Lecture 3

STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher

Previous lectures

- What is machine learning?
 - Objectives of machine learning
 - Supervised and Unsupervised learning
 - Examples and approaches
- Multivariate Linear regression
 - Predicts any continuous valued target from vector of features
 - Important:
 - Simple to compute, parameters easy to interpret
 - Illustrate basic procedure: Model formulation, loss function, ...
 - Many natural phenomena have a linear relationship
- Subsequent lectures build up theory behind such parametric estimation techniques

Outline

- Principles of Supervised Learning
 - Model Selection and Generalization (Alpaydin 2.7 & 2.8, Bishop 1.3)
 - Overfitting and Underfitting
- Decision Theory (1.5 Bishop and Ch3 Alpaydin)
 - Binary Classification

- Maximum Likelihood and Log likelihood
- Bayes Methods: MAP and Bayes Risk
- Receiver operating characteristic
- Minimum probability of error
- Issues in applying Bayesian classification
- Curse of Dimensionality

Outline

Principles of Supervised Learning

- Model Selection and Generalization
- Overfitting and Underfitting
- Decision Theory
 - Binary Classification
 - Maximum Likelihood and Log likelihood
 - Bayes Methods: MAP and Bayes Risk
 - Receiver operating characteristic
 - Minimum probability of error
- Issues in applying Bayesian classification
- Curse of Dimensionality

• Two key concepts in ML:

- Memorization: Finding an algorithm that fits training data well
- Generalization: Gives good results on data not yet seen. Prediction.
- Example: Suppose we have only three samples of fish
 - Can we learn a classification rule? Sure

Memorization vs. Generalization

- Many possible classifier fit training data
 - Easy to memorize the data set, but need to generalize to new data
 - All three classifiers below (Classifier 1, C2, and C3) fit data
- But, which one will predict new sample correctly?

Memorization vs. Generalization

- Which classifier predicts new sample correctly?
 - Classifier 1 predicts salmon
 - Classifier 2 predicts salmon
 - Classifier 3 predicts sea bass
- We do not know which one is right:
 - Not enough training data
 - Need more samples to generalize

Basic Tradeoff

- Generalization requires assumptions
- ML uses a model
- Basic tradeoff between three factors:
 - Model complexity: Allows to fit complex relationships
 - Amount of training data
 - Generalization error: How model fits new samples
- This class: Provides a principled ways to:
 - Formulate models that can capture complex behavior
 - Analyze how well they perform under statistical assumptions

Generalization: Underfitting and Overfitting

- Example: Consider fitting a polynomial
- Assume a low-order polynomial
 - Easy to train. Less parameters to estimate
 - But model does not capture full relation. Underfitting
- Assume too high a polynomial
 - Fits complex behavior
 - But, sensitive to noise. Needs many samples. Overfitting
- This course:

9

• How to rigorously quantify model selection and algorithm performance

Generalization: Underfitting and Overfitting

- Example: Consider fitting a polynomial
- Assume a low-order polynomial
 - Easy to train. Less parameters to estimate
 - But model does not capture full relation. Underfitting
- Assume too high a polynomial
 - Fits complex behavior
 - But, sensitive to noise. Needs many samples. Overfitting
- This course:
 - How to rigorously quantify model selection and algorithm performance

Ingredients in Supervised Learning

- Select a model: $\hat{y} = g(x, \theta)$
 - Describes how we predict target y from features x
 - Has parameters heta
- Get training data: $(x_i, y_i), i = 1, ..., n$
- Select a loss function $L(y_i, \hat{y}_i)$
 - How well prediction matches true value on the training data
- Design algorithm to try to minimize loss:

$$\hat{\theta} = \arg\min_{\theta} \sum_{i=1}^{n} L(y_i, \hat{y}_i)$$

• The art principled methods to develop models and algorithms for often intractable loss functions and complex large is what machine learning is really all about.

Outline

- Principles of Supervised Learning
 - Model Selection and Generalization
 - Overfitting and Underfitting
 - **Decision** Theory
 - Binary Classification
 - Maximum Likelihood and Log likelihood
 - Bayes Methods: MAP and Bayes Risk
 - Receiver operating characteristic
 - Minimum probability of error
- Issues in applying Bayesian classification
- Curse of Dimensionality

Decision Theory

- How to make decision in the presence of uncertainty?
- History: Prominent in WWII: radar for detecting aircraft, codebreaking, decryption
- Observed data $x \in X$, state $y \in Y$
- p(x | y): conditional distribution
 Model of how the data is generated
- Example: y ∈ {0, 1} (salmon vs. sea bass) or (airplane vs. bird, etc.)
 x: length of fish

$$p(x|y) = \frac{1}{\sqrt{2\pi}\sigma_y} \exp\left(-\frac{(x-\mu_y)^2}{2\sigma_y^2}\right)$$

• μ_y : mean, σ_y^2 : variance

Maximum Likelihood (ML) Decision

• Which fish type is more likely to given the observed fish length x?

If
$$p(x | y = 0) > p(x | y = 1)$$
,
guess salmon;
otherwise classify the fish as sea bass

• If
$$\frac{p(x \mid y=1)}{p(x \mid y=0)} > 1$$
, guess sea bass [likelihood ratio or LRT]
• equivalently: if $\log \frac{p(x \mid y=1)}{p(x \mid y=0)} > 0$ [log-likelihood ratio]
• $\hat{y}_{ML} = \alpha(x) = Se \arg \max_{y} p(x \mid y)$

• Seems reasonable, but what if salmon may be much more likely than sea bass?

Maximum a Posteriori (MAP) Decision

- Introduce prior probabilities p(y = 0) and p(y = 1)
 - Salmon more likely than sea bass: p(y = 0) > p(y = 1)
- Now, which type of fish is more likely given observed fish length?
- Bayes' Rule: $p(y \mid x) = \frac{p(x \mid y)p(y)}{p(x)}$
- Including prior probabilities: If p(y = 0 | x) > p(y = 1 | x), guess salmon; otherwise, pick sea bass

$$\hat{y}_{MAP} = \alpha(x) = \arg \max_{y} p(y \mid x) = \arg \max_{y} p(x \mid y) \ p(y)$$

Making it more interesting, full on Bayes

- What does it cost for a mistake? Plane with a missile, not a big bird?
- Define loss or cost:

 $L(\alpha(x), y)$: cost of decision $\alpha(x)$ when state is y

also often denoted C_{ij}

	$\mathbf{Y} = 0$	$\mathbf{Y} = 1$
$\alpha(x) = 0$	Correct, cost L(0,0)	Incorrect, $\cot L(0,1)$
$\alpha(x) = 1$	incorrect, cost L(1,0)	Correct, cost $L(1,1)$

• Classic: Pascal's wager

	God exists (G)	God does not exist (¬G)
Belief (B)	+∞ (infinite gain)	−1 (finite loss)
Disbelief (¬B)	−∞ (infinite loss)	+1 (finite gain)

Risk Minimization

So now we have: the likelihood functions p(x | y)
 priors p(y)
 decision rule α(x)
 loss function L(α(x), y):

• *Risk* is expected loss:

$$E[L] = L(0,0) p(\alpha(x) = 0, y = 0)$$

+ L(0,1) p(\alpha(x) = 0, y = 1)
+ L(1,0) p(\alpha(x) = 1, y = 0)
+ L(1,1) p(\alpha(x) = 1, y = 1)

• Without loss of generality, zero cost for correct decisions $E[L] = L(1,0) p(\alpha(x) = 1 | y = 0)p(y = 0)$ $+ L(0,1) p(\alpha(x) = 0 | y = 1)p(y = 1)$

• Bayes Decision Theory says "pick decision rule lpha(x) to minimize risk"

Visualizing Errors

- Type I error (False alarm or False Positive): Decide H1 when H0
- Type II error (Missed detection or False Negative): Decide H0 when H1
- Trade off
- Can work out error probabilities from conditional probabilities

Often more formally written Hypothesis Testing

- Two possible hypotheses for data
 - H0: Null hypothesis, H1: Alternate hypothesis
- Model statistically:
 - $p(x|H_i), i = 0, 1$
 - Assume some distribution for each hypothesis
- Given
 - Likelihood $p(x|H_i)$, i = 0, 1, Prior probabilities $p_i = P(H_i)$
- Compute posterior $P(H_i|x)$
 - How likely is H_i given the data and prior knowledge?
- Bayes' Rule:

$$P(H_i|x) = \frac{p(x|H_i)p_i}{p(x)} = \frac{p(x|H_i)p_i}{p(x|H_0)p_0 + p(x|H_1)p_1}$$

MAP: Minimum Probability of Error

• Probability of error:

$$P_{err} = P(\widehat{H} \neq H)$$

= $P(\widehat{H} = 0|H_1)p_1 + P(\widehat{H} = 1|H_0)p_0$

• Write with integral: $P(\widehat{H} \neq H) = \int p(x)P(\widehat{H} \neq H | x)dx$

- Error is minimized with MAP estimator $\widehat{H} = 1 \Leftrightarrow P(H_1|x) \ge P(H_0|x)$
- Use Bayes rule:

$$\widehat{H} = 1 \Leftrightarrow P(x|H_1)p_1 \ge P(x|H_0)p_0$$

- Equivalent to an LRT with $\gamma = p_0/p_1$
- Probabilistic interpretation of threshold

Bayes Risk Minimization

• As before, express risk as integration over *X*:

$$R = \int \sum_{ij} C_{ij} P(H_j | x) \mathbb{1}_{\{\widehat{H}(x)=i\}} p(x) dx$$

• To minimize, select $\widehat{H}(x) = 1$ when

- $C_{10}P(H_0|x) + C_{11}P(H_1|x) \le C_{00}P(H_0|x) + C_{01}P(H_1|x)$
- $P(H_1|x)/P(H_0|x) \ge (C_{10} C_{00})/(C_{11} C_{01})$
- By Bayes Theorem, equivalent to an LRT with $\frac{P(x|H_1)}{P(x|H_0)} \ge \frac{(C_{10} - C_{00})p_0}{(C_{11} - C_{01})p_1}$

Same example basically, but posed as additive noise

• Scalar Gaussian

A = 1

• Example: A medical test for some disease

- x = measured value of the patient
- H_0 = patient is fine, H_1 = patient is ill
- Probability model: \boldsymbol{x} is elevated with the disease

Example : Scalar Gaussians

• Hypothesis:

•
$$H_0: x = w, w \sim N(0, \sigma^2)$$

•
$$H_1: x = A + w, w \sim N(0, \sigma^2)$$

- Problem: Use the LRT test to define a classifier and compute P_D , P_{FA}
- Step 1. Write the probability distributions:

•
$$p(x|H_0) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma^2}}, p(x|H_1) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-A)^2}{2\sigma^2}}$$

Scalar Guassian continued

• Step 2. Write the log likelihood:

$$L(x) = \ln \frac{p(x|H_1)}{p(x|H_0)} = \frac{1}{2\sigma^2} (x^2 - (x - A)^2)$$

$$= \frac{1}{2\sigma^2} (2Ax + A^2)$$

• Step 3.

•
$$L(x) \ge \gamma \Rightarrow x \ge t = (2\sigma^2\gamma - A^2)/2A$$

• Write all further answers in terms of t instead of γ

• Classifier:

$$\widehat{H} = \begin{cases} 1 & x \ge t \\ 0 & x < t \end{cases}$$

Scalar Guassian (cont)

- Step 4. Compute error probabilities
 - $P_D = P(\hat{H} = 1 | H_1) = P(x \ge t | H_1)$
 - Under $H_1, x \sim N(A, \sigma^2)$

• So,
$$P_D = P(x \ge t | H_1) = Q(\frac{t-A}{\sigma})$$

• Similarly,
$$P_D = P(x \ge t | H_0) = Q(\frac{t}{\sigma})$$

- Here, Q(z) = Marcum Q-function
 - $Q(z) = P(Z \ge z), Z \sim N(0,1)$

Review: Gaussian Q-Function

- Problem: Suppose $X \sim N(\mu, \sigma^2)$.
 - Often must compute probabilities like $P(X \ge t)$
 - No closed-form expression.
- Define Marcum Q-function: $Q(z) = P(Z \ge z), Z \sim N(0,1)$
- Let $Z = (X \mu)/\sigma$
- Then

Example: Two Exponentials

- Hypothesis:
 - H_i : $p(x|H_i) = \lambda_i e^{-\lambda_i x}$, i = 0, 1 Assume $\lambda_0 > \lambda_1$
 - Find ML detector threshold and probability of false alarm...
- Step 1. Write the conditional probability distributions
 Nothing to do. Already given.
- Step 2: Log likelihood:

•
$$L(x) = \ln \frac{p(x|H_1)}{p(x|H_0)} = (\lambda_0 - \lambda_1)x + \ln \frac{\lambda_1}{\lambda_0}$$

• ML: LRT test pick H1 if $x \ge (1/\lambda_0 - \lambda_1) \ln \frac{\lambda_0}{\lambda_1}$

•
$$L(x) \ge \gamma \Rightarrow x \ge t$$

Two Exponentials (continued)

• Compute error probabilities

•
$$P_D = P(\widehat{H} = 1 | H_1) = P(x \ge t | H_1)$$

•
$$P_D = \int_t^\infty p(x|H_1)dx = \int_t^\infty \lambda_1 e^{-\lambda_1 x} dx = e^{-\lambda_1 t}$$

• Similarly,
$$P_{FA} = e^{-\lambda_0 t}$$

MAP Example

- Hypotheses: H_i : $x = N(\mu_i, \sigma^2)$, $p_i = P(H_i)$, i = 0, 1
- Two Gaussian densities with different means
 - But same variance
- Problem: Find the MAP estimate

 μ_1

 μ_0

• Solution: First, write densities

$$p(x|H_i) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu_i)^2}{2\sigma^2}\right)$$

- MAP estimate: Select $\widehat{H} = 1 \Leftrightarrow p(x|H_1)p_1 \ge p(x|H_0)p_0$
- In log domain:

$$-\frac{(x-\mu_1)^2}{2\sigma^2} + \ln p_1 \ge -\frac{(x-\mu_0)^2}{2\sigma^2} + \ln p_0$$

• More simplifications : $\widehat{H} = 1$ when

$$\frac{-\frac{(x-\mu_1)^2}{2\sigma^2} + \ln p_1}{(x-\mu_0)^2} \ge -\frac{(x-\mu_0)^2}{2\sigma^2} + \ln p_0}{(x-\mu_0)^2 - (x-\mu_1)^2} \le 2\sigma^2 \ln \frac{p_0}{p_1}$$

$$\Leftrightarrow 2(\mu_1 - \mu_0)x + \mu_1^2 - \mu_0^2 \ge 2\sigma^2 \ln \frac{p_0}{p_1} \\ \Leftrightarrow x \ge \frac{\mu_1 + \mu_0}{2} + \frac{\sigma^2}{\mu_1 - \mu_0} \ln \frac{p_0}{p_1}$$

MAP Example (cont)

• MAP estimator: $\widehat{H} = 1$ when $x \ge t$

• Threshold

Multiple Classes

- Often have multiple classes. y = 1, ..., K
- Most methods easily extend:

32

• ML: Take max of *K* likelihoods:

$$\hat{y} = \arg \max_{i=1,\dots,K} p(x|y=i)$$

- MAP: Take max of *K* posteriors:
- LRT: Take max of *K* weighted likelihoods: $\hat{y} = \arg \max_{i=1,...,K} p(x|y=i) \gamma_i$

Outline

- Principles of Supervised Learning
 - Model Selection and Generalization
 - Overfitting and Underfitting
- Decision Theory

- Binary Classification
- Maximum Likelihood and Log likelihood
- Bayes Methods: MAP and Bayes Risk
- Receiver operating characteristic
- Minimum probability of error
- Issues in applying Bayesian classification
- Curse of Dimensionality

ROC curves : error tradeoffs

- Any binary decision strategy has a trade-off in errors
- Reminder of Errors
 - TP = true positive
 - TN = true negative
 - FP = false positive
 - FN = false negative

- Typical illustrate: Tradeoff between TP and FP
- Receiver Operating Characteristic

ROC Curve

- P_D vs. P_{FA}
- Trace out: $(P_{FA}(\gamma), P_D(\gamma))$
- Shows tradeoff
- Random guessing:
 - Select H_1 randomly α per cent of time

•
$$P_D = \alpha$$
, $P_{FA} = \alpha \Rightarrow P_D = P_{FA}$

Area Under The Curve (AUC)

- Simple measure of quality
- $AUC = \text{average of } P_D(\gamma) \text{ with } x = \gamma \text{ under } H_0$
- Proof:

36

 $AUC = \int P_D(\gamma) P'_{FA}(\gamma) d\gamma = \int P_D(\gamma) p(\gamma | H_0) d\gamma$

ROC Example: Two Exponentials

• Hypotheses:

•
$$H_i$$
: $p(x|H_i) = \lambda_i e^{-\lambda_i x}$, $i = 0, 1$

- From before, LRT test is $\widehat{H} = \begin{cases} 1 & x \ge t \\ 0 & x < t \end{cases}$
- Error probabilities: $P_D = e^{-\lambda_1 t}$, $P_{FA} = e^{-\lambda_0 t}$
- ROC curve:
 - Write P_D in terms of P_{FA}

•
$$t = -\frac{1}{\lambda_0} \ln P_{FA} \Rightarrow P_D = P_{FA}^{\lambda_1/\lambda_0}$$

Outline

- Principles of Supervised Learning
 - Model Selection and Generalization
 - Overfitting and Underfitting
- Decision Theory

- Binary Classification
- Maximum Likelihood and Log likelihood
- Bayes Methods: MAP and Bayes Risk
- Receiver operating characteristic
- Minimum probability of error
- Issues in applying Bayesian classification
- Curse of Dimensionality

Problems in Using Hypothesis Testing

- Hypothesis testing formulation requires
 - Knowledge of likelihood $p(x|H_i)$
 - Possibly knowledge of prior $P(H_i)$
- Where do we get these?
- Approach 1:

- Learn distributions from data
- Then apply hypothesis testing
- Approach 2:
 - Use hypothesis testing to select a form for the classifier
 - Learn parameters of the classifier directly from data

Outline

- Principles of Supervised Learning
 - Model Selection and Generalization
 - Overfitting and Underfitting
- Decision Theory

- Binary Classification
- Maximum Likelihood and Log likelihood
- Bayes Methods: MAP and Bayes Risk
- Receiver operating characteristic
- Minimum probability of error
- Issues in applying Bayesian classification
 Curse of Dimensionality

Intuition in High-Dimensions

- Examples of Bayes Decision theory can be misleading because they are given in low dimensional spaces, 1 or 2 dim
 - Most ML problems today have high dimension

- Often our geometric intuition in high-dimensions is wrong
- Example: Consider volume of sphere of radius *r* = 1 in *D* dimensions
 What is the fraction of volume in a thin shell of a sphere between 1 − *ε* ≤ *r* ≤ 1 ?

Example: Sphere Hardening

42

• Let $V_D(r)$ = volume of sphere of radius r, dimension D• $V_D(r) = K_D r^D$ • Let $\rho_D(\epsilon)$ = fraction of volume in a shell of radius ϵ $\rho_D(\epsilon) = \frac{V_D(1) - V_D(1 - \epsilon)}{V_D(1)} = 1 - (1 - \epsilon)^D$ $ho_D(\epsilon)$ D = 10020 D = 1 $\boldsymbol{\epsilon}$ 1

Gaussian Sphere Hardening

- Consider a Gaussian i.i.d. vector
 - $x = (x_1, ..., x_D), x_i \sim N(0, 1)$
- As $D \to \infty$, probability density concentrates on shell $||x|| \approx \sqrt[2]{D}$, even though x = 0 is most likely point

Example: Sphere Hardening

- Conclusions: As dimension increases,
 - All volume of a sphere concentrates at its surface!
- Similar example: Consider a Gaussian i.i.d. vector

•
$$x = (x_1, ..., x_d), x_i \sim N(0, 1)$$

- As $d \to \infty$, probability density concentrates on shell $\|x\|^2 \approx d$
- Even though x = 0 is most likely point

Computational Issues

- In high dimensions, classifiers need large number of parameters
- Example:
 - Suppose $x = (x_1, ..., x_d)$, each x_i takes on L values
 - Hence x takes on L^d values
- Consider general classifier f(x)
 - Assigns each *x* some value
 - If there are no restrictions on f(x), needs L^d paramters

Curse of Dimensionality

- Curse of dimensionality: As dimension increases
 - Number parameters for functions grows exponentially
- Most operations become computationally intractable
 - Fitting the function, optimizing, storage
- What ML is doing today
 - Finding tractable approximate approaches for high-dimensions