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 What is machine learning?
 Objectives of machine learning
 Supervised and Unsupervised learning 
 Examples and approaches 

 Multivariate Linear regression
 Predicts any continuous valued target from vector of features
 Important:
 Simple to compute, parameters easy to interpret

 lllustrate basic procedure:  Model formulation, loss function, ...
 Many natural phenomena have a linear relationship

 Subsequent lectures build up theory behind such parametric 
estimation techniques

Previous lectures



 Principles of Supervised Learning
 Model Selection and Generalization (Alpaydin 2.7 & 2.8, Bishop 1.3)
 Overfitting and Underfitting

 Decision Theory (1.5 Bishop and Ch3 Alpaydin)
 Binary Classification
 Maximum Likelihood and Log likelihood
 Bayes Methods: MAP and Bayes Risk
 Receiver operating characteristic
 Minimum probability of error

 Issues in applying Bayesian classification
 Curse of Dimensionality
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 Two key concepts in ML:
 Memorization:  Finding an algorithm that fits training data well
 Generalization:  Gives good results on data not yet seen. Prediction.

 Example:  Suppose we have only three samples of fish
 Can we learn a classification rule? Sure

Memorization vs. Generalization
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 Many possible classifier fit training data
 Easy to memorize the data set, but need to generalize to new data
 All three classifiers below (Classifier 1, C2, and C3) fit data

 But, which one will predict new sample correctly?
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 Which classifier predicts new sample correctly?
 Classifier 1 predicts salmon
 Classifier 2 predicts salmon
 Classifier 3 predicts sea bass

 We do not know which one is right:
 Not enough training data
 Need more samples to generalize

Memorization vs. Generalization
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Basic Tradeoff

 Generalization requires assumptions
 ML uses a model
 Basic tradeoff between three factors:

• Model complexity:  Allows to fit complex relationships
• Amount of training data
• Generalization error:  How model fits new samples

 This class:  Provides a principled ways to:
• Formulate models that can capture complex behavior
• Analyze how well they perform under statistical assumptions



 Example:  Consider fitting a polynomial 
 Assume a low-order polynomial

 Easy to train.  Less parameters to estimate
 But model does not capture full relation.  Underfitting

 Assume too high a polynomial
 Fits complex behavior
 But, sensitive to noise.  Needs many samples.  Overfitting

 This course:
 How to rigorously quantify model selection and algorithm performance

Generalization: Underfitting and Overfitting
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 Select a model:   �𝑦𝑦 = 𝑔𝑔(𝑥𝑥,𝜃𝜃)
 Describes how we predict target 𝑦𝑦 from features 𝑥𝑥
 Has parameters 𝜃𝜃

 Get training data:  𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛
 Select a loss function 𝐿𝐿(𝑦𝑦𝑖𝑖, �𝑦𝑦𝑖𝑖)
 How well prediction matches true value on the training data

 Design algorithm to try to minimize loss:

𝜃̂𝜃 = arg min
𝜃𝜃
�
𝑖𝑖=1

𝑛𝑛

𝐿𝐿(𝑦𝑦𝑖𝑖, �𝑦𝑦𝑖𝑖)

 The art principled methods to develop models and 
algorithms for often intractable loss functions and complex 
large is what machine learning is really all about.

Ingredients in Supervised Learning
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 How to make decision in the presence of uncertainty?
 History:  Prominent in WWII:

radar for detecting aircraft, codebreaking, decryption

 Observed data x ∈ X,  state y ∈ Y
 p(x|y): conditional distribution

Model of how the data is generated

 Example:  y ∈ {0, 1} (salmon vs. sea bass) or (airplane vs. bird, etc.)
x: length of fish

Decision Theory



 Which fish type is more likely to
given the observed fish length x?

If p( x | y = 0 ) > p( x | y = 1 ),
guess  salmon;
otherwise classify the fish as sea bass

 If   
𝑝𝑝 𝑥𝑥 𝑦𝑦=1 )
𝑝𝑝 𝑥𝑥 𝑦𝑦=0 )

> 1, guess sea bass  [likelihood ratio or LRT]

 equivalently: if   log 𝑝𝑝 𝑥𝑥 𝑦𝑦=1 )
𝑝𝑝 𝑥𝑥 𝑦𝑦=0 )

> 0 [log-likelihood ratio]

 �𝑦𝑦ML = 𝛼𝛼(𝑥𝑥) = 𝑆𝑆𝑆𝑆 arg max
𝑦𝑦

𝑝𝑝 𝑥𝑥 𝑦𝑦)

 Seems reasonable, but what if salmon may be much more likely than 
sea bass?

Maximum Likelihood (ML) Decision



 Introduce prior probabilities 𝑝𝑝 𝑦𝑦 = 0 and  𝑝𝑝(𝑦𝑦 = 1)
 Salmon more likely than sea bass:  𝑝𝑝 𝑦𝑦 = 0 > 𝑝𝑝(𝑦𝑦 = 1)

 Now, which type of fish is more likely given observed fish length?

 Bayes’ Rule: 𝑝𝑝 𝑦𝑦 𝑥𝑥) = 𝑝𝑝 𝑥𝑥 𝑦𝑦)𝑝𝑝(𝑦𝑦)
𝑝𝑝(𝑥𝑥)

 Including prior probabilities:
If 𝑝𝑝 𝑦𝑦 = 0 𝑥𝑥) > 𝑝𝑝 𝑦𝑦 = 1 𝑥𝑥), guess  salmon; otherwise, pick sea bass

�𝑦𝑦MAP = 𝛼𝛼(𝑥𝑥) = arg max
𝑦𝑦

𝑝𝑝 𝑦𝑦 𝑥𝑥) = arg max
𝑦𝑦

𝑝𝑝 𝑥𝑥 𝑦𝑦) 𝑝𝑝(𝑦𝑦)

Maximum a Posteriori (MAP) Decision

 As a  ratio test:  if  
𝑝𝑝 𝑦𝑦=1 𝑥𝑥 )
𝑝𝑝 𝑦𝑦=0 𝑥𝑥 )

> 1, guess sea bass

 Equivalent via Bayes:  if  
𝑝𝑝 𝑥𝑥 𝑦𝑦=1 )
𝑝𝑝 𝑥𝑥 𝑦𝑦=0 )

> 𝑝𝑝(𝑦𝑦=0)
𝑝𝑝(𝑦𝑦=1)

, guess sea bass

 Ignores that different mistakes can have different importance



 What does it cost for a mistake? Plane with a missile, not a big bird?
 Define loss or cost:

𝐿𝐿 𝛼𝛼 𝑥𝑥 ,𝑦𝑦 : cost of decision 𝛼𝛼 𝑥𝑥 when state is 𝑦𝑦
also often denoted 𝐶𝐶𝑖𝑖𝑖𝑖

Making it more interesting, full on Bayes

Y = 0 Y = 1

𝛼𝛼 𝑥𝑥 = 0 Correct, cost L(0,0) Incorrect, cost L(0,1)

𝛼𝛼 𝑥𝑥 = 1 incorrect, cost L(1,0) Correct, cost L(1,1)

 Classic: Pascal's wager



 So now we have: the likelihood functions p(x|y)
priors p(y)

decision rule 𝛼𝛼 𝑥𝑥
loss function 𝐿𝐿 𝛼𝛼 𝑥𝑥 ,𝑦𝑦 :

 Risk is expected loss:
𝐸𝐸 𝐿𝐿 = 𝐿𝐿 0,0) 𝑝𝑝(𝛼𝛼 𝑥𝑥 = 0,𝑦𝑦 = 0

+ 𝐿𝐿 0,1) 𝑝𝑝(𝛼𝛼 𝑥𝑥 = 0,𝑦𝑦 = 1
+ 𝐿𝐿 1,0) 𝑝𝑝(𝛼𝛼 𝑥𝑥 = 1,𝑦𝑦 = 0
+ 𝐿𝐿 1,1) 𝑝𝑝(𝛼𝛼 𝑥𝑥 = 1,𝑦𝑦 = 1

 Without loss of generality, zero cost for correct decisions
𝐸𝐸 𝐿𝐿 = 𝐿𝐿 1,0) 𝑝𝑝 𝛼𝛼 𝑥𝑥 = 1 𝑦𝑦 = 0 𝑝𝑝 𝑦𝑦 = 0

+ 𝐿𝐿 0,1) 𝑝𝑝 𝛼𝛼 𝑥𝑥 = 0 𝑦𝑦 = 1 𝑝𝑝(𝑦𝑦 = 1)
 Bayes Decision Theory says “pick decision rule 𝛼𝛼 𝑥𝑥 to minimize risk”

Risk Minimization



 Type I error (False alarm or False Positive):  Decide H1 when H0 
 Type II error (Missed detection or False Negative):  Decide H0 when H1
 Trade off
 Can work out error probabilities from conditional probabilities

Visualizing Errors



 Two possible hypotheses for data
 H0:  Null hypothesis,  H1:  Alternate hypothesis

 Model statistically:
 𝑝𝑝 𝑥𝑥 𝐻𝐻𝑖𝑖 , 𝑖𝑖 = 0,1
 Assume some distribution for each hypothesis

 Given
 Likelihood 𝑝𝑝 𝑥𝑥 𝐻𝐻𝑖𝑖 , 𝑖𝑖 = 0,1, Prior probabilities 𝑝𝑝𝑖𝑖 = 𝑃𝑃(𝐻𝐻𝑖𝑖)

 Compute posterior 𝑃𝑃(𝐻𝐻𝑖𝑖|𝑥𝑥)
 How likely is 𝐻𝐻𝑖𝑖 given the data and prior knowledge?

 Bayes’ Rule:

𝑃𝑃 𝐻𝐻𝑖𝑖 𝑥𝑥 =
𝑝𝑝 𝑥𝑥 𝐻𝐻𝑖𝑖 𝑝𝑝𝑖𝑖
𝑝𝑝(𝑥𝑥)

=
𝑝𝑝 𝑥𝑥 𝐻𝐻𝑖𝑖 𝑝𝑝𝑖𝑖

𝑝𝑝 𝑥𝑥 𝐻𝐻0 𝑝𝑝0 + 𝑝𝑝 𝑥𝑥 𝐻𝐻1 𝑝𝑝1

Often more formally written Hypothesis Testing



 Probability of error:
𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑃𝑃 �𝐻𝐻 ≠ 𝐻𝐻

= 𝑃𝑃 �𝐻𝐻 = 0 𝐻𝐻1 𝑝𝑝1 + 𝑃𝑃 �𝐻𝐻 = 1 𝐻𝐻0 𝑝𝑝0
 Write with integral:

𝑃𝑃 �𝐻𝐻 ≠ 𝐻𝐻 = ∫ 𝑝𝑝(𝑥𝑥)𝑃𝑃 �𝐻𝐻 ≠ 𝐻𝐻 𝑥𝑥 𝑑𝑑𝑑𝑑
 Error is minimized with MAP estimator

�𝐻𝐻 = 1 ⇔ 𝑃𝑃 𝐻𝐻1 𝑥𝑥 ≥ 𝑃𝑃(𝐻𝐻0|𝑥𝑥)
 Use Bayes rule:

�𝐻𝐻 = 1 ⇔ 𝑃𝑃 𝑥𝑥 𝐻𝐻1 𝑝𝑝1 ≥ 𝑃𝑃 𝑥𝑥 𝐻𝐻0 𝑝𝑝0
 Equivalent to an LRT with 𝛾𝛾 = ⁄𝑝𝑝0 𝑝𝑝1
 Probabilistic interpretation of threshold

MAP: Minimum Probability of Error



 As before, express risk as integration over 𝑥𝑥:

𝑅𝑅 = ��
𝑖𝑖𝑗𝑗
𝐶𝐶𝑖𝑖𝑖𝑖 𝑃𝑃 𝐻𝐻𝑗𝑗 𝑥𝑥 1{�𝐻𝐻 𝑥𝑥 =𝑖𝑖} 𝑝𝑝 𝑥𝑥 𝑑𝑑𝑑𝑑

 To minimize, select �𝐻𝐻 𝑥𝑥 = 1 when
 𝐶𝐶10𝑃𝑃 𝐻𝐻0 𝑥𝑥 + 𝐶𝐶11𝑃𝑃 𝐻𝐻1 𝑥𝑥 ≤ 𝐶𝐶00𝑃𝑃 𝐻𝐻0 𝑥𝑥 + 𝐶𝐶01𝑃𝑃 𝐻𝐻1 𝑥𝑥
 ⁄𝑃𝑃(𝐻𝐻1|𝑥𝑥) 𝑃𝑃 𝐻𝐻0 𝑥𝑥 ≥ ⁄(𝐶𝐶10 − 𝐶𝐶00) (𝐶𝐶11 − 𝐶𝐶01)

 By Bayes Theorem, equivalent to an LRT with
𝑃𝑃(𝑥𝑥|𝐻𝐻1)
𝑃𝑃(𝑥𝑥|𝐻𝐻0)

≥
𝐶𝐶10 − 𝐶𝐶00 𝑝𝑝0
𝐶𝐶11 − 𝐶𝐶01 𝑝𝑝1



Bayes Risk Minimization



 Scalar Gaussian 
 𝐻𝐻0: 𝑥𝑥 = 𝑤𝑤, 𝑤𝑤 ~ 𝑁𝑁 0,𝜎𝜎2

 𝐻𝐻1: 𝑥𝑥 = 𝐴𝐴 + 𝑤𝑤, 𝑤𝑤 ~ 𝑁𝑁 0,𝜎𝜎2

 Example:   A medical test for some disease
 𝑥𝑥 = measured value of the patient
 𝐻𝐻0 = patient is fine, 𝐻𝐻1 = patient is ill
 Probability model:  𝑥𝑥 is elevated with the disease

Same example basically, but posed as additive noise

𝐴𝐴 = 1



 Hypothesis:

 𝐻𝐻0: 𝑥𝑥 = 𝑤𝑤, 𝑤𝑤 ~ 𝑁𝑁 0,𝜎𝜎2

 𝐻𝐻1: 𝑥𝑥 = 𝐴𝐴 + 𝑤𝑤, 𝑤𝑤 ~ 𝑁𝑁 0,𝜎𝜎2

 Problem:  Use the LRT test to define a classifier and compute 
𝑃𝑃𝐷𝐷,𝑃𝑃𝐹𝐹𝐹𝐹

 Step 1.  Write the probability distributions:

 𝑝𝑝 𝑥𝑥 𝐻𝐻0 = 1
2𝜋𝜋𝜎𝜎

𝑒𝑒−
𝑥𝑥2

2𝜎𝜎2 ,𝑝𝑝 𝑥𝑥 𝐻𝐻1 = 1
2𝜋𝜋𝜎𝜎

𝑒𝑒−
(𝑥𝑥−𝐴𝐴)2

2𝜎𝜎2

Example :  Scalar Gaussians



 Step 2.  Write the log likelihood:

𝐿𝐿 𝑥𝑥 = ln
𝑝𝑝 𝑥𝑥 𝐻𝐻1
𝑝𝑝(𝑥𝑥|𝐻𝐻0)

=
1

2𝜎𝜎2
𝑥𝑥2 − 𝑥𝑥 − 𝐴𝐴 2

=
1

2𝜎𝜎2
2𝐴𝐴𝐴𝐴 + 𝐴𝐴2

 Step 3.  
 𝐿𝐿 𝑥𝑥 ≥ 𝛾𝛾 ⇒ 𝑥𝑥 ≥ 𝑡𝑡 = ⁄(2𝜎𝜎2𝛾𝛾 − 𝐴𝐴2) 2𝐴𝐴
 Write all further answers in terms of 𝑡𝑡 instead of 𝛾𝛾
 Classifier:

�𝐻𝐻 = �1 𝑥𝑥 ≥ 𝑡𝑡
0 𝑥𝑥 < 𝑡𝑡

Scalar Guassian continued



 Step 4.  Compute error probabilities

 𝑃𝑃𝐷𝐷 = 𝑃𝑃 �𝐻𝐻 = 1 𝐻𝐻1 = 𝑃𝑃 𝑥𝑥 ≥ 𝑡𝑡 𝐻𝐻1
 Under 𝐻𝐻1, 𝑥𝑥~𝑁𝑁(𝐴𝐴,𝜎𝜎2)

 So, 𝑃𝑃𝐷𝐷 = 𝑃𝑃 𝑥𝑥 ≥ 𝑡𝑡 𝐻𝐻1) = 𝑄𝑄(𝑡𝑡−𝐴𝐴
𝜎𝜎

)

 Similarly, 𝑃𝑃𝐷𝐷 = 𝑃𝑃 𝑥𝑥 ≥ 𝑡𝑡 𝐻𝐻0) = 𝑄𝑄(𝑡𝑡
𝜎𝜎

)

 Here, 𝑄𝑄 𝑧𝑧 = Marcum Q-function 
 𝑄𝑄 𝑧𝑧 = 𝑃𝑃 𝑍𝑍 ≥ 𝑧𝑧 , 𝑍𝑍~𝑁𝑁(0,1)

Scalar Guassian (cont)

2
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 Problem:  Suppose 𝑋𝑋~𝑁𝑁(𝜇𝜇,𝜎𝜎2). 
 Often must compute probabilities like 𝑃𝑃(𝑋𝑋 ≥ 𝑡𝑡)
 No closed-form expression.

 Define Marcum Q-function:
𝑄𝑄 𝑧𝑧 = 𝑃𝑃 𝑍𝑍 ≥ 𝑧𝑧 , 𝑍𝑍~𝑁𝑁(0,1)

 Let 𝑍𝑍 = ⁄(𝑋𝑋 − 𝜇𝜇) 𝜎𝜎
 Then 

𝑃𝑃 𝑋𝑋 ≥ 𝑡𝑡 = 𝑃𝑃 𝑍𝑍 ≥
𝑡𝑡 − 𝜇𝜇
𝜎𝜎

= 𝑄𝑄
𝑡𝑡 − 𝜇𝜇
𝜎𝜎

Review:  Gaussian Q-Function

2
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 Hypothesis:
 𝐻𝐻𝑖𝑖: 𝑝𝑝 𝑥𝑥 𝐻𝐻𝑖𝑖 = 𝜆𝜆𝑖𝑖𝑒𝑒−𝜆𝜆𝑖𝑖𝑥𝑥, 𝑖𝑖 = 0 , 1 Assume 𝜆𝜆0 > 𝜆𝜆1
 Find ML detector threshold and probability of false alarm…

 Step 1.  Write the conditional probability distributions  
 Nothing to do.  Already given.

 Step 2: Log likelihood:

 𝐿𝐿 𝑥𝑥 = ln 𝑝𝑝 𝑥𝑥 𝐻𝐻1
𝑝𝑝(𝑥𝑥|𝐻𝐻0)

= 𝜆𝜆0 − 𝜆𝜆1 𝑥𝑥 + ln 𝜆𝜆1
𝜆𝜆0

 ML: LRT test pick H1 if x ≥ (1/𝜆𝜆0 − 𝜆𝜆1) ln 𝜆𝜆0
𝜆𝜆1

 𝐿𝐿 𝑥𝑥 ≥ 𝛾𝛾 ⇒ 𝑥𝑥 ≥ 𝑡𝑡

Example: Two Exponentials



 Compute error probabilities

 𝑃𝑃𝐷𝐷 = 𝑃𝑃 �𝐻𝐻 = 1 𝐻𝐻1 = 𝑃𝑃 𝑥𝑥 ≥ 𝑡𝑡 𝐻𝐻1
 𝑃𝑃𝐷𝐷 = ∫𝑡𝑡

∞𝑝𝑝 𝑥𝑥 𝐻𝐻1 𝑑𝑑𝑑𝑑 = ∫𝑡𝑡
∞ 𝜆𝜆1𝑒𝑒−𝜆𝜆1𝑥𝑥𝑑𝑑𝑑𝑑 = 𝑒𝑒−𝜆𝜆1𝑡𝑡

 Similarly,  𝑃𝑃𝐹𝐹𝐹𝐹 = 𝑒𝑒−𝜆𝜆0𝑡𝑡

Two Exponentials (continued)



 Hypotheses: 𝐻𝐻𝑖𝑖: 𝑥𝑥 = 𝑁𝑁 𝜇𝜇𝑖𝑖 ,𝜎𝜎2 ,   𝑝𝑝𝑖𝑖 = 𝑃𝑃 𝐻𝐻𝑖𝑖 , 𝑖𝑖 = 0,1
 Two Gaussian densities with different means
 But same variance

 Problem:  Find the MAP estimate

MAP Example

𝜇𝜇0 𝜇𝜇1
 Solution:  First, write densities

𝑝𝑝 𝑥𝑥 𝐻𝐻𝑖𝑖 =
1
2𝜋𝜋𝜎𝜎

exp −
𝑥𝑥 − 𝜇𝜇𝑖𝑖 2

2𝜎𝜎2
 MAP estimate:  Select 

�𝐻𝐻 = 1 ⇔ 𝑝𝑝 𝑥𝑥 𝐻𝐻1 𝑝𝑝1 ≥ 𝑝𝑝 𝑥𝑥 𝐻𝐻0 𝑝𝑝0
 In log domain:

−
𝑥𝑥 − 𝜇𝜇1 2

2𝜎𝜎2
+ ln𝑝𝑝1 ≥ −

𝑥𝑥 − 𝜇𝜇0 2

2𝜎𝜎2
+ ln𝑝𝑝0



 More simplifications : �𝐻𝐻 = 1 when 

−
𝑥𝑥 − 𝜇𝜇1 2

2𝜎𝜎2
+ ln𝑝𝑝1 ≥ −

𝑥𝑥 − 𝜇𝜇0 2

2𝜎𝜎2
+ ln𝑝𝑝0

⇔ 𝑥𝑥 − 𝜇𝜇0 2 − 𝑥𝑥 − 𝜇𝜇1 2 ≤ 2𝜎𝜎2 ln
𝑝𝑝0
𝑝𝑝1

⇔ 2 𝜇𝜇1 − 𝜇𝜇0 𝑥𝑥 + 𝜇𝜇12 − 𝜇𝜇02 ≥ 2𝜎𝜎2 ln
𝑝𝑝0
𝑝𝑝1

⇔ 𝑥𝑥 ≥
𝜇𝜇1 + 𝜇𝜇0

2
+

𝜎𝜎2

𝜇𝜇1 − 𝜇𝜇0
ln
𝑝𝑝0
𝑝𝑝1

MAP Example: (Cont)



 MAP estimator: �𝐻𝐻 = 1 when 𝑥𝑥 ≥ 𝑡𝑡
 Threshold

𝑡𝑡 =
𝜇𝜇1 + 𝜇𝜇0

2
+

𝜎𝜎2

𝜇𝜇1 − 𝜇𝜇0
ln
𝑝𝑝0
𝑝𝑝1

MAP Example (cont)

Midpoint between 
Gaussians

Shifts to the left 
when 𝑝𝑝0 ≤ 𝑝𝑝1

𝜇𝜇0 𝜇𝜇1𝑡𝑡



 Often have multiple classes.  𝑦𝑦 = 1, … ,𝐾𝐾
 Most methods easily extend:
 ML:  Take max of 𝐾𝐾 likelihoods:

�𝑦𝑦 = arg max
𝑖𝑖=1,…,𝐾𝐾

𝑝𝑝(𝑥𝑥|𝑦𝑦 = 𝑖𝑖)

 MAP:  Take max of 𝐾𝐾 posteriors:

 LRT:  Take max of 𝐾𝐾 weighted likelihoods:
�𝑦𝑦 = arg max

𝑖𝑖=1,…,𝐾𝐾
𝑝𝑝(𝑥𝑥|𝑦𝑦 = 𝑖𝑖) 𝛾𝛾𝑖𝑖

Multiple Classes
32



 Principles of Supervised Learning
 Model Selection and Generalization
 Overfitting and Underfitting

 Decision Theory 
 Binary Classification
 Maximum Likelihood and Log likelihood
 Bayes Methods: MAP and Bayes Risk
 Receiver operating characteristic
 Minimum probability of error

 Issues in applying Bayesian classification
 Curse of Dimensionality

Outline
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 Any binary decision strategy has a trade-off in errors
 Reminder of Errors
 TP = true positive
 TN = true negative
 FP = false positive
 FN = false negative

 Typical illustrate: Tradeoff between TP and FP
 Receiver Operating Characteristic

ROC curves : error tradeoffs



 𝑃𝑃𝐷𝐷 vs. 𝑃𝑃𝐹𝐹𝐹𝐹
 Trace out:  𝑃𝑃𝐹𝐹𝐹𝐹 𝛾𝛾 ,𝑃𝑃𝐷𝐷 𝛾𝛾
 Shows tradeoff 
 Random guessing: 
 Select 𝐻𝐻1 randomly 𝛼𝛼 per cent of 

time 
 𝑃𝑃𝐷𝐷 = 𝛼𝛼, 𝑃𝑃𝐹𝐹𝐹𝐹 = 𝛼𝛼 ⇒ 𝑃𝑃𝐷𝐷 = 𝑃𝑃𝐹𝐹𝐹𝐹

ROC Curve 



 Simple measure of quality

 𝐴𝐴𝐴𝐴𝐴𝐴 = average of 𝑃𝑃𝐷𝐷(𝛾𝛾) with 𝑥𝑥 = 𝛾𝛾 under 𝐻𝐻0
 Proof:

𝐴𝐴𝐴𝐴𝐴𝐴 = ∫ 𝑃𝑃𝐷𝐷 𝛾𝛾 𝑃𝑃𝐹𝐹𝐹𝐹′ 𝛾𝛾 𝑑𝑑𝑑𝑑 = ∫ 𝑃𝑃𝐷𝐷 𝛾𝛾 𝑝𝑝 𝛾𝛾 𝐻𝐻0 𝑑𝑑𝑑𝑑

Area Under The Curve (AUC)
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 Hypotheses:
 𝐻𝐻𝑖𝑖: 𝑝𝑝 𝑥𝑥 𝐻𝐻𝑖𝑖 = 𝜆𝜆𝑖𝑖𝑒𝑒−𝜆𝜆𝑖𝑖𝑥𝑥 , 𝑖𝑖 = 0 , 1

 From before, LRT test is  �𝐻𝐻 = �1 𝑥𝑥 ≥ 𝑡𝑡
0 𝑥𝑥 < 𝑡𝑡

 Error probabilities: 𝑃𝑃𝐷𝐷 = 𝑒𝑒−𝜆𝜆1𝑡𝑡 ,𝑃𝑃𝐹𝐹𝐹𝐹 = 𝑒𝑒−𝜆𝜆0𝑡𝑡

 ROC curve:  
 Write 𝑃𝑃𝐷𝐷 in terms of 𝑃𝑃𝐹𝐹𝐹𝐹
 𝑡𝑡 = − 1

𝜆𝜆0
ln𝑃𝑃𝐹𝐹𝐹𝐹 ⇒ 𝑃𝑃𝐷𝐷 = 𝑃𝑃𝐹𝐹𝐹𝐹

⁄𝜆𝜆1 𝜆𝜆0

ROC Example:  Two Exponentials



 Principles of Supervised Learning
 Model Selection and Generalization
 Overfitting and Underfitting

 Decision Theory 
 Binary Classification
 Maximum Likelihood and Log likelihood
 Bayes Methods: MAP and Bayes Risk
 Receiver operating characteristic
 Minimum probability of error

 Issues in applying Bayesian classification
 Curse of Dimensionality

Outline
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 Hypothesis testing formulation requires
 Knowledge of likelihood 𝑝𝑝(𝑥𝑥|𝐻𝐻𝑖𝑖)
 Possibly knowledge of prior 𝑃𝑃 𝐻𝐻𝑖𝑖

 Where do we get these?
 Approach 1:
 Learn distributions from data
 Then apply hypothesis testing

 Approach 2:
 Use hypothesis testing to select a form for the classifier
 Learn parameters of the classifier directly from data

Problems in Using Hypothesis Testing
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 Principles of Supervised Learning
 Model Selection and Generalization
 Overfitting and Underfitting

 Decision Theory 
 Binary Classification
 Maximum Likelihood and Log likelihood
 Bayes Methods: MAP and Bayes Risk
 Receiver operating characteristic
 Minimum probability of error

 Issues in applying Bayesian classification
 Curse of Dimensionality

Outline
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 Examples of Bayes Decision theory can be misleading because they are 
given in low dimensional spaces, 1 or 2 dim
 Most ML problems today have high dimension
 Often our geometric intuition in high-dimensions is wrong

 Example:  Consider volume of sphere of radius 𝑟𝑟 = 1 in D dimensions
 What is the fraction of volume in a thin shell of a sphere 

between 1 − 𝜖𝜖 ≤ 𝑟𝑟 ≤ 1 ?

Intuition in High-Dimensions
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 Let 𝑉𝑉𝐷𝐷 𝑟𝑟 = volume of sphere of radius 𝑟𝑟, dimension 𝐷𝐷
 𝑉𝑉𝐷𝐷 𝑟𝑟 = 𝐾𝐾𝐷𝐷𝑟𝑟𝐷𝐷

 Let 𝜌𝜌𝐷𝐷(𝜖𝜖) = fraction of volume in a shell of radius 𝜖𝜖

𝜌𝜌𝐷𝐷(𝜖𝜖) =
𝑉𝑉𝐷𝐷 1 − 𝑉𝑉𝐷𝐷(1 − 𝜖𝜖)

𝑉𝑉𝐷𝐷(1)
= 1 − 1 − 𝜖𝜖 𝐷𝐷

Example:  Sphere Hardening
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𝜌𝜌𝐷𝐷(𝜖𝜖)

𝜖𝜖
1

5

𝜖𝜖

1

𝐷𝐷 = 1

20

𝐷𝐷 = 100



 Consider a Gaussian i.i.d. vector
 𝑥𝑥 = 𝑥𝑥1, … , 𝑥𝑥𝐷𝐷 , 𝑥𝑥𝑖𝑖~𝑁𝑁(0,1)

 As 𝐷𝐷 → ∞,  probability density concentrates on shell 𝑥𝑥 ≈ 2 𝐷𝐷, 
even though 𝑥𝑥 = 0 is most likely point

 Let 𝑟𝑟 = 𝑥𝑥12 + 𝑥𝑥22 +⋯+ 𝑥𝑥𝐷𝐷2
1/2

 𝐷𝐷 = 1: 𝑝𝑝 𝑟𝑟 = 𝑐𝑐 𝑒𝑒−𝑟𝑟2/2

 𝐷𝐷 = 2: 𝑝𝑝 𝑟𝑟 = 𝑐𝑐 𝑟𝑟 𝑒𝑒−𝑟𝑟2/2

 general 𝐷𝐷: 𝑝𝑝 𝑟𝑟 = 𝑐𝑐 𝑟𝑟𝐷𝐷−1 𝑒𝑒−𝑟𝑟2/2

Gaussian Sphere Hardening

4
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 Conclusions: As dimension increases,
 All volume of a sphere concentrates at its surface!

 Similar example:  Consider a Gaussian i.i.d. vector
 𝑥𝑥 = 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑 , 𝑥𝑥𝑖𝑖~𝑁𝑁(0,1)
 As 𝑑𝑑 → ∞,  probability density concentrates on shell

𝑥𝑥 2 ≈ 𝑑𝑑
 Even though 𝑥𝑥 = 0 is most likely point

Example:  Sphere Hardening

4
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 In high dimensions, 
classifiers need large number of parameters

 Example:
 Suppose 𝑥𝑥 = 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑 , each 𝑥𝑥𝑖𝑖 takes on 𝐿𝐿 values
 Hence 𝑥𝑥 takes on 𝐿𝐿𝑑𝑑 values

 Consider general classifier 𝑓𝑓(𝑥𝑥)
 Assigns each 𝑥𝑥 some value 
 If there are no restrictions on 𝑓𝑓(𝑥𝑥), needs 𝐿𝐿𝑑𝑑 paramters

Computational Issues



 Curse of dimensionality: As dimension increases
 Number parameters for functions grows exponentially 

 Most operations become computationally intractable
 Fitting the function, optimizing, storage

 What ML is doing today
 Finding tractable approximate approaches for high-dimensions

Curse of Dimensionality
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