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Previous lectures

® What is machine learning?
® Objectives of machine learning
® Supervised and Unsupervised learning
Examples and approaches
® Multivariate Linear regression
® Predicts any continuous valued target from vector of features
® Important:
Simple to compute, parameters easy to interpret

* |llustrate basic procedure: Model formulation, loss function, ...

® Many natural phenomena have a linear relationship

° Subsequent lectures build up theory behind such parametric
estimation techniques
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Outline

® Principles of Supervised Learning
® Model Selection and Generalization (Alpaydin 2.7 & 2.8, Bishop 1.3)
® Overtitting and Undertitting
® Decision Theory (1.5 Bishop and Ch3 Alpaydin)
® Binary Classification
® Maximum Likelihood and Log likelihood
® Bayes Methods: MAP and Bayes Risk
® Receiver operating characteristic

¢ Minimum probability of error
® [ssues in applying Bayesian classification

e Curse of Dimensionality

T =



Outline

Principles of Supervised Learning
® Model Selection and Generalization
® Opvertitting and Underfitting
® Decision Theory
® Binary Classification
® Maximum Likelihood and Log likelihood
* Bayes Methods: MAP and Bayes Risk
® Receiver operating characteristic
® Minimum probability of error

® Issues in applying Bayesian classification

e Curse of Dimensionality
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Memorization vs. Generalization

* Two key concepts in ML:

® Memorization: Finding an algorithm that fits training data well

® Generalization: Gives good results on data not yet seen. Prediction.
® Example: Suppose we have only three samples of fish

® Can we learn a classification rule? Sure

@
= @ Class 1 (sea bass)
=y ®
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2 O  Class 2 (salmon)
5 O
2

Fish length
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Memorization vs. Generalization

* Many possible classifier fit training data

* Easy to memorize the data set, but need to generalize to new data

o All three classifiers below (Classifier 1, C2, and C3) fit data

® But, which one will predict new sample correctly?

@
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® sea bass 2 ®
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O salmon = O
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Fish length




Memorization vs. Generalization

® Which classitier predicts new sample correctly?
® Classifier 1 predicts salmon
® Classifier 2 predicts salmon

® sea bass
® (lassifier 3 predicts sea bass

O salmon

® We do not know which one is right:
® Not enough training data

® Need more samples to generalize

Fish weight

Fish length




Basic Tradeoft

= (Generalization requires assumptions
= ML uses a model

= Basic tradeoff between three factors:
e Model complexity: Allows to fit complex relationships
e  Amount of training data

* Generalization error: How model fits new samples
= This class: Provides a principled ways to:

Formulate models that can capture complex behavior

° Analyze how well they perform under statistical assumptions
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Generalization: Underfitting and Overfitting

Underfitting Just right! overfitting

* Example: Consider fitting a polynomial

® Assume a low-order polynomial

® Easy to train. Less parameters to estimate

® But model does not capture full relation. Underfitting
® Assume too high a polynomial

* Fits complex behavior

* But, sensitive to noise. Needs many samples. Overfitting

® This course:

* How to rigorously quantify model selection and algorithm performance
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Generalization: Underfitting and Overfitting

underfit
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* Example: Consider fitting a polynomial

® Assume a low-order polynomial

® Easy to train. Less parameters to estimate

® But model does not capture full relation. Underfitting
® Assume too high a polynomial

* Fits complex behavior

* But, sensitive to noise. Needs many samples. Overfitting
® This course:

* How to rigorously quantify model selection and algorithm performance
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Ingredients in Supervised Learning

® Selecta model: y = g(x,0)
® Describes how we predict target y from features X

® Has parameters 0
* Get training data: (x;,v;),i=1,..,n
e Select a loss function L(y;, ¥;)
* How well prediction matches true value on the training data

® Design algorlthm to try to rninirnize loss:

0 = argmmZ L(yi, 91)

® The art principled methods to develop models and
algorithms for often intractable loss functions and complex

large is what machine learning is really all about.
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Outline

® Principles of Supervised Learning
® Model Selection and Generalization

° Overfitting and Underfitting

‘ Decision Theory

® Binary Classification

® Maximum Likelihood and Log likelihood
* Bayes Methods: MAP and Bayes Risk

® Receiver operating characteristic

® Minimum probability of error

® Issues in applying Bayesian classification

e Curse of Dimensionality
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Decision Theory

e How to make decision in the presence of uncertainty?

° History: Prominent in W WII:

radar for detecting aircratt, codebreaking, decryption

® Observed datax € X, statey € Y
® p(x|y): conditional distribution
Model of how the data is generated

® Example: y € {0, 1} (salmon vs. sea bass) or (airplane vs. bird, etc.)
x: length of fish _
P& 7} Sea bags

_ (x #y)
p(xly)—w_ ex p( 203 )

® Uy:mean, O'y: variance ——— )9(




g Maximum Likelihood (ML) Decision

® Which fish type is more likely to
given the observed fish length x? P& 4

fp(x[y=0)>p(x|y=1),
guess salmon; — X

otherwise classify the fish as sea bass

k p(x|y=1)

" G y=0)

> 1, guess sea bass [likelihood ratio or LRT]

p(x|y=1)
p(x|y=0)

* ymL = a(x) = Searg manp(x | v)

* equivalently: if log > ( | log-likelihood ratio]

® Seems reasonable, but what if salmon may be much more likely than

sea bass?

T =
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Maximum a Posteriori (MAP) Decision

* Introduce prior probabilities p(y = 0) and p(y = 1)
* Salmon more likely than sea bass: p(y = 0) > p(y = 1)
* Now, which type of fish is more likely given observed fish length?

p(x | y)p(y)
p(x)

° Bayes’ Rule: p(y | x) =

° Including prior probabilities:

Ifp(y =0]|x) >p(y =1]x), guess salmon; otherwise, pick sea bass

Juap = a(x) = argmaxp(y | x) = arg maxp(x | ¥) p(y)




a

Making it more interesting, full on Bayes

® What does it cost for a mistake? Plane with a missile, not a big bird?
® Detine loss or cost:
L(a(x),y): cost of decision @(x) when state is y
also often denoted Cj;

I =T T N T

a(x) =0 Correct, cost L(0,0) Incorrect, cost L(0,1)

a(x) =1 incorrect, cost L(1,0) Correct, cost L(1,1)

® (Classic: Pascal's wager

God exists (G) | God does not exist (7G)
Belief (B) +20 (infinite gain) =1 (finite loss)

Disbelief ("B) @ —< (infinite loss) +1 (finite gain)

_:_Eﬁ




Risk Minimization

® So now we have: the likelihood tunctions p(x|y)
priors p(y)
decision rule a(x)
loss function L(a(x),y):
® Risk is expected loss:
E[L] = LO:6Tp(a(x) =0,y = 0)
+L(0,) p(a(x) =0,y=1)
+ L(1,0) p(a(x) =1,y =0)

+LAATP(a(x) = 1,y = 1)

* Without loss of generality, zero cost for correct decisions

E[L] = L(1,0) p(a(x) =1]y =0)p(y = 0)
+L(0,1) pla(x) =0y =1Dply =1)

* Bayes Decision Theory says “pick decision rule a (x) to minimize risk”

T =




Visualizing Errors

* Type I error (False alarm or False Positive): Decide H1 when HO
* Type Il error (Missed detection or False Negative): Decide HO when H1
® Trade off

e Can work out error probabilities from conditional probabilities

N

EON |
~———Decide Hy == 1=—r Decide H;—~
(Fy) (Ry)

-

— o]




. Often more formally written Hypothesis Testing

* Two possible hypotheses for data
® HO: Null hypothesis, H1: Alternate hypothesis
® Model statistically:
* p(x|H;),i =0,1
* Assume some distribution for each hypothesis
® Given
e Likelihood p(x|H;),i = 0,1, Prior probabilities p; = P(H;)
* Compute posterior P(H;|x)
* How likely is H; given the data and prior knowledge?
® Bayes’ Rule:

P(H; |x) = p(x|H)p; p(x|H)p;

p(x)  p(x|Hy)po + p(x|Hy)ps
e T




MAP: Minimum Probability of Error

® Probability of error:
P,..=P(H #H)

= P(H = 0|H,)p, + P(H = 1|H,)p,
* Write with integral:

P(H=+H) = [px)P(H # H|x)dx
® Error is minimized with MAP estimator

H=1¢s P(H{|x) = P(Hy|x)

* Use Bayes rule:

H =1 e P(x|H)p; = P(x|Hy)py
® Equivalent to an LRT with Yy = py /P1
* Probabilistic interpretation of threshold

T =




Bayes Risk Minimization

® As before, express risk as integration over X:
R = j D Gy P(H) ) ey PO
ij

® To minimize, select H (x) = 1 when
* CyoP(Holx) + C11P(Hqlx) < CooP(Holx) + Co1 P(Hy|x)
e P(Hy|x)/P(Hplx) = (C1o — Co0)/(C11 — Co1)
* By Bayes Theorem, equivalent to an LRT with
P(x|Hy) S (€10 — Coo)Po

P(x|Hy) = (€11 — Co1)p1
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Same example basically, but posed as additive noise

® Scalar Gaussian
cHy: x=w, w ~N(O,02)
cHi: x=A+w, W~N(0,O‘2)

plx[0); Hy)

...... ~ IIU]

|
i
i
|
I
1
|
|
I
1
1 4

° Example: A medical test for some disease

® X = measured value of the patient

* Hy = patient is fine, H; = patient is ill
° Probability model: X is elevated with the disease




Example . Scalar Gaussians

* Hypothesis:
*Hy: x=w, w~N(0,02)
*Hi: x=A+w, w~N(0,02)

® Problem: Use the LRT test to define a classitier and compute
Pp, P4

* Step 1. Write the probability distributions:

2 _(x—A)2

1 1

* p(xlto) = e 2%, p(x|Hy) = F—e 2




Scalar Guassian continued

® Step 2. Write the log likelihood:
L(x) = 1nl??(leﬂ 1
(x|Hy) 204

=53 (24x + A?)

(x%2 — (x — A)?)

* Step 3.
cLx)=y=>x=>t= o’y —A%)/24

® Write all further answers in terms of t instead of ¥

e (Classifier:
—~ =
. {1 x>t
0 x<t

e T



Scalar Guassian (cont)

* Step 4. Compute error probabilities
» P, =P(H =1|H;) = P(x > t|H,)
® Under Hy, x~N (A, 0'2)

t—A
® So, P, = P(x = t|Hy) = Q(T)
° Similarly, Py = P(x = tlHO) = Q(i)

* Here, Q(z) = Marcum Q-function
*Q(z) =P(Z =2z), Z~N(0,1)




Review: Gaussian (Q-Function

® Problem: Suppose X~N (U, o?).
* Often must compute probabilities like P(X = t)

® No closed-form expression.

® Define Marcum Q-function:
Q(z) =P(Z =22z), Z~N(0,1)

o LetZ=(X—p)/o

® Then

t—Uu

P(X2t)=P(ZZ )=Q(

0}




Example: Two Exponentials

* Hypothesis:
o H: p(x|H) =Ae ™% i=0,1 Assumely, > 14
* Find ML detector threshold and probability of false alarm...

® Step 1. Write the conditional probability distributions
° Nothing to do. Already given.

® Step 2: Log likelihood:

. _ 1, P(x|Hy) _ A
L(x) =In el = (Ao —A1)x +1n ”

A
e ML: LRT test pick H1 if x = (1/4g5 — A1) ln/l—0
1

ceL(x)z2y=>x2>t
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Two Exponentials (continued)

* Compute error probabilities
» P, =P(H =1|H;) = P(x > t|H,)

° Pp = ftOOP(X|H1)dx = ftoo e M*dx = et
_Agt

® Similarly, Ppy = €
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MAP Example

* Hypotheses: H;: x = N(,Lli,O'z), p; = P(H;), i=0,1
® Two Gaussian densities with different means

® But same variance

® Problem: Find the MAP estimate /

® Solution: First, write densities Ho H1
1 (x — py)?
H;) = —
p(Xl l) o exp ( 20_2

® MAP estimate: S/e\lect
H =1 p(x|H)p, = p(x|Hy)po

°® In log domain:

(x — pq1)? (x — po)?
— 20_2 -+ ln pl 2 - 20_2

+ In p,




MAP Example: (Cont)

* More simplifications : H = 1 when

(x — puy)? (x — po)?
— 20_2 + In D1 = —

S (x—p)* — (x —py)? £ 20%In—

P1

2 2 2 1.. Po

S 2(Ug — o)X + Uy — Uy = 20 lnp—

+ g° 1
(:)leh .Uo_l_ lnpo

H1 — Uy P1




MAP Example (cont)

® MAP estimator: H = 1whenx =t

® Threshold
2

+ o
p = 1T Ho n In 20
I 2 H1—Ho P1
Midpoint between Shifts to the left

Gaussians when p, < p4




Multiple Classes

* Often have multiple classes. y =1, ..., K

® Most methods easily extend:
® ML: Take max of K likelihoods:

y =arg max p(x|y =1i)

® MAP: Take max of K posteriors:

o LRT: Take max of K Weighted likelihoods:

y =arg max p(x|y =1)y;




Outline

® Principles of Supervised Learning
® Model Selection and Generalization

° Overfitting and Underfitting

® Decision Theory

® Binary Classification

® Maximum Likelihood and Log likelihood
* Bayes Methods: MAP and Bayes Risk

Receiver operating characteristic

® Minimum probability of error
® [ssuesin applying Bayesian classification

e Curse of Dimensionality
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ROC curves : error tradeofts

* Any binary decision strategy has a trade-off in errors

® Reminder of Errors

® TP = true positive

! =
® TN = true negative 4‘ PN

e FP = false positive
e FN = false negative
® Typical illustrate: Tradeoff between TP and FP

® Receiver Operating Characteristic

100% +

PiTP




ROC Curve

® PD VS. PFA Comparing ROC Curves
1
® Trace out: (PFA (v), Pp ()/)) 09 -
08 -
® Shows tradeoff 07 -
il
* Random guessing: 05 -
204 -
® Select Hy randomly & per cent of 2 o] e
tlme E 02 - _ Gaod
0.1 1 Excellent
°Pp=a, Ppy=a = Pp=Pgy 0 -
0 o402 020405806 0F 0209 4
False positive rate




* Area Under The Curve (AUC) A

* Simple measure of quality

* AUC = average of Pp(y) with X = ¥ under H

® Proof:

AUC = fPD(V)PI;A(V)dV = fPD(V)p(VlHO)dV

ARDC = L7343

i Detection rate

False alarm

e T




ROC Example: Two Exponentials

° Hypotheses:
* Hi: p(x|H;)) = Le™*, i=0,1

o~ =
® From before, LRT testis H = {(1) i 2 ;
* Error probabilities: Pp = e_)‘lt, Pr, = e Aot
e ROC curve:
® Write Pp in terms of Pry
_ _1 _ pli/A
.t__l_olnPFA:>PD_PF[% 0

e T



Outline

® Principles of Supervised Learning
® Model Selection and Generalization

° Overfitting and Underfitting

® Decision Theory
® Binary Classification
® Maximum Likelihood and Log likelihood
* Bayes Methods: MAP and Bayes Risk
® Receiver operating characteristic

¢ Minimum probability of error

‘ Issues in applying Bayesian classification

e Curse of Dimensionality

e T



o Problems in Using Hypothesis Testing

* Hypothesis testing formulation requires
e Knowledge of likelihood p(x|H;)
® Possibly knowledge of prior P (H;)

® Where do we get these?

* Approach 1:
® | earn distributions from data

® Then apply hypothesis testing
* Approach 2:

® Use hypothesis testing to select a form for the classifier

® Learn parameters of the classifier directly from data

e T



Outline

® Principles of Supervised Learning
® Model Selection and Generalization
® Opvertitting and Underfitting
® Decision Theory
® Binary Classification
® Maximum Likelihood and Log likelihood
* Bayes Methods: MAP and Bayes Risk
® Receiver operating characteristic

¢ Minimum probability of error

® Issues in applying Bayesian classification

‘ Curse of Dimensionality

e T
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Intuition in High—Dimensions

® Examples of Bayes Decision theory can be misleading because they are

given in low dimensional spaces, 1 or 2 dim
® Most ML problems today have high dimension

e Often our geometric intuition in high—dimensions is wrong

© Example: Consider volume of sphere of radius 7 = 1 in D dimensions

® What is the fraction of volume in a thin shell of a sphere
betweenl —e <r <17




Example: Sphere Hardening

* Let V() = volume of sphere of radius 1, dimension D
* Vp(r) = Kpr”

® Let pp(€) = fraction of volume in a shell of radius €
Vp(1) = Vp(1—¢€)

pp(€) = =1-(1-¢)°

Vp(1)
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Gaussian Sphere Hardening

® Consider a Gaussian i.i.d. vector
e x = (Xq,...,Xp), x;~N(0,1)

* As D — oo, probability density concentrates on shell x| = %,
even though x = 0 is most likely point

o ety = (X12 + Xzz 4+ ...+ xlz))l/Z /\P(V)

eD=1:p(r)=ce /2

eD=2:p(r)=cre ™ /?

° general D: p(r) = rD=1 g=1%/2




Example: Sphere Hardening

® Conclusions: As dimension increases,

e All volume of a sphere concentrates at its surface!

* Similar example: Consider a Gaussian i.i.d. vector
o x = (Xq,...,%Xq), x;~N(0,1)

* Asd — oo, probability density concentrates on shell

Ix]1* ~ d

® Even though X = 0 is most likely point




Computational [ssues

® In high dimensions,

classifiers need large number of parameters
o Example:

® Suppose X = (X1, ..., Xq), each x; takes on L values

e Hence X takes on L% values

* Consider general classifier f (x)

® Assigns each X some value

® If there are no restrictions on f (x), needs L% paramters




Curse of Dimensionality

® Curse of dimensionality: As dimension increases
® Number parameters for functions grows exponentially

® Most operations become computationally intractable

* Fitting the function, optimizing, storage

e What ML is doing today

° Finding tractable approximate approaches for high—dimensions
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