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 Decision Theory 
 Classification, Maximum Likelihood and Log likelihood 
 MAP Estimation, Bayes Risk 
 Probability of errors, ROC 

 Empirical Risk Minimization 
 Problems with decision theory, empirical risk minimization 
 Probably approximately correct learning 

 Curse of Dimensionality 
 Parameter Estimation 
 Probabilistic models for supervised and unsupervised learning 
 ML and MAP estimation 
 Examples 

 
 

Outline 
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 How to make decision in the presence of uncertainty? 
 History:  Prominent in WWII:  radar for detecting aircraft, codebreaking, decryption 

 Observed data x ∈ X,  state y ∈  Y 
 p(x|y): conditional distribution 

For each class, model of how the data is generated 
Example:  y ∈  {0, 1} (salmon vs. sea bass) or (airplane vs. bird, etc.) 
x: length of fish 
 

 
 
 

Classification 



 
 General classification problem: 
 Assume each sample belongs to one of 𝐾 classes 
 Observe data on the sample 𝒙  
 Want to estimate class label 𝑦 = 0,1, … ,𝐾 − 1 
 E.g. dog/cat, spam/real, … 

 

 Strong assumption needed for: decision theory 
 Given each class label 𝑦𝑖, we know conditional distribution 𝑝(𝒙|𝑦𝑖) 
Model of how the data is generated 
 We will discuss how we learn this density later… 

 
 

Classification 



 Which fish type is more likely to 
given the observed fish length x? 
 

If 𝑝 𝑥  𝑦 = 1 ) > 𝑝 𝑥  𝑦 = 0 ) 
guess  sea bass; 
otherwise classify the fish as salmon 
 
 𝑝 𝑥 𝑦  called the likelihood of 𝑥 given class 𝑦 
 Select class with highest likelihood 
                   𝑦� = arg max 𝑝(𝑥|𝑦)  
 Likelihood ratio test (LRT): 

         If   
𝑝 𝑥  𝑦=1 )
𝑝 𝑥  𝑦=0 )

> 1, guess sea bass  

 
 

 

Maximum Likelihood (ML) Decision 



 ML classification:   𝑦� = arg max 𝑝(𝑥|𝑦) 

 Binary case: 𝑦� = �
1 𝑝 𝑥 1 > 𝑝(𝑥|0)
0 𝑝 𝑥 1 ≤ 𝑝(𝑥|0) 

 For density on right, we get 
thresholding decision rule in terms of x: 

𝑦� = �1 if 𝑥 > 𝑡
0 if 𝑥 ≤ 𝑡 

 𝑡 = threshold value where 𝑝 𝑡 1 = 𝑝(𝑡|0) 

ML Classification 
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Select 𝑦� = 1 
if 𝑥 > 𝑡  

Select 𝑦� = 0 
 if 𝑥 ≤ 𝑡 

Threshold 𝑡 



 With likelihoods, it is often easier to work in log domain 
 Consider binary classification:  𝑦 ∈ {0,1} 
 Define the log likelihood ratio: 

𝐿 𝑥 ≔ ln
𝑝(𝑥|𝑦 = 1)
𝑝(𝑥|𝑦 = 0)

 

 ML estimation = likelihood ratio test (LRT): 

𝑦� = �1 if 𝐿 𝑥 > 0
0 if 𝐿 𝑥 ≤ 0 

 What do we do at boundary?   
 When 𝐿 𝑥 = 0, we can select either class. 
 Flip a coin, select 𝑦 = 0, select 𝑦 = 1, … 
 It doesn’t really matter 
 If 𝑥 is continuous, probability that 𝐿 𝑥 = 0 exactly is zero 

 

Likelihood Ratio 
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𝐿 𝑥 > 0 𝐿 𝑥 < 0 

𝐿 𝑥 = 0 



 Classic Iris dataset used for teaching machine learning 
 Get data 𝒙 = [𝑥1, 𝑥2, 𝑥3, 𝑥4] for 4 features  
 Sepal length, sepal width, petal length, petal width 
 150 samples total, 50 samples from each class 

 Class label 𝑦 ∈ {0,1,2}  for versicolor, setosa, virginica 
 Problem:  Learn a classifier for the type of Iris (𝑦) from data 𝒙 

Example:  Iris Classification 
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 To make this example simple, assume for now: 
 We classify using only one feature:  𝑥 =sepal width (cm) 
 Select between two classes:  Versicolor (𝑦 = 0) and Setosa (𝑦 = 1) 

 Also, assume we are given two densities: 
 𝑝 𝑥 𝑦 = 0  and 𝑝 𝑥 𝑦 = 1  
 We assume they are conditionally Gaussian:  𝑝 𝑥 𝑦 = 𝑘 = 𝑁 𝑥 𝜇𝑘 ,𝜎𝑘2  
 Densities represent the condition density of sepal width given the class 
 We will talk about how we get these densities from data later… 

 

Example:  Decision Theory for Iris Classification 
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 Decision theory requires we know 𝑝(𝒙|𝑦) 
 This is a big assumption! 
 𝑝(𝒙|𝑦) is called the population likelihood 
 Describes theoretical distribution of all samples 

 But, in most real problems: 
we have only data samples (𝒙𝑖 ,𝑦𝑖) 
 Ex:  Iris dataset, we have 50 samples  / class 

 To use decision theory, we could estimate a density 
𝑝(𝒙|𝑦 = 𝑘) for each 𝑘 from samples 
 Ex:  Could assume 𝑝(𝒙|𝑦) is Gaussian 
 Estimate mean and variance from samples 

 Later, we will talk about: 
 How to do density estimation 
 And if density estimation + decision theory is good idea 

How do we get 𝑝(𝑥|𝑦)? 
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Histograms for two Iris classes 
Also plotted is Gaussian with 
same mean and variance 



 Consider binary classification:  𝑦 = 0,1 
 𝑝 𝑥 𝑦 = 𝑗 = 𝑁 𝑥 𝜇𝑗 ,𝜎2 , 𝜇1 > 𝜇0 
 Two Gaussians with same variance 

 Likelihood: 

 𝑝 𝑥 𝑦 = 𝑗 = 1
2𝜋𝜎

exp(− 1
2𝜎2

𝑥 − 𝜇𝑖 2) 

 𝐿 𝑥 ≔ ln 𝑝 𝑥 1
𝑝 𝑥 0

= − 1
2𝜎2

𝑥 − 𝜇1 2 − 𝑥 − 𝜇0 2  

 With some algebra: 𝐿 𝑥 = (𝜇1−𝜇0)
𝜎2

𝑥 − �̅� , �̅� = 𝜇0+𝜇1
2

 

 ML estimate: 
 𝑦� = 1 ⇔ 𝐿 𝑥 ≥ 0 ⇔ 𝑥 ≥ �̅� 

 With some algebra we get: 𝑦� = �1 if 𝑥 > �̅�
0 if 𝑥 ≤ �̅� ,   

Example Problem:  ML for Two Gaussians, Different Means 
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�̅� 



 Consider binary classification:  𝑦 = 0,1 
 𝑝 𝑥 𝑦 = 𝑗 = 𝑁 𝑥 0,𝜎𝑗2 , 𝜎0 < 𝜎1 
 Two Gaussians with different variances, zero mean 

 Log likelihood ratio: 

 𝑝 𝑥 𝑦 = 𝑗 = 1
2𝜋𝜎𝑗

exp(− 𝑥2

2𝜎𝑗
2) 

 𝐿 𝑥 ≔ ln 𝑝 𝑥 1
𝑝 𝑥 0

= 𝑥2

2𝜎02
− 𝑥2

2𝜎12
+ 1

2
ln 𝜎12

𝜎02
 

 ML estimate: 
 𝑦� = 1 ⇔ 𝐿 𝑥 ≥ 0 ⇔ 𝑥 > 𝑡 

 Threshold is 𝑡2 = 1
𝜎02
− 1

𝜎12

−1
ln 𝜎12

𝜎02
 

Example 2:  ML for Two Gaussians, Different Variances 
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 −𝑡 𝑡 
  𝑦� = 0 

  𝑦� = 1   𝑦� = 1 



 Decision Theory 
 Classification, Maximum Likelihood and Log likelihood 
 MAP Estimation, Bayes Risk 
 Probability of errors, ROC 

 Empirical Risk Minimization 
 Problems with decision theory, empirical risk minimization 
 Probably approximately correct learning 

 Curse of Dimensionality 
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 Probabilistic models for supervised and unsupervised learning 
 ML and MAP estimation 
 Examples 

 
 

Outline 
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 What if one item is more likely than the other? 
 Introduce prior probabilities 𝑃 𝑦 = 0   and  𝑃(𝑦 = 1) 
 Salmon more likely than Sea bass:  𝑃 𝑦 = 0 > 𝑃(𝑦 = 1) 

 Bayes’ Rule:  𝑝 𝑦 𝑥) = 𝑝 𝑥  𝑦)𝑝(𝑦)
𝑝(𝑥)

   
 

 
 

 Interested then in class with highest posterior probability p 𝑦 𝑥) 
 Including prior probabilities: 

If 𝑝 𝑦 = 0  𝑥) > 𝑝 𝑦 = 1  𝑥), guess  salmon; otherwise, pick sea bass 
 

 We can write  𝑝 𝑦 = 0  𝑥) = 
𝑝 𝑥 𝑦=0 𝑃 𝑦=0

𝑃(𝑥)
, p 𝑦 = 1  𝑥) = 

𝑝 𝑥 𝑦=1 𝑃 𝑦=1
𝑃(𝑥)

    

 
 
 

 

 

MAP classification 



 Including prior probabilities: 
If 𝑝 𝑦 = 0  𝑥) > 𝑝 𝑦 = 1  𝑥), guess  salmon; otherwise, pick sea bass 

  Maximum A Posterori (MAP) Estimation: 
   𝑦�MAP = 𝛼(𝑥) = arg max

𝑦
𝑝 𝑦 𝑥) = arg max

𝑦
𝑝 𝑥 𝑦)𝑃(𝑦) 

 Select class with highest posterior probability p 𝑦 𝑥) 
 Binary case:  Select 𝑦�MAP = 1 if p 𝑦 = 1 𝑥) > 𝑝 𝑦 = 0 𝑥  

 
From Bayes 

𝑝 𝑦 = 0  𝑥) =  
𝑝 𝑥 𝑦=0 𝑃 𝑦=0

𝑃(𝑥)
,  p 𝑦 = 1  𝑥) =  

𝑝 𝑥 𝑦=1 𝑃 𝑦=1
𝑃(𝑥)

    

 

Wo we select class 1 if     
𝑝 𝑥 𝑦=1
𝑝 𝑥 𝑦=0

𝑃 𝑦=1
𝑃(𝑦=0)

≥ 1 
 

 

MAP classification 



 Consider binary case:  𝑦 ∈ {0,1} 

 MAP estimate:  Select 𝑦� = 1 ⇔  
𝑝 𝑥 𝑦=1
𝑝 𝑥 𝑦=0

𝑃 𝑦=1
𝑃(𝑦=0)

≥ 1 ⇔ 𝑝 𝑥 𝑦=1
𝑝 𝑥 𝑦=0

≥ 𝑃 𝑦=0
𝑃(𝑦=1)

 

 Log domain: select 𝑦� = 1 when: 
 

ln
𝑝 𝑥 𝑦 = 1
𝑝 𝑥 𝑦 = 0

≥ ln
𝑃 𝑦 = 0
𝑃 𝑦 = 1

⇔ 𝐿 𝑥 ≥ 𝛾 

 

 𝐿 𝑥 = ln 𝑝 𝑥 𝑦=1
𝑝 𝑥 𝑦=0

 is the log likelihood ratio 

 𝛾 = ln 𝑃 𝑦=0
𝑃 𝑦=1

 is the threshold for the likelihood function 
 

 In special case where 𝑃 𝑦 = 1 = 𝑃 𝑦 = 0 = 1
2
  

 Threshold is 𝛾 = 0 and  MAP estimate becomes identical to ML estimate 
 Note you solve this to get it in terms of  threshold for x that we denote t 

 

 

MAP Estimation via LRT 



 Consider binary classification:  𝑦 = 0,1 
 𝑝 𝑥 𝑦 = 𝑗 = 𝑁 𝑥 𝜇𝑗 ,𝜎2 ,𝜇1 > 𝜇2 

 𝑃𝑗 = 𝑃(𝑦 = 𝑗) 

 LLRTis: 

 𝐿 𝑥 = ln 𝑝 𝑥 1
𝑝 𝑥 0

= (𝜇1−𝜇0)(𝑥−𝜇�)
𝜎2

   �̅� = 𝜇0+𝜇1
2

 

 MAP estimate:  Let 𝛾 = ln 𝑃0
𝑃1

 

 𝑦� = 1 ⇔ 𝐿 𝑥 ≥ 𝛾 ⇔ 𝑥 ≥ �̅� + 𝜎2𝛾
𝜇1−𝜇0

 

 Threshold is shifted by the prior probability 𝛾 
 If 𝑃 𝑦 = 1 > 𝑃 𝑦 = 0 ⇒ 𝛾 < 0 ⇒ 𝑡 is shifted to left  
⇒ Estimator more likely to select 𝑦� = 1 

Example:  MAP for Two Gaussians, Different Means 
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𝑡 for 𝑃 𝑦 = 1 = 0.5 

𝑡 for 𝑃 𝑦 = 1 = 0.8 

𝑡 for 𝑃 𝑦 = 1 = 0.2 



 Two possible hypotheses for data 
 𝐻0:  Null hypothesis, 𝑦 = 0  
 𝐻1:  Alternate hypothesis, 𝑦 = 1 

 Model statistically: 
 𝑝 𝑥 𝐻𝑖 , 𝑖 = 0,1 
 Assume some distribution for each hypothesis 

 Given 
 Likelihood 𝑝 𝑥 𝐻𝑖 , 𝑖 = 0,1, Prior probabilities 𝑝𝑖 = 𝑃(𝐻𝑖) 

 Compute posterior 𝑃(𝐻𝑖|𝑥) 
 How likely is 𝐻𝑖 given the data and prior knowledge? 

 Bayes’ Rule: 

𝑃 𝐻𝑖 𝑥 =
𝑝 𝑥 𝐻𝑖 𝑝𝑖
𝑝(𝑥)

=
𝑝 𝑥 𝐻𝑖 𝑝𝑖

𝑝 𝑥 𝐻0 𝑝0 + 𝑝 𝑥 𝐻1 𝑝1
 

Often more formally written Hypothesis Testing 



 Probability of error: 
𝑃𝑒𝑒𝑒 = 𝑃 𝐻� ≠ 𝐻 = 𝑃 𝐻� = 0 𝐻1 𝑝1 + 𝑃 𝐻� = 1 𝐻0 𝑝0 

 Write with integral: 
𝑃 𝐻� ≠ 𝐻 = ∫ 𝑝(𝑥)𝑃 𝐻� ≠ 𝐻 𝑥 𝑑𝑥 

 It can be shown (you won't have to) that error is minimized with MAP estimator 
𝐻� = 1 ⇔ 𝑃 𝐻1 𝑥 ≥ 𝑃(𝐻0|𝑥) 

 
 Key takeaway:  MAP estimator minimizes the probability of error 

 
 
 

MAP: Minimum Probability of Error 



 What does it cost for a mistake? Plane with a missile, not a big bird? 
 Define loss or cost: 

       𝐿 𝛼 𝑥 , 𝑦 :  cost of decision 𝛼 𝑥  when state is 𝑦 

                              also often denoted 𝐶𝑖𝑗 

 

Making it more interesting, full on Bayes 

Y = 0  Y = 1 

𝛼 𝑥  = 0 Correct, cost L(0,0) Incorrect, cost L(0,1) 

𝛼 𝑥  = 1 incorrect, cost L(1,0) Correct, cost L(1,1) 

 Classic: Pascal's wager 
 
 
 

 



 So now we have: the likelihood functions p(x|y) 
                                 priors p(y) 
                                decision rule 𝛼 𝑥  
                                loss function 𝐿 𝛼 𝑥 ,𝑦 : 
 Risk is expected loss: 

𝐸 𝐿 =  𝐿 0,0) 𝑝(𝛼 𝑥 = 0,𝑦 = 0  

    + 𝐿 0,1) 𝑝(𝛼 𝑥 = 0,𝑦 = 1  
    + 𝐿 1,0) 𝑝(𝛼 𝑥 = 1,𝑦 = 0  
    + 𝐿 1,1) 𝑝(𝛼 𝑥 = 1,𝑦 = 1  
 Without loss of generality, zero cost for correct decisions 

𝐸 𝐿 =  𝐿 1,0) 𝑝 𝛼 𝑥 = 1  𝑦 = 0 𝑝 𝑦 = 0  

     + 𝐿 0,1) 𝑝 𝛼 𝑥 = 0  𝑦 = 1 𝑝(𝑦 = 1) 
 Bayes Decision Theory says “pick decision rule 𝛼 𝑥  to minimize risk” 

Risk Minimization 



 As before, express risk as integration over 𝑥: 

𝑅 = �� 𝐶𝑖𝑗
𝑖𝑗

𝑃 𝑦 = 𝑗 𝑥 1{𝑦� 𝑥 =𝑖} 𝑝 𝑥 𝑑𝑥 

  To minimize, select 𝑦� = 1 when 
 𝐶10𝑃 𝑦 = 0 𝑥 + 𝐶11𝑃 𝑦 = 1 𝑥 ≤ 𝐶00𝑃 𝑦 = 0 𝑥 + 𝐶01𝑃 𝑦 = 1 𝑥  
 𝑃(𝑦 = 0|𝑥) 𝑃 𝑦 = 1 𝑥 ≥⁄ (𝐶10 − 𝐶00) (𝐶11 − 𝐶01)⁄   

 

 By Bayes Theorem, equivalent to an LRT with 
𝑃(𝑥|𝑦 = 1)
𝑃(𝑥|𝑦 = 0)

≥
𝐶10 − 𝐶00 𝑝0
𝐶11 − 𝐶01 𝑝1

 

 

 

Bayes Risk Minimization 
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 How do we compute errors? 

 Suppose that decision rule is of the form:  𝑦� = �1 if 𝑔 𝑥 > 𝑡
0 if 𝑔 𝑥 ≤ 𝑡 

 𝑔 𝑥  is called the discriminator 
 𝑡 is the threshold 

 Ex:  Decision rule for scalar Gaussians 

 𝑦� = �1 if 𝑥 > 𝑡
0 if 𝑥 ≤ 𝑡   

 Uses a linear discriminator 𝑔 𝑥 = 𝑥 
 Threshold 𝑡 will depend on estimator type 

ML, MAP, Bayes risk, .. 

 We will compute the error as a function of 𝑡 

Computing Error Probabilities 
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𝑦� = 1 𝑦� = 0 
𝑡 



 Consider binary case:  𝑦 ∈ {0,1} 
 Two possible errors: 
 Type I error (False alarm or False Positive):  Decide 𝑦� = 1 when 𝑦 = 0 
 Type II error (Missed detection or False Negative):  Decide 𝑦� = 0 when 𝑦 = 1 

 
 The effect of the errors may be very different 

 Example:  Disease diagnosis:  𝑦 = 1 patient has disease, 𝑦 = 0 patient is healthy  
 Type I error:  You say patient is sick when patient is healthy 

Error can cause extra unnecessary tests, stress to patient, etc… 
 Type II error:  You say patient is fine when patient is sick 

Error can miss the disease, disease could progress, … 
 
 

Types of Errors 



 Type I error (False alarm or False Positive):  Decide H1 when H0  
 Type II error (Missed detection or False Negative):  Decide H0 when H1 
 Trade off 
 Can work out error probabilities from conditional probabilities 

Visualizing Errors 



 Scalar Gaussian:  For 𝑗 = 0,1: 
 𝑝 𝑥 𝑦 = 𝑗 = 𝑁 𝑥 𝜇𝑗 ,𝜎2 ,𝜇1 > 𝜇0 

 
 False alarm: 
 𝑃𝐹𝐹 = 𝑃 𝑦� = 1 𝑦 = 0 = 𝑃(𝑥 ≥ 𝑡|𝑦 = 0) 

 This is the area under curve, 𝑃𝐹𝐹 = ∫ 𝑝(𝑥|𝑦 = 0)∞
𝑡 𝑑𝑥 

 But, we can compute this using Gaussians 
 Given 𝑦 = 0,  𝑥~𝑁(𝜇0,𝜎2) 

 Therefore: 𝑃𝐹𝐹 = 𝑃 𝑥 ≥ 𝑡 𝑦 = 0 = 𝑄 𝑡−𝜇0
𝜎

 

 

Scalar Gaussian Example:  False Alarm 
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𝑦� = 1 𝑦� = 0 

𝑡 



 Scalar Gaussian:  For 𝑗 = 0,1: 
 𝑝 𝑥 𝑦 = 𝑗 = 𝑁 𝑥 𝜇𝑗 ,𝜎2 ,𝜇1 > 𝜇0 

 
 Missed detection can be computed similarly 
 𝑃𝑀𝑀 = 𝑃 𝑦� = 0 𝑦 = 1 = 𝑃(𝑥 ≤ 𝑡|𝑦 = 1) 
 This is the area under curve 
 But, we can compute this using Gaussians 
 Given 𝑦 = 1,  𝑥~𝑁(𝜇1,𝜎2) 

 Therefore: 𝑃𝐹𝐹 = 𝑃 𝑥 ≤ 𝑡 𝑦 = 1 = 1 − 𝑄 𝑡−𝜇1
𝜎

 

 

Scalar Gaussian Example:  Missed Detection 
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𝑦� = 1 𝑦� = 0 

𝑡 



 Problem:  Suppose 𝑋~𝑁(𝜇,𝜎2).  
 Often must compute probabilities like 𝑃(𝑋 ≥ 𝑡)  
 No closed-form expression. 

 Define Marcum Q-function: 
𝑄 𝑧 = 𝑃 𝑍 ≥ 𝑧 , 𝑍~𝑁(0,1)  

 Let 𝑍 = (𝑋 − 𝜇) 𝜎⁄  

 Then  

𝑃 𝑋 ≥ 𝑡 = 𝑃 𝑍 ≥
𝑡 − 𝜇
𝜎

= 𝑄
𝑡 − 𝜇
𝜎

 

Review:  Gaussian Q-Function 

32 



 We see that there is a tradeoff: 
 Increasing threshold 𝑡 ⇒ Decreases 𝑃𝐹𝐹 
 But, increasing threshold 𝑡 ⇒ Increases 𝑃𝑀𝑀 

 What threshold value we select depends on their relative costs 
 What is the effect of a FA vs. MD 
 Consider medical diagnosis case 

FA vs. MD Tradeoff 

33 

𝑡 𝑃𝐹𝐹 𝑃𝑀𝑀 



 Receiver Operating Characteristic (ROC) curve 
 For each threshold level 𝑡 compute 𝑃𝑀 𝑡 = 1 − 𝑃𝑀𝑀(𝑡) and 𝑃𝐹𝐹 𝑡  
 Plot 𝑃𝑀 𝑡  vs. 𝑃𝐹𝐹 𝑡  
 Shows the how large the detection probability can be for a given 𝑃𝐹𝐹 
 Name “ROC” comes from communications receivers where these were first used 

 Comparing ROC curves 
 Higher curve is better 
 Random guessing gets red line:  Guess 𝑦� = 1 with probability 𝑡 
 So, any decent estimator should be above the red line 

ROC Curve 
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Random guess 

Threshold estimator 



 Often have multiple classes.  𝑦 ∈ 1, … ,𝐾 
 Most methods easily extend: 
 ML:  Take max of 𝐾 likelihoods: 

𝑦� = arg max
𝑖=1,…,𝐾

𝑝(𝑥|𝑦 = 𝑖) 

 
 MAP:  Take max of 𝐾 posteriors: 

𝑦� = arg max
𝑖=1,…,𝐾

𝑝(𝑦 = 𝑖|𝑥) = arg max
𝑖=1,…,𝐾

𝑝 𝑥 𝑦 = 𝑖 𝑝(𝑦 = 𝑖) 
 
 

 LRT:  Take max of 𝐾 weighted likelihoods: 
𝑦� = arg max

𝑖=1,…,𝐾
𝑝(𝑥|𝑦 = 𝑖) 𝛾𝑖 

 

Multiple Classes 
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 Empirical Risk Minimization 
 Problems with decision theory, empirical risk minimization 
 Probably approximately correct learning 

 Curse of Dimensionality 
 Parameter Estimation 
 Probabilistic models for supervised and unsupervised learning 
 ML and MAP estimation 
 Examples 

 
 

Outline 
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 Bayesian formulation for classification:  Requires we know 𝑝(𝑥|𝑦) 
 But, we only have samples 𝑥𝑖 ,𝑦𝑖 , 𝑖 = 1, … ,𝑁, from this density 
 What do we do? 

 

 Approach 1:  Probabilistic approach 
 Learn distributions 𝑝(𝑥|𝑦) from data 𝑥𝑖 ,𝑦𝑖  
 Then apply Bayesian decision theory using estimated densities 

 

 Approach 2:  Decision rule 
 Use hypothesis testing to select a form for the classifier 
 Learn parameters of the classifier directly from data 

 

Two Approaches 



 Given data 𝑥𝑖 , 𝑦𝑖 , 𝑖 = 1, … ,𝑁 
 Probabilistic approach: 
 Assume 𝑥𝑖~𝑁(𝜇0,𝜎2)  when 𝑦𝑖 = 0;  𝑥𝑖~𝑁(𝜇1,𝜎2)  when 𝑦𝑖 = 1 
 Learn sample means for two classes:   �̂�𝑗 = mean of samples 𝑥𝑖 in class 𝑗 
 From decision theory, we have the decision rule: 

𝑦� = 𝛼 𝑥, 𝑡 = �1 𝑥 > 𝑡 
0 𝑥 < 𝑡 ,   𝑡 =

�̂�0 + �̂�1
2

 

 Empirical Risk minimization 
 For each threshold 𝑡,  we get decisions on the training data: 𝑦�𝑖 = 𝛼 𝑥𝑖 , 𝑡   

 Look at empirical risk, e.g. training error 𝐿 𝑡 ≔ 1
𝑁

#{𝑦�𝑖 ≠ 𝑦𝑖} 

 Select 𝑡 to minimize empirical risk �̂� = arg min
𝑡
𝐿(𝑡) 

Example with Scalar Data and Linear Discriminator 
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 Suppose data is as shown 
 We estimate class means:  �̂�0 ≈ −2,   �̂�1 ≈ 1 
 Decision rule from probabilistic approach 

 𝑦� = �1 𝑥 > 𝑡 
0 𝑥 < 𝑡 ,   𝑡 = 𝜇�0+𝜇�1

2
≈ −0.5 

 Threshold misclassifies many points 
 Empirical risk minimization 
 Select 𝑡 to minimize classification errors on training data 
 Will get 𝑡 ≈ 0.5 ⇒Leads to better rule 

 Why probabilistic approach failed? 
 We assumed both distributions were Gaussian 
 But, 𝑝(𝑥|𝑦 = 0) is not Gaussian.  It is bimodal 
 ERM does not require such assumptions 

Why ERM may be Better 
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Threshold from  
probabilistic  
approach 
 
Does not separate classes 

Threshold from  
ERM 
 
Separates classes 
well 



 Decision rule approach : 

 Assume a rule:   𝑦� = 𝛼 𝑥 = �1 𝑥 > 𝑡 
0 𝑥 < 𝑡  

 Rule has an unknown parameter 𝑡 

 Find 𝑡 to minimize empirical risk 𝑅emp 𝛼,𝑋𝑁 ≔ 1
𝑁
∑ 1(𝑦𝑖 ≠ 𝛼 𝑥𝑖 )𝑖  

 Minimizes error on training data 
 

 Motivation for decision rule approach over probabilistic approach 
 Why bother learning probabilities densities if your final goal is a decision rule 
 Assumptions on probability densities may be incorrect (see next slide) 
 Concentrate your efforts by dealing with data that is hard to classify  

Example of Decision Rule Approach 
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 Needs to assume specific form of densities  
 Ex:  Suppose we assume Gaussian densities 
 Gaussians are not robust 
 Outlier values can make large changes in  

mean and variance estimates 

 
 Risk minimization alternative:   
 Search over planes that separates classes 
 Only pay attention to data near boundary 
 Good in case of limited data 

Dangers of Using Probabilistic Approach 



 Decision Theory 
 Classification, Maximum Likelihood and Log likelihood 
 MAP Estimation, Bayes Risk 
 Probability of errors, ROC 

 Empirical Risk Minimization 
 Problems with decision theory, empirical risk minimization 
 Probably approximately correct learning 

 Curse of Dimensionality 
 Parameter Estimation 
 Probabilistic models for supervised and unsupervised learning 
 ML and MAP estimation 
 Examples 

 
 

Outline 
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 Examples of Bayes Decision theory can be misleading  
 Examples are in low dimensional spaces, 1 or 2 dim 
 Most machine learning problems today have high dimension 
 Often our geometric intuition in high-dimensions is wrong 

 

 Example:  Consider volume of sphere of radius 𝑟 = 1 in  𝐷  dimensions 
 What is the fraction of volume in a thin shell of a sphere between 1 − 𝜖 ≤ 𝑟 ≤ 1 ? 

Intuition in High-Dimensions 
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𝜖 

𝑟 = 1 



 Let 𝑉𝑀 𝑟 = volume of sphere of radius 𝑟, dimension 𝐷 
 From geometry:  𝑉𝑀 𝑟 = 𝐾𝑀𝑟𝑀 

 Let 𝜌𝑀(𝜖) = fraction of volume in a shell of thickness 𝜖 

𝜌𝑀 𝜖 =
𝑉𝑀 1 − 𝑉𝑀 1 − 𝜖

𝑉𝑀 1
 

             =
𝐾𝑀 − 𝐾𝑀 1 − 𝜖 𝑀

𝐾𝑀
= 1 − 1 − 𝜖 𝑀 

 For any 𝜖,  we see as 𝜌𝑀 𝜖 → 1 as 𝐷 → ∞ 
 All volume concentrates in a thin shell 
 This is very different than in low dimensions 

Example:  Sphere Hardening 

𝜌𝑀(𝜖) 

𝜖 

1 

𝐷 = 1 

5 

10 

𝐷 = 200 



 Consider a Gaussian i.i.d. vector 
 𝑥 = 𝑥1, … , 𝑥𝑀 ,   𝑥𝑖~𝑁(0,1) 

 As 𝐷 → ∞,  probability density concentrates on shell 𝑥 ≈ 𝐷2 , 
even though 𝑥 = 0 is most likely point 
 

 Let 𝑟 = 𝑥12 + 𝑥22 +⋯+ 𝑥𝑀2 1/2 
 𝐷 = 1:  𝑝 𝑟 = 𝑐 𝑒−𝑒2/2 

 𝐷 = 2:  𝑝 𝑟 = 𝑐 𝑟 𝑒−𝑒2/2 

 general 𝐷:  𝑝 𝑟 = 𝑐 𝑟𝑀−1 𝑒−𝑒2/2 
 

Gaussian Sphere Hardening 



 Conclusions: As dimension increases, 
 All volume of a sphere concentrates at its surface! 

 

 Similar example:  Consider a Gaussian i.i.d. vector 
 𝑥 = 𝑥1, … , 𝑥𝑑 ,   𝑥𝑖~𝑁(0,1) 
 As 𝑑 → ∞,  probability density concentrates on shell 

𝑥 2 ≈ 𝑑 
 Even though 𝑥 = 0 is most likely point 

 

Example:  Sphere Hardening 



 In high dimensions,  classifiers need large number of parameters 
 Example: 
 Suppose 𝑥 = 𝑥1, … , 𝑥𝑑 , each 𝑥𝑖 takes on 𝐿 values 
 Hence 𝑥 takes on 𝐿𝑑 values 

 Consider general classifier 𝑓(𝑥) 
 Assigns each 𝑥 some value  
 If there are no restrictions on 𝑓(𝑥), needs 𝐿𝑑 paramters 
 

Computational Issues 



 Curse of dimensionality:  As dimension increases 
 Number parameters for functions grows exponentially  

 Most operations become computationally intractable 
 Fitting the function, optimizing, storage 

 
 What ML is doing today 
 Finding tractable approximate approaches for high-dimensions 
 

Curse of Dimensionality 
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