Now, which type of fish is more likely given observed fish length?

 Bayes’ Rule: 𝑝𝑝 𝑦𝑦 𝑥𝑥) = 𝑝𝑝 𝑥𝑥 𝑦𝑦)𝑝𝑝(𝑦𝑦)
𝑝𝑝(𝑥𝑥)

 Including prior probabilities:
If 𝑝𝑝 𝑦𝑦 = 0 𝑥𝑥) > 𝑝𝑝 𝑦𝑦 = 1 𝑥𝑥), guess  salmon; otherwise, pick sea bass

�𝑦𝑦MAP = 𝛼𝛼(𝑥𝑥) = arg max
𝑦𝑦

𝑝𝑝 𝑦𝑦 𝑥𝑥) = arg max
𝑦𝑦

𝑝𝑝 𝑥𝑥 𝑦𝑦) 𝑝𝑝(𝑦𝑦)

Maximum a Posteriori (MAP) Decision

 As a  ratio test:  if  
𝑝𝑝 𝑦𝑦=1 𝑥𝑥 )
𝑝𝑝 𝑦𝑦=0 𝑥𝑥 )

> 1, guess sea bass

 Equivalent via Bayes:  if  
𝑝𝑝 𝑥𝑥 𝑦𝑦=1 )
𝑝𝑝 𝑥𝑥 𝑦𝑦=0 )

> 𝑝𝑝(𝑦𝑦=0)
𝑝𝑝(𝑦𝑦=1)

, guess sea bass

 Ignores that different mistakes can have different importance



 What does it cost for a mistake? Plane with a missile, not a big bird?
 Define loss or cost:

𝐿𝐿 𝛼𝛼 𝑥𝑥 ,𝑦𝑦 : cost of decision 𝛼𝛼 𝑥𝑥 when state is 𝑦𝑦
also often denoted 𝐶𝐶𝑖𝑖𝑖𝑖

Making it more interesting, full on Bayes

Y = 0 Y = 1

𝛼𝛼 𝑥𝑥 = 0 Correct, cost L(0,0) Incorrect, cost L(0,1)

𝛼𝛼 𝑥𝑥 = 1 incorrect, cost L(1,0) Correct, cost L(1,1)

 Classic: Pascal's wager



 So now we have: the likelihood functions p(x|y)
priors p(y)

decision rule 𝛼𝛼 𝑥𝑥
loss function 𝐿𝐿 𝛼𝛼 𝑥𝑥 ,𝑦𝑦 :

 Risk is expected loss:
𝐸𝐸 𝐿𝐿 = 𝐿𝐿 0,0) 𝑝𝑝(𝛼𝛼 𝑥𝑥 = 0,𝑦𝑦 = 0

+ 𝐿𝐿 0,1) 𝑝𝑝(𝛼𝛼 𝑥𝑥 = 0,𝑦𝑦 = 1
+ 𝐿𝐿 1,0) 𝑝𝑝(𝛼𝛼 𝑥𝑥 = 1,𝑦𝑦 = 0
+ 𝐿𝐿 1,1) 𝑝𝑝(𝛼𝛼 𝑥𝑥 = 1,𝑦𝑦 = 1

 Without loss of generality, zero cost for correct decisions
𝐸𝐸 𝐿𝐿 = 𝐿𝐿 1,0) 𝑝𝑝 𝛼𝛼 𝑥𝑥 = 1 𝑦𝑦 = 0 𝑝𝑝 𝑦𝑦 = 0

+ 𝐿𝐿 0,1) 𝑝𝑝 𝛼𝛼 𝑥𝑥 = 0 𝑦𝑦 = 1 𝑝𝑝(𝑦𝑦 = 1)
 Bayes Decision Theory says “pick decision rule 𝛼𝛼 𝑥𝑥 to minimize risk”

Risk Minimization



 Type I error (False alarm or False Positive):  Decide H1 when H0 
 Type II error (Missed detection or False Negative):  Decide H0 when H1
 Trade off
 Can work out error probabilities from conditional probabilities

Visualizing Errors



 Two possible hypotheses for data
 H0:  Null hypothesis,  H1:  Alternate hypothesis

 Model statistically:
 𝑝𝑝 𝑥𝑥 𝐻𝐻𝑖𝑖 , 𝑖𝑖 = 0,1
 Assume some distribution for each hypothesis

 Given
 Likelihood 𝑝𝑝 𝑥𝑥 𝐻𝐻𝑖𝑖 , 𝑖𝑖 = 0,1, Prior probabilities 𝑝𝑝𝑖𝑖 = 𝑃𝑃(𝐻𝐻𝑖𝑖)

 Compute posterior 𝑃𝑃(𝐻𝐻𝑖𝑖|𝑥𝑥)
 How likely is 𝐻𝐻𝑖𝑖 given the data and prior knowledge?

 Bayes’ Rule:

𝑃𝑃 𝐻𝐻𝑖𝑖 𝑥𝑥 =
𝑝𝑝 𝑥𝑥 𝐻𝐻𝑖𝑖 𝑝𝑝𝑖𝑖
𝑝𝑝(𝑥𝑥)

=
𝑝𝑝 𝑥𝑥 𝐻𝐻𝑖𝑖 𝑝𝑝𝑖𝑖

𝑝𝑝 𝑥𝑥 𝐻𝐻0 𝑝𝑝0 + 𝑝𝑝 𝑥𝑥 𝐻𝐻1 𝑝𝑝1

Often more formally written Hypothesis Testing



 Probability of error:
𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑃𝑃 �𝐻𝐻 ≠ 𝐻𝐻

= 𝑃𝑃 �𝐻𝐻 = 0 𝐻𝐻1 𝑝𝑝1 + 𝑃𝑃 �𝐻𝐻 = 1 𝐻𝐻0 𝑝𝑝0
 Write with integral:

𝑃𝑃 �𝐻𝐻 ≠ 𝐻𝐻 = ∫ 𝑝𝑝(𝑥𝑥)𝑃𝑃 �𝐻𝐻 ≠ 𝐻𝐻 𝑥𝑥 𝑑𝑑𝑥𝑥
 Error is minimized with MAP estimator

�𝐻𝐻 = 1 ⇔ 𝑃𝑃 𝐻𝐻1 𝑥𝑥 ≥ 𝑃𝑃(𝐻𝐻0|𝑥𝑥)
 Use Bayes rule:

�𝐻𝐻 = 1 ⇔ 𝑃𝑃 𝑥𝑥 𝐻𝐻1 𝑝𝑝1 ≥ 𝑃𝑃 𝑥𝑥 𝐻𝐻0 𝑝𝑝0
 Equivalent to an LRT with 𝛾𝛾 = ⁄𝑝𝑝0 𝑝𝑝1
 Probabilistic interpretation of threshold

MAP: Minimum Probability of Error



 As before, express risk as integration over 𝑥𝑥:

𝑅𝑅 = ��
𝑖𝑖𝑖𝑖
𝐶𝐶𝑖𝑖𝑖𝑖 𝑃𝑃 𝐻𝐻𝑖𝑖 𝑥𝑥 1{�𝐻𝐻 𝑥𝑥 =𝑖𝑖} 𝑝𝑝 𝑥𝑥 𝑑𝑑𝑥𝑥

 To minimize, select �𝐻𝐻 𝑥𝑥 = 1 when
 𝐶𝐶10𝑃𝑃 𝐻𝐻0 𝑥𝑥 + 𝐶𝐶11𝑃𝑃 𝐻𝐻1 𝑥𝑥 ≤ 𝐶𝐶00𝑃𝑃 𝐻𝐻0 𝑥𝑥 + 𝐶𝐶01𝑃𝑃 𝐻𝐻1 𝑥𝑥
 ⁄𝑃𝑃(𝐻𝐻1|𝑥𝑥) 𝑃𝑃 𝐻𝐻0 𝑥𝑥 ≥ ⁄(𝐶𝐶10 − 𝐶𝐶00) (𝐶𝐶11 − 𝐶𝐶01)

 By Bayes Theorem, equivalent to an LRT with
𝑃𝑃(𝑥𝑥|𝐻𝐻1)
𝑃𝑃(𝑥𝑥|𝐻𝐻0)

≥
𝐶𝐶10 − 𝐶𝐶00 𝑝𝑝0
𝐶𝐶11 − 𝐶𝐶01 𝑝𝑝1



Bayes Risk Minimization



 Scalar Gaussian 
 𝐻𝐻0: 𝑥𝑥 = 𝑤𝑤, 𝑤𝑤 ~ 𝑁𝑁 0,𝜎𝜎2

 𝐻𝐻1: 𝑥𝑥 = 𝐴𝐴 + 𝑤𝑤, 𝑤𝑤 ~ 𝑁𝑁 0,𝜎𝜎2

 Example:   A medical test for some disease
 𝑥𝑥 = measured value of the patient
 𝐻𝐻0 = patient is fine, 𝐻𝐻1 = patient is ill
 Probability model:  𝑥𝑥 is elevated with the disease

Same example basically, but posed as additive noise

𝐴𝐴 = 1



 Hypothesis:

 𝐻𝐻0: 𝑥𝑥 = 𝑤𝑤, 𝑤𝑤 ~ 𝑁𝑁 0,𝜎𝜎2

 𝐻𝐻1: 𝑥𝑥 = 𝐴𝐴 + 𝑤𝑤, 𝑤𝑤 ~ 𝑁𝑁 0,𝜎𝜎2

 Problem:  Use the LRT test to define a classifier and compute 
𝑃𝑃𝐷𝐷,𝑃𝑃𝐹𝐹𝐹𝐹

 Step 1.  Write the probability distributions:

 𝑝𝑝 𝑥𝑥 𝐻𝐻0 = 1
2𝜋𝜋𝜎𝜎

𝑆𝑆−
𝑥𝑥2

2𝜎𝜎2 ,𝑝𝑝 𝑥𝑥 𝐻𝐻1 = 1
2𝜋𝜋𝜎𝜎

𝑆𝑆−
(𝑥𝑥−𝐴𝐴)2

2𝜎𝜎2

Example :  Scalar Gaussians



 Step 2.  Write the log likelihood:

𝐿𝐿 𝑥𝑥 = ln
𝑝𝑝 𝑥𝑥 𝐻𝐻1
𝑝𝑝(𝑥𝑥|𝐻𝐻0)

=
1

2𝜎𝜎2
𝑥𝑥2 − 𝑥𝑥 − 𝐴𝐴 2

=
1

2𝜎𝜎2
2𝐴𝐴𝑥𝑥 + 𝐴𝐴2

 Step 3.  
 𝐿𝐿 𝑥𝑥 ≥ 𝛾𝛾 ⇒ 𝑥𝑥 ≥ 𝑡𝑡 = ⁄(2𝜎𝜎2𝛾𝛾 − 𝐴𝐴2) 2𝐴𝐴
 Write all further answers in terms of 𝑡𝑡 instead of 𝛾𝛾
 Classifier:

�𝐻𝐻 = �1 𝑥𝑥 ≥ 𝑡𝑡
0 𝑥𝑥 < 𝑡𝑡

Scalar Guassian continued



 Step 4.  Compute error probabilities

 𝑃𝑃𝐷𝐷 = 𝑃𝑃 �𝐻𝐻 = 1 𝐻𝐻1 = 𝑃𝑃 𝑥𝑥 ≥ 𝑡𝑡 𝐻𝐻1
 Under 𝐻𝐻1, 𝑥𝑥~𝑁𝑁(𝐴𝐴,𝜎𝜎2)

 So, 𝑃𝑃𝐷𝐷 = 𝑃𝑃 𝑥𝑥 ≥ 𝑡𝑡 𝐻𝐻1) = 𝑄𝑄(𝑡𝑡−𝐹𝐹
𝜎𝜎

)

 Similarly, 𝑃𝑃𝐷𝐷 = 𝑃𝑃 𝑥𝑥 ≥ 𝑡𝑡 𝐻𝐻0) = 𝑄𝑄(𝑡𝑡
𝜎𝜎

)

 Here, 𝑄𝑄 𝑧𝑧 = Marcum Q-function 
 𝑄𝑄 𝑧𝑧 = 𝑃𝑃 𝑍𝑍 ≥ 𝑧𝑧 , 𝑍𝑍~𝑁𝑁(0,1)

Scalar Guassian (cont)
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 Problem:  Suppose 𝑋𝑋~𝑁𝑁(𝜇𝜇,𝜎𝜎2). 
 Often must compute probabilities like 𝑃𝑃(𝑋𝑋 ≥ 𝑡𝑡)
 No closed-form expression.

 Define Marcum Q-function:
𝑄𝑄 𝑧𝑧 = 𝑃𝑃 𝑍𝑍 ≥ 𝑧𝑧 , 𝑍𝑍~𝑁𝑁(0,1)

 Let 𝑍𝑍 = ⁄(𝑋𝑋 − 𝜇𝜇) 𝜎𝜎
 Then 

𝑃𝑃 𝑋𝑋 ≥ 𝑡𝑡 = 𝑃𝑃 𝑍𝑍 ≥
𝑡𝑡 − 𝜇𝜇
𝜎𝜎

= 𝑄𝑄
𝑡𝑡 − 𝜇𝜇
𝜎𝜎

Review:  Gaussian Q-Function

2
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 Hypothesis:
 𝐻𝐻𝑖𝑖: 𝑝𝑝 𝑥𝑥 𝐻𝐻𝑖𝑖 = 𝜆𝜆𝑖𝑖𝑆𝑆−𝜆𝜆𝑖𝑖𝑥𝑥, 𝑖𝑖 = 0 , 1 Assume 𝜆𝜆0 > 𝜆𝜆1
 Find ML detector threshold and probability of false alarm…

 Step 1.  Write the conditional probability distributions  
 Nothing to do.  Already given.

 Step 2: Log likelihood:

 𝐿𝐿 𝑥𝑥 = ln 𝑝𝑝 𝑥𝑥 𝐻𝐻1
𝑝𝑝(𝑥𝑥|𝐻𝐻0)

= 𝜆𝜆0 − 𝜆𝜆1 𝑥𝑥 + ln 𝜆𝜆1
𝜆𝜆0

 ML: LRT test pick H1 if x ≥ (1/𝜆𝜆0 − 𝜆𝜆1) ln 𝜆𝜆0
𝜆𝜆1

 𝐿𝐿 𝑥𝑥 ≥ 𝛾𝛾 ⇒ 𝑥𝑥 ≥ 𝑡𝑡

Example: Two Exponentials



 Compute error probabilities

 𝑃𝑃𝐷𝐷 = 𝑃𝑃 �𝐻𝐻 = 1 𝐻𝐻1 = 𝑃𝑃 𝑥𝑥 ≥ 𝑡𝑡 𝐻𝐻1
 𝑃𝑃𝐷𝐷 = ∫𝑡𝑡

∞𝑝𝑝 𝑥𝑥 𝐻𝐻1 𝑑𝑑𝑥𝑥 = ∫𝑡𝑡
∞ 𝜆𝜆1𝑆𝑆−𝜆𝜆1𝑥𝑥𝑑𝑑𝑥𝑥 = 𝑆𝑆−𝜆𝜆1𝑡𝑡

 Similarly,  𝑃𝑃𝐹𝐹𝐹𝐹 = 𝑆𝑆−𝜆𝜆0𝑡𝑡

Two Exponentials (continued)



 Hypotheses: 𝐻𝐻𝑖𝑖: 𝑥𝑥 = 𝑁𝑁 𝜇𝜇𝑖𝑖 ,𝜎𝜎2 ,   𝑝𝑝𝑖𝑖 = 𝑃𝑃 𝐻𝐻𝑖𝑖 , 𝑖𝑖 = 0,1
 Two Gaussian densities with different means
 But same variance

 Problem:  Find the MAP estimate

MAP Example

𝜇𝜇0 𝜇𝜇1
 Solution:  First, write densities

𝑝𝑝 𝑥𝑥 𝐻𝐻𝑖𝑖 =
1
2𝜋𝜋𝜎𝜎

exp −
𝑥𝑥 − 𝜇𝜇𝑖𝑖 2

2𝜎𝜎2
 MAP estimate:  Select 

�𝐻𝐻 = 1 ⇔ 𝑝𝑝 𝑥𝑥 𝐻𝐻1 𝑝𝑝1 ≥ 𝑝𝑝 𝑥𝑥 𝐻𝐻0 𝑝𝑝0
 In log domain:

−
𝑥𝑥 − 𝜇𝜇1 2

2𝜎𝜎2
+ ln𝑝𝑝1 ≥ −

𝑥𝑥 − 𝜇𝜇0 2

2𝜎𝜎2
+ ln𝑝𝑝0



 More simplifications : �𝐻𝐻 = 1 when 

−
𝑥𝑥 − 𝜇𝜇1 2

2𝜎𝜎2
+ ln𝑝𝑝1 ≥ −

𝑥𝑥 − 𝜇𝜇0 2

2𝜎𝜎2
+ ln𝑝𝑝0

⇔ 𝑥𝑥 − 𝜇𝜇0 2 − 𝑥𝑥 − 𝜇𝜇1 2 ≤ 2𝜎𝜎2 ln
𝑝𝑝0
𝑝𝑝1

⇔ 2 𝜇𝜇1 − 𝜇𝜇0 𝑥𝑥 + 𝜇𝜇12 − 𝜇𝜇02 ≥ 2𝜎𝜎2 ln
𝑝𝑝0
𝑝𝑝1

⇔ 𝑥𝑥 ≥
𝜇𝜇1 + 𝜇𝜇0

2
+

𝜎𝜎2

𝜇𝜇1 − 𝜇𝜇0
ln
𝑝𝑝0
𝑝𝑝1

MAP Example: (Cont)



 MAP estimator: �𝐻𝐻 = 1 when 𝑥𝑥 ≥ 𝑡𝑡
 Threshold

𝑡𝑡 =
𝜇𝜇1 + 𝜇𝜇0

2
+

𝜎𝜎2

𝜇𝜇1 − 𝜇𝜇0
ln
𝑝𝑝0
𝑝𝑝1

MAP Example (cont)

Midpoint between 
Gaussians

Shifts to the left 
when 𝑝𝑝0 ≤ 𝑝𝑝1

𝜇𝜇0 𝜇𝜇1𝑡𝑡



 Often have multiple classes.  𝑦𝑦 = 1, … ,𝐾𝐾
 Most methods easily extend:
 ML:  Take max of 𝐾𝐾 likelihoods:

�𝑦𝑦 = arg max
𝑖𝑖=1,…,𝐾𝐾

𝑝𝑝(𝑥𝑥|𝑦𝑦 = 𝑖𝑖)

 MAP:  Take max of 𝐾𝐾 posteriors:

 LRT:  Take max of 𝐾𝐾 weighted likelihoods:
�𝑦𝑦 = arg max

𝑖𝑖=1,…,𝐾𝐾
𝑝𝑝(𝑥𝑥|𝑦𝑦 = 𝑖𝑖) 𝛾𝛾𝑖𝑖

Multiple Classes
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Outline
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 Any binary decision strategy has a trade-off in errors
 Reminder of Errors
 TP = true positive
 TN = true negative
 FP = false positive
 FN = false negative

 Typical illustrate: Tradeoff between TP and FP
 Receiver Operating Characteristic

ROC curves : error tradeoffs



 𝑃𝑃𝐷𝐷 vs. 𝑃𝑃𝐹𝐹𝐹𝐹
 Trace out:  𝑃𝑃𝐹𝐹𝐹𝐹 𝛾𝛾 ,𝑃𝑃𝐷𝐷 𝛾𝛾
 Shows tradeoff 
 Random guessing: 
 Select 𝐻𝐻1 randomly 𝛼𝛼 per cent of 

time 
 𝑃𝑃𝐷𝐷 = 𝛼𝛼, 𝑃𝑃𝐹𝐹𝐹𝐹 = 𝛼𝛼 ⇒ 𝑃𝑃𝐷𝐷 = 𝑃𝑃𝐹𝐹𝐹𝐹

ROC Curve 



 Simple measure of quality

 𝐴𝐴𝐴𝐴𝐶𝐶 = average of 𝑃𝑃𝐷𝐷(𝛾𝛾) with 𝑥𝑥 = 𝛾𝛾 under 𝐻𝐻0
 Proof:

𝐴𝐴𝐴𝐴𝐶𝐶 = ∫ 𝑃𝑃𝐷𝐷 𝛾𝛾 𝑃𝑃𝐹𝐹𝐹𝐹′ 𝛾𝛾 𝑑𝑑𝛾𝛾 = ∫ 𝑃𝑃𝐷𝐷 𝛾𝛾 𝑝𝑝 𝛾𝛾 𝐻𝐻0 𝑑𝑑𝛾𝛾

Area Under The Curve (AUC)
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 Hypotheses:
 𝐻𝐻𝑖𝑖: 𝑝𝑝 𝑥𝑥 𝐻𝐻𝑖𝑖 = 𝜆𝜆𝑖𝑖𝑆𝑆−𝜆𝜆𝑖𝑖𝑥𝑥 , 𝑖𝑖 = 0 , 1

 From before, LRT test is  �𝐻𝐻 = �1 𝑥𝑥 ≥ 𝑡𝑡
0 𝑥𝑥 < 𝑡𝑡

 Error probabilities: 𝑃𝑃𝐷𝐷 = 𝑆𝑆−𝜆𝜆1𝑡𝑡 ,𝑃𝑃𝐹𝐹𝐹𝐹 = 𝑆𝑆−𝜆𝜆0𝑡𝑡

 ROC curve:  
 Write 𝑃𝑃𝐷𝐷 in terms of 𝑃𝑃𝐹𝐹𝐹𝐹
 𝑡𝑡 = − 1

𝜆𝜆0
ln𝑃𝑃𝐹𝐹𝐹𝐹 ⇒ 𝑃𝑃𝐷𝐷 = 𝑃𝑃𝐹𝐹𝐹𝐹

⁄𝜆𝜆1 𝜆𝜆0

ROC Example:  Two Exponentials
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 Hypothesis testing formulation requires
 Knowledge of likelihood 𝑝𝑝(𝑥𝑥|𝐻𝐻𝑖𝑖)
 Possibly knowledge of prior 𝑃𝑃 𝐻𝐻𝑖𝑖

 Where do we get these?
 Approach 1:
 Learn distributions from data
 Then apply hypothesis testing

 Approach 2:
 Use hypothesis testing to select a form for the classifier
 Learn parameters of the classifier directly from data

Problems in Using Hypothesis Testing
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 Examples of Bayes Decision theory can be misleading because they are 
given in low dimensional spaces, 1 or 2 dim
 Most ML problems today have high dimension
 Often our geometric intuition in high-dimensions is wrong

 Example:  Consider volume of sphere of radius 𝑟𝑟 = 1 in D dimensions
 What is the fraction of volume in a thin shell of a sphere 

between 1 − 𝜖𝜖 ≤ 𝑟𝑟 ≤ 1 ?

Intuition in High-Dimensions
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 Let 𝑉𝑉𝐷𝐷 𝑟𝑟 = volume of sphere of radius 𝑟𝑟, dimension 𝐷𝐷
 𝑉𝑉𝐷𝐷 𝑟𝑟 = 𝐾𝐾𝐷𝐷𝑟𝑟𝐷𝐷

 Let 𝜌𝜌𝐷𝐷(𝜖𝜖) = fraction of volume in a shell of radius 𝜖𝜖

𝜌𝜌𝐷𝐷(𝜖𝜖) =
𝑉𝑉𝐷𝐷 1 − 𝑉𝑉𝐷𝐷(1 − 𝜖𝜖)

𝑉𝑉𝐷𝐷(1)
= 1 − 1 − 𝜖𝜖 𝐷𝐷

Example:  Sphere Hardening
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𝜌𝜌𝐷𝐷(𝜖𝜖)

𝜖𝜖
1

5

𝜖𝜖

1

𝐷𝐷 = 1

20

𝐷𝐷 = 100



 Consider a Gaussian i.i.d. vector
 𝑥𝑥 = 𝑥𝑥1, … , 𝑥𝑥𝐷𝐷 , 𝑥𝑥𝑖𝑖~𝑁𝑁(0,1)

 As 𝐷𝐷 → ∞,  probability density concentrates on shell 𝑥𝑥 ≈ 2 𝐷𝐷, 
even though 𝑥𝑥 = 0 is most likely point

 Let 𝑟𝑟 = 𝑥𝑥12 + 𝑥𝑥22 +⋯+ 𝑥𝑥𝐷𝐷2
1/2

 𝐷𝐷 = 1: 𝑝𝑝 𝑟𝑟 = 𝑐𝑐 𝑆𝑆−𝑒𝑒2/2

 𝐷𝐷 = 2: 𝑝𝑝 𝑟𝑟 = 𝑐𝑐 𝑟𝑟 𝑆𝑆−𝑒𝑒2/2

 general 𝐷𝐷: 𝑝𝑝 𝑟𝑟 = 𝑐𝑐 𝑟𝑟𝐷𝐷−1 𝑆𝑆−𝑒𝑒2/2

Gaussian Sphere Hardening

4
3



 Conclusions: As dimension increases,
 All volume of a sphere concentrates at its surface!

 Similar example:  Consider a Gaussian i.i.d. vector
 𝑥𝑥 = 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑 , 𝑥𝑥𝑖𝑖~𝑁𝑁(0,1)
 As 𝑑𝑑 → ∞,  probability density concentrates on shell

𝑥𝑥 2 ≈ 𝑑𝑑
 Even though 𝑥𝑥 = 0 is most likely point

Example:  Sphere Hardening
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 In high dimensions, 
classifiers need large number of parameters

 Example:
 Suppose 𝑥𝑥 = 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑 , each 𝑥𝑥𝑖𝑖 takes on 𝐿𝐿 values
 Hence 𝑥𝑥 takes on 𝐿𝐿𝑑𝑑 values

 Consider general classifier 𝑓𝑓(𝑥𝑥)
 Assigns each 𝑥𝑥 some value 
 If there are no restrictions on 𝑓𝑓(𝑥𝑥), needs 𝐿𝐿𝑑𝑑 paramters

Computational Issues



 Curse of dimensionality: As dimension increases
 Number parameters for functions grows exponentially 

 Most operations become computationally intractable
 Fitting the function, optimizing, storage

 What ML is doing today
 Finding tractable approximate approaches for high-dimensions

Curse of Dimensionality
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