People:
- Prof. Allie Fletcher.
- TA: Ruiqi Gao ruiqigao@ucla.edu

Where:
- MW 3:30-4:45pm, Public Affairs Bldg 2238

Grading:
- C261: Midterm 20%, Final 35%, HW and labs 25%, Quizzes&Participation 10%, Project 10%,
- C161: Midterm 20%, Final 35%, HW and labs 35%, Quizzes&Participation 10%
- Project is for graduate students only (see below)
- Homework will include programming assignments
- Midterm tentatively May 8
- Midterm and final are closed book. Equation sheet is provided.
Outline

Decision Theory
- Classification, Maximum Likelihood and Log likelihood
- MAP Estimation, Bayes Risk
- Probability of errors, ROC

Empirical Risk Minimization
- Problems with decision theory, empirical risk minimization
- Probably approximately correct learning

Curse of Dimensionality

Parameter Estimation
- Probabilistic models for supervised and unsupervised learning
- ML and MAP estimation
- Examples
Classification

- How to make decision in the presence of uncertainty?
- History: Prominent in WWII: radar for detecting aircraft, codebreaking, decryption
- Observed data $x \in X$, state $y \in Y$
- $p(x \mid y)$: conditional distribution
 For each class, model of how the data is generated
 Example: $y \in \{0, 1\}$ (salmon vs. sea bass) or (airplane vs. bird, etc.)
 x: length of fish

$$p(x \mid y) = \frac{1}{\sqrt{2\pi} \sigma_y} \exp\left(-\frac{(x-\mu_y)^2}{2\sigma_y^2}\right)$$

- μ_y: mean, σ_y^2: variance
General classification problem:
- Assume each sample belongs to one of K classes
- Observe data on the sample \mathbf{x}
- Want to estimate class label $y = 0, 1, \ldots, K - 1$
- E.g. dog/cat, spam/real, …

Strong assumption needed for: decision theory
- Given each class label y_i, we know conditional distribution $p(\mathbf{x}|y_i)$
- Model of how the data is generated
- We will discuss how we learn this density later…

Classification
Which fish type is more likely to given the observed fish length x?

If $p(x \mid y = 1) > p(x \mid y = 0)$
guess sea bass;
otherwise classify the fish as salmon

- $p(x \mid y)$ called the likelihood of x given class y
- Select class with highest likelihood
 \[
 \hat{y} = \text{arg max } p(x \mid y)
 \]
- Likelihood ratio test (LRT):
 If \[
 \frac{p(x \mid y=1)}{p(x \mid y=0)} > 1,
 \]
guess sea bass
ML Classification

- **ML classification**: \(\hat{y} = \text{arg max } p(x|y) \)
- **Binary case**: \(\hat{y} = \begin{cases} 1 & \text{if } p(x|1) > p(x|0) \\ 0 & \text{if } p(x|1) \leq p(x|0) \end{cases} \)
- For density on right, we get thresholding decision rule in terms of x:
 \[\hat{y} = \begin{cases} 1 & \text{if } x > t \\ 0 & \text{if } x \leq t \end{cases} \]
- \(t = \text{threshold value where } p(t|1) = p(t|0) \)
With likelihoods, it is often easier to work in log domain.

Consider binary classification: \(y \in \{0,1\} \).

Define the log likelihood ratio:

\[
L(x) : = \ln \frac{p(x \mid y = 1)}{p(x \mid y = 0)}
\]

ML estimation = likelihood ratio test (LRT):

\[
\hat{y} = \begin{cases}
1 & \text{if } L(x) > 0 \\
0 & \text{if } L(x) \leq 0
\end{cases}
\]

What do we do at boundary?

- When \(L(x) = 0 \), we can select either class.
- Flip a coin, select \(y = 0 \), select \(y = 1 \), …
- It doesn’t really matter.
- If \(x \) is continuous, probability that \(L(x) = 0 \) exactly is zero.
Classic Iris dataset used for teaching machine learning

Get data $\mathbf{x} = [x_1, x_2, x_3, x_4]$ for 4 features
- Sepal length, sepal width, petal length, petal width
- 150 samples total, 50 samples from each class

Class label $y \in \{0,1,2\}$ for versicolor, setosa, virginica

Problem: Learn a classifier for the type of Iris (y) from data \mathbf{x}
To make this example simple, assume for now:

- We classify using only one feature: $x = \text{sepal width (cm)}$
- Select between two classes: Versicolor ($y = 0$) and Setosa ($y = 1$)

Also, assume we are given two densities:

- $p(x|y = 0)$ and $p(x|y = 1)$
- We assume they are conditionally Gaussian: $p(x|y = k) = N(x|\mu_k, \sigma_k^2)$
- Densities represent the condition density of sepal width given the class
- We will talk about how we get these densities from data later…
How do we get $p(x|y)$?

- Decision theory requires we know $p(x|y)$
 - This is a big assumption!
 - $p(x|y)$ is called the population likelihood
 - Describes theoretical distribution of all samples
- But, in most real problems:
 - we have only data samples (x_i, y_i)
 - Ex: Iris dataset, we have 50 samples / class
- To use decision theory, we could estimate a density $p(x|y = k)$ for each k from samples
 - Ex: Could assume $p(x|y)$ is Gaussian
 - Estimate mean and variance from samples
- Later, we will talk about:
 - How to do density estimation
 - And if density estimation + decision theory is good idea

Histograms for two Iris classes
Also plotted is Gaussian with same mean and variance
Consider binary classification: \(y = 0, 1 \)
- \(p(x|y = j) = N(x|\mu_j, \sigma^2) \), \(\mu_1 > \mu_0 \)
- Two Gaussians with same variance

Likelihood:
- \(p(x|y = j) = \frac{1}{\sqrt{2\pi} \sigma} \exp\left(-\frac{1}{2\sigma^2} (x - \mu_i)^2\right) \)
- \(L(x) := \ln \frac{p(x|1)}{p(x|0)} = -\frac{1}{2\sigma^2} [(x - \mu_1)^2 - (x - \mu_0)^2] \)
- With some algebra: \(L(x) = \frac{(\mu_1 - \mu_0)}{\sigma^2} [x - \bar{\mu}], \bar{\mu} = \frac{\mu_0 + \mu_1}{2} \)

ML estimate:
- \(\hat{y} = 1 \iff L(x) \geq 0 \iff x \geq \bar{\mu} \)
- With some algebra we get: \(\hat{y} = \begin{cases} 1 & \text{if } x > \bar{\mu} \\ 0 & \text{if } x \leq \bar{\mu} \end{cases} \)
Consider binary classification: $y = 0, 1$

- $p(x|y = j) = N(x|0, \sigma_j^2)$, $\sigma_0 < \sigma_1$
- Two Gaussians with different variances, zero mean

Log likelihood ratio:

- $p(x|y = j) = \frac{1}{\sqrt{2\pi \sigma_j}} \exp\left(-\frac{x^2}{2\sigma_j^2}\right)$

- $L(x) := \ln \frac{p(x|1)}{p(x|0)} = \frac{x^2}{2\sigma_0^2} - \frac{x^2}{2\sigma_1^2} + \frac{1}{2} \ln \frac{\sigma_1^2}{\sigma_0^2}$

ML estimate:

- $\hat{y} = 1 \iff L(x) \geq 0 \iff |x| > t$

- Threshold is $t^2 = \left[\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2}\right]^{-1} \ln \frac{\sigma_1^2}{\sigma_0^2}$
Outline

- Decision Theory
 - Classification, Maximum Likelihood and Log likelihood
 - MAP Estimation, Bayes Risk
 - Probability of errors, ROC
- Empirical Risk Minimization
 - Problems with decision theory, empirical risk minimization
 - Probably approximately correct learning
- Curse of Dimensionality
- Parameter Estimation
 - Probabilistic models for supervised and unsupervised learning
 - ML and MAP estimation
 - Examples
MAP classification

- What if one item is more likely than the other?
- Introduce prior probabilities \(P(y = 0) \) and \(P(y = 1) \)
 - Salmon more likely than Sea bass: \(P(y = 0) > P(y = 1) \)
- Bayes’ Rule: \(p(y | x) = \frac{p(x | y)p(y)}{p(x)} \)

Interested then in class with highest posterior probability \(p(y | x) \)

Including prior probabilities:

If \(p(y = 0 | x) > p(y = 1 | x) \), guess salmon; otherwise, pick sea bass

- We can write \(p(y = 0 | x) = \frac{p(x | y=0)p(y=0)}{P(x)} \), \(p(y = 1 | x) = \frac{p(x | y=1)p(y=1)}{P(x)} \)
MAP classification

- Including prior probabilities:
 If $p(y = 0 \mid x) > p(y = 1 \mid x)$, guess salmon; otherwise, pick sea bass

Maximum A Posteriori (MAP) Estimation:

$$\hat{y}_{\text{MAP}} = \alpha(x) = \arg \max_y p(y \mid x) = \arg \max_y p(x \mid y) P(y)$$

- Select class with highest posterior probability $p(y \mid x)$
- Binary case: Select $\hat{y}_{\text{MAP}} = 1$ if $p(y = 1 \mid x) > p(y = 0 \mid x)$

From Bayes

$$p(y = 0 \mid x) = \frac{p(x \mid y=0)P(y=0)}{P(x)}, \quad p(y = 1 \mid x) = \frac{p(x \mid y=1)P(y=1)}{P(x)}$$

We select class 1 if

$$\frac{p(x \mid y=1)P(y=1)}{p(x \mid y=0)P(y=0)} \geq 1$$
MAP Estimation via LRT

- Consider binary case: $y \in \{0, 1\}$
- MAP estimate: Select $\hat{y} = 1 \iff \frac{p(x|y=1) P(y=1)}{p(x|y=0) P(y=0)} \geq 1 \iff \frac{p(x|y=1)}{p(x|y=0)} \geq \frac{P(y=0)}{P(y=1)}$
- Log domain: select $\hat{y} = 1$ when:
 \[
 \ln \left[\frac{p(x|y=1)}{p(x|y=0)} \right] \geq \ln \frac{P(y=0)}{P(y=1)} \iff L(x) \geq \gamma
 \]
 - $L(x) = \ln \left[\frac{p(x|y=1)}{p(x|y=0)} \right]$ is the log likelihood ratio
 - $\gamma = \ln \frac{P(y=0)}{P(y=1)}$ is the threshold for the likelihood function
- In special case where $P(y=1) = P(y=0) = \frac{1}{2}$
 - Threshold is $\gamma = 0$ and MAP estimate becomes identical to ML estimate
- Note you solve this to get it in terms of threshold for x that we denote t
Example: MAP for Two Gaussians, Different Means

- Consider binary classification: \(y = 0, 1 \)
- \(p(x | y = j) = N(x | \mu_j, \sigma^2), \mu_1 > \mu_2 \)
- \(P_j = P(y = j) \)

LLRT is:
- \(L(x) = \ln \frac{p(x | y = 1)}{p(x | y = 0)} = \frac{(\mu_1 - \mu_0)(x - \bar{\mu})}{\sigma^2} \quad \bar{\mu} = \frac{\mu_0 + \mu_1}{2} \)

MAP estimate: Let \(\gamma = \ln \frac{P_0}{P_1} \)
- \(\hat{y} = 1 \iff L(x) \geq \gamma \iff x \geq \bar{\mu} + \frac{\sigma^2 \gamma}{\mu_1 - \mu_0} \)
- Threshold is shifted by the prior probability \(\gamma \)
- If \(P(y = 1) > P(y = 0) \) \(\Rightarrow \gamma < 0 \) \(\Rightarrow \) threshold is shifted to left
 \(\Rightarrow \) Estimator more likely to select \(\hat{y} = 1 \)
Two possible hypotheses for data:
- H_0: Null hypothesis, $y = 0$
- H_1: Alternate hypothesis, $y = 1$

Model statistically:
- $p(x|H_i), i = 0, 1$
- Assume some distribution for each hypothesis

Given:
- Likelihood $p(x|H_i), i = 0, 1$, Prior probabilities $p_i = P(H_i)$

Compute posterior $P(H_i|x)$
- How likely is H_i given the data and prior knowledge?

Bayes’ Rule:

$$P(H_i|x) = \frac{p(x|H_i)p_i}{p(x)} = \frac{p(x|H_i)p_i}{p(x|H_0)p_0 + p(x|H_1)p_1}$$
MAP: Minimum Probability of Error

- Probability of error:
 \[P_{\text{err}} = P(\hat{H} \neq H) = P(\hat{H} = 0|H_1)p_1 + P(\hat{H} = 1|H_0)p_0 \]

- Write with integral:
 \[P(\hat{H} \neq H) = \int p(x)P(\hat{H} \neq H|x)dx \]

- It can be shown (you won't have to) that error is minimized with MAP estimator
 \[\hat{H} = 1 \iff P(H_1|x) \geq P(H_0|x) \]

- Key takeaway: MAP estimator minimizes the probability of error
Making it more interesting, full on Bayes

- What does it cost for a mistake? Plane with a missile, not a big bird?
- Define loss or cost:
 \[L(\alpha(x), y) : \text{cost of decision } \alpha(x) \text{ when state is } y \]
 also often denoted \(C_{ij} \)

<table>
<thead>
<tr>
<th></th>
<th>(Y = 0)</th>
<th>(Y = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha(x) = 0)</td>
<td>Correct, cost (L(0,0))</td>
<td>Incorrect, cost (L(0,1))</td>
</tr>
<tr>
<td>(\alpha(x) = 1)</td>
<td>incorrect, cost (L(1,0))</td>
<td>Correct, cost (L(1,1))</td>
</tr>
</tbody>
</table>

- Classic: Pascal's wager

<table>
<thead>
<tr>
<th></th>
<th>God exists ((G))</th>
<th>God does not exist ((\neg G))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belief (B)</td>
<td>(+\infty) (infinite gain)</td>
<td>(-1) (finite loss)</td>
</tr>
<tr>
<td>Disbelief ((\neg B))</td>
<td>(-\infty) (infinite loss)</td>
<td>(+1) (finite gain)</td>
</tr>
</tbody>
</table>
Risk Minimization

- So now we have: the likelihood functions $p(x \mid y)$
 - priors $p(y)$
 - decision rule $\alpha(x)$
 - loss function $L(\alpha(x), y)$:

 - **Risk** is expected loss:
 \[
 E[L] = L(0,0) p(\alpha(x) = 0, y = 0) \\
 + L(0,1) p(\alpha(x) = 0, y = 1) \\
 + L(1,0) p(\alpha(x) = 1, y = 0) \\
 + L(1,1) p(\alpha(x) = 1, y = 1)
 \]

- Without loss of generality, zero cost for correct decisions
 \[
 E[L] = L(1,0) p(\alpha(x) = 1 \mid y = 0)p(y = 0) \\
 + L(0,1) p(\alpha(x) = 0 \mid y = 1)p(y = 1)
 \]

- Bayes Decision Theory says “pick decision rule $\alpha(x)$ to minimize risk”
Bayes Risk Minimization

- As before, express risk as integration over x:

$$R = \int \sum_{ij} C_{ij} P(y = j|x)1\{\hat{y}(x)=i\} p(x)dx$$

- To minimize, select $\hat{y} = 1$ when

 - $C_{10}P(y = 0|x) + C_{11}P(y = 1|x) \leq C_{00}P(y = 0|x) + C_{01}P(y = 1|x)$

 - $P(y = 0|x)/P(y = 1|x) \geq (C_{10} - C_{00})/(C_{11} - C_{01})$

- By Bayes Theorem, equivalent to an LRT with

$$\frac{P(x|y = 1)}{P(x|y = 0)} \geq \frac{(C_{10} - C_{00})p_0}{(C_{11} - C_{01})p_1}$$
Decision Theory
- Classification, Maximum Likelihood and Log likelihood
- MAP Estimation, Bayes Risk
- Probability of errors, ROC

Empirical Risk Minimization
- Problems with decision theory, empirical risk minimization
- Probably approximately correct learning

Curse of Dimensionality

Parameter Estimation
- Probabilistic models for supervised and unsupervised learning
- ML and MAP estimation
- Examples
How do we compute errors?

Suppose that decision rule is of the form:

\[\hat{y} = \begin{cases} 1 & \text{if } g(x) > t \\ 0 & \text{if } g(x) \leq t \end{cases} \]

- \(g(x)\) is called the **discriminator**
- \(t\) is the **threshold**

Ex: Decision rule for scalar Gaussians

\[\hat{y} = \begin{cases} 1 & \text{if } x > t \\ 0 & \text{if } x \leq t \end{cases} \]

- Uses a linear discriminator \(g(x) = x\)
- Threshold \(t\) will depend on estimator type ML, MAP, Bayes risk, ..

We will compute the error as a function of \(t\)
Consider binary case: \(y \in \{0,1\} \)

Two possible errors:

- **Type I error** (False alarm or False Positive): Decide \(\hat{y} = 1 \) when \(y = 0 \)
- **Type II error** (Missed detection or False Negative): Decide \(\hat{y} = 0 \) when \(y = 1 \)

The effect of the errors may be very different

Example: Disease diagnosis: \(y = 1 \) patient has disease, \(y = 0 \) patient is healthy

- Type I error: You say patient is sick when patient is healthy
 Error can cause extra unnecessary tests, stress to patient, etc…
- Type II error: You say patient is fine when patient is sick
 Error can miss the disease, disease could progress, …
Visualizing Errors

- Type I error (False alarm or False Positive): Decide H_1 when H_0
- Type II error (Missed detection or False Negative): Decide H_0 when H_1
- Trade off
- Can work out error probabilities from conditional probabilities
Scalar Gaussian Example: False Alarm

- Scalar Gaussian: For $j = 0,1$:
 - $p(x|y=j) = N(x|\mu_j, \sigma^2), \mu_1 > \mu_0$

- False alarm:
 - $P_{FA} = P(\hat{y} = 1|y = 0) = P(x \geq t|y = 0)$
 - This is the area under curve, $P_{FA} = \int_t^\infty p(x|y = 0) \, dx$
 - But, we can compute this using Gaussians
 - Given $y = 0$, $x \sim N(\mu_0, \sigma^2)$
 - Therefore: $P_{FA} = P(x \geq t|y = 0) = Q\left(\frac{t-\mu_0}{\sigma}\right)$
Scalar Gaussian Example: Missed Detection

- Scalar Gaussian: For \(j = 0,1 \):
 \[
p(x|y = j) = N(x|\mu_j, \sigma^2), \mu_1 > \mu_0
 \]

- Missed detection can be computed similarly
 \[
P_{MD} = P(\hat{y} = 0|y = 1) = P(x \leq t|y = 1)
 \]
 - This is the area under curve
 - But, we can compute this using Gaussians
 - Given \(y = 1 \), \(x \sim N(\mu_1, \sigma^2) \)
 - Therefore: \(P_{FA} = P(x \leq t|y = 1) = 1 - Q\left(\frac{t-\mu_1}{\sigma}\right)\)
Problem: Suppose $X \sim N(\mu, \sigma^2)$.
- Often must compute probabilities like $P(X \geq t)$
- No closed-form expression.

Define Marcum Q-function:
$$Q(z) = P(Z \geq z), \ Z \sim N(0,1)$$

Let $Z = (X - \mu)/\sigma$

Then
$$P(X \geq t) = P\left(Z \geq \frac{t - \mu}{\sigma}\right) = Q\left(\frac{t - \mu}{\sigma}\right)$$

Review: Gaussian Q-Function
We see that there is a tradeoff:
- Increasing threshold $t \Rightarrow$ Decreases P_{FA}
- But, increasing threshold $t \Rightarrow$ Increases P_{MD}

What threshold value we select depends on their relative costs
- What is the effect of a FA vs. MD
- Consider medical diagnosis case
Receiver Operating Characteristic (ROC) curve

- For each threshold level t compute $P_D(t) = 1 - P_{MD}(t)$ and $P_{FA}(t)$
- Plot $P_D(t)$ vs. $P_{FA}(t)$
- Shows the how large the detection probability can be for a given P_{FA}
- Name “ROC” comes from communications receivers where these were first used

Comparing ROC curves

- Higher curve is better
- Random guessing gets red line: Guess $\hat{y} = 1$ with probability t
- So, any decent estimator should be above the red line
Multiple Classes

- Often have multiple classes. \(y \in 1, \ldots, K \)
- Most methods easily extend:
 - ML: Take max of \(K \) likelihoods:
 \[
 \hat{y} = \arg \max_{i=1,\ldots,K} p(x|y = i)
 \]
 - MAP: Take max of \(K \) posteriors:
 \[
 \hat{y} = \arg \max_{i=1,\ldots,K} p(y = i|x) = \arg \max_{i=1,\ldots,K} p(x|y = i)p(y = i)
 \]
 - LRT: Take max of \(K \) weighted likelihoods:
 \[
 \hat{y} = \arg \max_{i=1,\ldots,K} p(x|y = i) \gamma_i
 \]
Outline

- Decision Theory
 - Classification, Maximum Likelihood and Log likelihood
 - MAP Estimation, Bayes Risk
 - Probability of errors, ROC

Empirical Risk Minimization
- Problems with decision theory, empirical risk minimization
- Probably approximately correct learning

- Curse of Dimensionality
- Parameter Estimation
 - Probabilistic models for supervised and unsupervised learning
 - ML and MAP estimation
 - Examples
Two Approaches

• Bayesian formulation for classification: Requires we know $p(x|y)$
• But, we only have samples $(x_i, y_i), i = 1, \ldots, N$, from this density
• What do we do?

• Approach 1: Probabilistic approach
 • Learn distributions $p(x|y)$ from data (x_i, y_i)
 • Then apply Bayesian decision theory using estimated densities

• Approach 2: Decision rule
 • Use hypothesis testing to select a form for the classifier
 • Learn parameters of the classifier directly from data
Example with Scalar Data and Linear Discriminator

- Given data \((x_i, y_i), i = 1, \ldots, N\)
- Probabilistic approach:
 - Assume \(x_i \sim N(\mu_0, \sigma^2)\) when \(y_i = 0\); \(x_i \sim N(\mu_1, \sigma^2)\) when \(y_i = 1\)
 - Learn sample means for two classes: \(\hat{\mu}_j = \text{mean of samples } x_i \text{ in class } j\)
 - From decision theory, we have the decision rule:
 \[
 \hat{y} = \alpha(x, t) = \begin{cases}
 1 & x > t \\
 0 & x < t
 \end{cases}, \quad t = \frac{\hat{\mu}_0 + \hat{\mu}_1}{2}
 \]
- Empirical Risk minimization
 - For each threshold \(t\), we get decisions on the training data: \(\hat{y}_i = \alpha(x_i, t)\)
 - Look at empirical risk, e.g. training error \(L(t) := \frac{1}{N} \#\{\hat{y}_i \neq y_i\}\)
 - Select \(t\) to minimize empirical risk \(\hat{t} = \arg\min_t L(t)\)
Suppose data is as shown

- We estimate class means: $\hat{\mu}_0 \approx -2$, $\hat{\mu}_1 \approx 1$

- Decision rule from probabilistic approach
 - $\hat{y} = \begin{cases} 1 & x > t \\ 0 & x < t \end{cases}$, $t = \frac{\hat{\mu}_0 + \hat{\mu}_1}{2} \approx -0.5$
 - Threshold misclassifies many points

- Empirical risk minimization
 - Select t to minimize classification errors on training data
 - Will get $t \approx 0.5 \Rightarrow$ Leads to better rule

- Why probabilistic approach failed?
 - We assumed both distributions were Gaussian
 - But, $p(x|y = 0)$ is not Gaussian. It is bimodal
 - ERM does not require such assumptions
Decision rule approach:

- Assume a rule: \(\hat{y} = \alpha(x) = \begin{cases} 1 & x > t \\ 0 & x < t \end{cases} \)
- Rule has an unknown parameter \(t \)
- Find \(t \) to minimize empirical risk \(R_{\text{emp}}(\alpha, X_N) := \frac{1}{N} \sum_i 1(y_i \neq \alpha(x_i)) \)
- Minimizes error on training data

Motivation for decision rule approach over probabilistic approach:

- Why bother learning probabilities densities if your final goal is a decision rule
- Assumptions on probability densities may be incorrect (see next slide)
- Concentrate your efforts by dealing with data that is hard to classify
Dangers of Using Probabilistic Approach

- Needs to assume specific form of densities
- Ex: Suppose we assume Gaussian densities
 - Gaussians are not robust
 - Outlier values can make large changes in mean and variance estimates

- Risk minimization alternative:
 - Search over planes that separates classes
 - Only pay attention to data near boundary
 - Good in case of limited data
Outline

- Decision Theory
 - Classification, Maximum Likelihood and Log likelihood
 - MAP Estimation, Bayes Risk
 - Probability of errors, ROC
- Empirical Risk Minimization
 - Problems with decision theory, empirical risk minimization
 - Probably approximately correct learning
- Curse of Dimensionality
- Parameter Estimation
 - Probabilistic models for supervised and unsupervised learning
 - ML and MAP estimation
 - Examples
Examples of Bayes Decision theory can be misleading

- Examples are in low dimensional spaces, 1 or 2 dim
- Most machine learning problems today have high dimension
- Often our geometric intuition in high-dimensions is wrong

Example: Consider volume of sphere of radius \(r = 1 \) in \(D \) dimensions

- What is the fraction of volume in a thin shell of a sphere between \(1 - \epsilon \leq r \leq 1 \)?

\[\text{Volume of sphere of radius } r = 1 \text{ in } D \text{ dimensions} \]
Let $V_D(r) = \text{volume of sphere of radius } r$, dimension D

- From geometry: $V_D(r) = K_D r^D$

Let $\rho_D(\epsilon) = \text{fraction of volume in a shell of thickness } \epsilon$

$$\rho_D(\epsilon) = \frac{V_D(1) - V_D(1 - \epsilon)}{V_D(1)}$$

$$= \frac{K_D - K_D (1 - \epsilon)^D}{K_D} = 1 - (1 - \epsilon)^D$$

- For any ϵ, we see as $\rho_D(\epsilon) \rightarrow 1$ as $D \rightarrow \infty$
- All volume concentrates in a thin shell
- This is very different than in low dimensions

Example: Sphere Hardening
Consider a Gaussian i.i.d. vector
- \(x = (x_1, ..., x_D), \ x_i \sim N(0,1) \)

As \(D \to \infty \), probability density concentrates on shell \(||x|| \approx \frac{2}{D} \), even though \(x = 0 \) is most likely point

Let \(r = (x_1^2 + x_2^2 + \cdots + x_D^2)^{1/2} \)
- \(D = 1: \ p(r) = c \ e^{-r^2/2} \)
- \(D = 2: \ p(r) = c \ r \ e^{-r^2/2} \)
- general \(D: \ p(r) = c \ r^{D-1} \ e^{-r^2/2} \)
Conclusions: As dimension increases,
- All volume of a sphere concentrates at its surface!

Similar example: Consider a Gaussian i.i.d. vector
- \(x = (x_1, ..., x_d), \; x_i \sim N(0,1) \)
- As \(d \to \infty \), probability density concentrates on shell
 \[\|x\|^2 \approx d \]
- Even though \(x = 0 \) is most likely point
Computational Issues

- In high dimensions, classifiers need large number of parameters
- Example:
 - Suppose \(x = (x_1, \ldots, x_d) \), each \(x_i \) takes on \(L \) values
 - Hence \(x \) takes on \(L^d \) values
- Consider general classifier \(f(x) \)
 - Assigns each \(x \) some value
 - If there are no restrictions on \(f(x) \), needs \(L^d \) parameters
Curse of Dimensionality

- **Curse of dimensionality**: As dimension increases
 - Number parameters for functions grows exponentially
- Most operations become computationally intractable
 - Fitting the function, optimizing, storage

- What ML is doing today
 - Finding tractable approximate approaches for high-dimensions