Lecture 2

STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2019 Prof. Allie Fletcher

Course Admin

- People:
 - Prof. Allie Fletcher.
 - TA: Ruiqi Gao ruiqigao@ucla.edu
- Where:
 - MW 3:30-4:45pm, Public Affairs Bldg 2238
- Grading:
 - C261: Midterm 20%, Final 35%, HW and labs 25%, Quizzes&Participation 10%, Project 10%,

- C161: Midterm 20%, Final 35%, HW and labs 35%, Quizzes&Participation 10%
- Project is for graduate students only (see below)
- Homework will include programming assignments
- Midterm tentatively May 8
- Midterm and final are closed book. Equation sheet is provided.

Outline

Decision Theory

- Classification, Maximum Likelihood and Log likelihood
- MAP Estimation, Bayes Risk
- Probability of errors, ROC
- Empirical Risk Minimization
 - Problems with decision theory, empirical risk minimization
 - Probably approximately correct learning
- Curse of Dimensionality
- Parameter Estimation
 - Probabilistic models for supervised and unsupervised learning
 - ML and MAP estimation
 - Examples

Classification

- How to make decision in the presence of uncertainty?
- History: Prominent in WWII: radar for detecting aircraft, codebreaking, decryption
- Observed data $x \in X$, state $y \in Y$
- p(x | y): conditional distribution

For each class, model of how the data is generated

Example: $y \in \{0, 1\}$ (salmon vs. sea bass) or (airplane vs. bird, etc.) x: length of fish

$$p(x|y) = \frac{1}{\sqrt{2\pi}\sigma_y} \exp\left(-\frac{(x-\mu_y)^2}{2\sigma_y^2}\right)$$

• μ_y : mean, σ_y^2 : variance

Classification

• General classification problem:

- Assume each sample belongs to one of K classes
- Observe data on the sample \pmb{x}
- Want to estimate class label y = 0, 1, ..., K 1
- E.g. dog/cat, spam/real, ...
- Strong assumption needed for: decision theory

• Given each class label y_i , we know conditional distribution $p(\mathbf{x}|y_i)$ Model of how the data is generated

• We will discuss how we learn this density later...

Maximum Likelihood (ML) Decision

• Which fish type is more likely to given the observed fish length x?

If
$$p(x | y = 1) > p(x | y = 0)$$

guess sea bass;
otherwise classify the fish as salmon

- p(x|y) called the likelihood of x given class y
- Select class with highest likelihood

$$\hat{y} = \arg \max p(x|y)$$

• Likelihood ratio test (LRT):

If
$$\frac{p(x \mid y=1)}{p(x \mid y=0)} > 1$$
, guess sea bass

ML Classification

- ML classification: $\hat{y} = \arg \max p(x|y)$ • Binary case: $\hat{y} = \begin{cases} 1 & p(x|1) > p(x|0) \\ 0 & p(x|1) \le p(x|0) \end{cases}$
- For density on right, we get thresholding decision rule in terms of x:

$$\hat{y} = \begin{cases} 1 & \text{if } x > t \\ 0 & \text{if } x \le t \end{cases}$$

• t = threshold value where p(t|1) = p(t|0)

Likelihood Ratio

- With likelihoods, it is often easier to work in log domain
- Consider binary classification: $y \in \{0,1\}$
- Define the log likelihood ratio:

$$L(x) \coloneqq \ln \frac{p(x|y=1)}{p(x|y=0)}$$

- ML estimation = likelihood ratio test (LRT): $\hat{y} = \begin{cases} 1 & \text{if } L(x) > 0 \\ 0 & \text{if } L(x) \le 0 \end{cases}$
- What do we do at boundary?
 - When L(x) = 0, we can select either class.
 - Flip a coin, select y = 0, select y = 1, ...
 - It doesn't really matter
 - If x is continuous, probability that L(x) = 0 exactly is zero

Example: Iris Classification

Iris Versicolor

Iris Setosa

Iris Virginica

- Classic Iris dataset used for teaching machine learning
- Get data $\boldsymbol{x} = [x_1, x_2, x_3, x_4]$ for 4 features
 - Sepal length, sepal width, petal length, petal width
 - 150 samples total, 50 samples from each class
- Class label $y \in \{0,1,2\}$ for versicolor, setosa, virginica
- Problem: Learn a classifier for the type of Iris (y) from data x

Example: Decision Theory for Iris Classification

Iris Versicolor

Iris Setosa

- To make this example simple, assume for now:
 - We classify using only one feature: x = sepal width (cm)
 - Select between two classes: Versicolor (y = 0) and Setosa (y = 1)
- Also, assume we are given two densities:
 - p(x|y = 0) and p(x|y = 1)
 - We assume they are conditionally Gaussian: $p(x|y=k) = N(x|\mu_k, \sigma_k^2)$
 - Densities represent the condition density of sepal width given the class
 - We will talk about how we get these densities from data later...

How do we get p(x|y)?

- Decision theory requires we know $p(\boldsymbol{x}|\boldsymbol{y})$
 - This is a big assumption!
 - $p(\mathbf{x}|\mathbf{y})$ is called the population likelihood
 - Describes theoretical distribution of all samples
- But, in most real problems:
 we have only data samples (*x_i*, *y_i*)
 - Ex: Iris dataset, we have 50 samples / class
- To use decision theory, we could estimate a density $p(\mathbf{x}|\mathbf{y} = k)$ for each k from samples
 - Ex: Could assume $p(\boldsymbol{x}|\boldsymbol{y})$ is Gaussian
 - Estimate mean and variance from samples
- Later, we will talk about:
 - How to do density estimation
 - And if density estimation + decision theory is good idea

Histograms for two Iris classes Also plotted is Gaussian with same mean and variance

UCL

Example Problem: ML for Two Gaussians, Different Means

- Consider binary classification: y = 0,1
 - $p(x|y = j) = N(x|\mu_j, \sigma^2), \mu_1 > \mu_0$
 - Two Gaussians with same variance
- Likelihood:

•
$$p(x|y=j) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{1}{2\sigma^2}(x-\mu_i)^2)$$

• $L(x) \coloneqq \ln \frac{p(x|1)}{p(x|0)} = -\frac{1}{2\sigma^2}[(x-\mu_1)^2 - (x-\mu_0)^2]$
• With some algebra: $L(x) = \frac{(\mu_1 - \mu_0)}{\sigma^2}[x-\bar{\mu}], \bar{\mu} = \frac{\mu_0 + \mu_1}{2}$

• ML estimate:

•
$$\hat{y} = 1 \Leftrightarrow L(x) \ge 0 \Leftrightarrow x \ge \bar{\mu}$$

• With some algebra we get: $\hat{y} = \begin{cases} 1 & \text{if } x > \bar{\mu} \\ 0 & \text{if } x \le \bar{\mu} \end{cases}$

12

Example 2: ML for Two Gaussians, Different Variances

• Consider binary classification: y = 0,1• $p(x|y=j) = N(x|0,\sigma_i^2), \ \sigma_0 < \sigma_1$ • Two Gaussians with different variances, zero mean • Log likelihood ratio: • $p(x|y=j) = \frac{1}{\sqrt{2\pi}\sigma_i} \exp(-\frac{x^2}{2\sigma_i^2})$ • $L(x) \coloneqq \ln \frac{p(x|1)}{p(x|0)} = \frac{x^2}{2\sigma_1^2} - \frac{x^2}{2\sigma_2^2} + \frac{1}{2}\ln \frac{\sigma_1^2}{\sigma_1^2}$ ML estimate:

•
$$\hat{y} = 1 \Leftrightarrow L(x) \ge 0 \Leftrightarrow |x| > t$$

• Threshold is $t^2 = \left[\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2}\right]^{-1} \ln \frac{\sigma_1^2}{\sigma_0^2}$

13

Outline

- Decision Theory
 - Classification, Maximum Likelihood and Log likelihood
 - MAP Estimation, Bayes Risk
 - Probability of errors, ROC
- Empirical Risk Minimization
 - Problems with decision theory, empirical risk minimization
 - Probably approximately correct learning
- Curse of Dimensionality
- Parameter Estimation
 - Probabilistic models for supervised and unsupervised learning
 - ML and MAP estimation
 - Examples

MAP classification

- What if one item is more likely than the other?
- Introduce prior probabilities P(y = 0) and P(y = 1)
 - Salmon more likely than Sea bass: P(y = 0) > P(y = 1)

- Interested then in class with highest posterior probability $\mu(y|x)$
- Including prior probabilities: If p(y = 0 | x) > p(y = 1 | x), guess salmon; otherwise, pick sea bass

• We can write
$$p(y = 0 | x) = \frac{p(x|y=0)P(y=0)}{P(x)}$$
, $p(y = 1 | x) = \frac{p(x|y=1)P(y=1)}{P(x)}$

MAP classification

• Including prior probabilities:

If p(y = 0 | x) > p(y = 1 | x), guess salmon; otherwise, pick sea bass

Maximum A Posterori (MAP) Estimation:

$$\hat{y}_{MAP} = \alpha(x) = \arg \max_{y} p(y|x) = \arg \max_{y} p(x|y) P(y)$$

• Select class with highest posterior probability p(y|x)

• Binary case: Select
$$\hat{y}_{MAP} = 1$$
 if $p(y = 1|x) > p(y = 0|x)$

From Bayes

$$p(y = 0 | x) = \frac{p(x|y=0)P(y=0)}{P(x)}, \ p(y = 1 | x) = \frac{p(x|y=1)P(y=1)}{P(x)}$$

Wo we select class 1 if $\frac{p(x|y=1)}{p(x|y=0)} \frac{P(y=1)}{P(y=0)} \ge 1$

MAP Estimation via LRT

- Consider binary case: $y \in \{0,1\}$
- MAP estimate: Select $\hat{y} = 1 \Leftrightarrow \frac{p(x|y=1)}{p(x|y=0)} \frac{P(y=1)}{P(y=0)} \ge 1 \Leftrightarrow \frac{p(x|y=1)}{p(x|y=0)} \ge \frac{P(y=0)}{P(y=1)}$
- Log domain: select $\hat{y} = 1$ when:

$$\ln\left[\frac{p(x|y=1)}{p(x|y=0)}\right] \ge \ln\frac{P(y=0)}{P(y=1)} \Leftrightarrow L(x) \ge \gamma$$

- In special case where $P(y = 1) = P(y = 0) = \frac{1}{2}$
 - Threshold is $\gamma = 0$ and MAP estimate becomes identical to ML estimate
- Note you solve this to get it in terms of threshold for x that we denote t

Example: MAP for Two Gaussians, Different Means

Consider binary classification: y = 0,1
p(x|y = j) = N(x|μ_j, σ²), μ₁ > μ₂
P_j = P(y = j)

• LLRTis:

•
$$L(x) = \ln \frac{p(x|1)}{p(x|0)} = \frac{(\mu_1 - \mu_0)(x - \overline{\mu})}{\sigma^2} \quad \overline{\mu} = \frac{\mu_0 + \mu_1}{2}$$

• MAP estimate: Let $\gamma = \ln \frac{P_0}{P_1}$

•
$$\hat{y} = 1 \Leftrightarrow L(x) \ge \gamma \Leftrightarrow x \ge \bar{\mu} + \frac{\sigma^2 \gamma}{\mu_1 - \mu_0}$$

• Threshold is shifted by the prior probability γ

• If
$$P(y = 1) > P(y = 0) \Rightarrow \gamma < 0 \Rightarrow t$$
 is shifted to left

 \Rightarrow Estimator more likely to select $\hat{y} = 1$

Often more formally written Hypothesis Testing

- Two possible hypotheses for data
 - H_0 : Null hypothesis, y = 0
 - H_1 : Alternate hypothesis, y = 1
- Model statistically:
 - $p(x|H_i), i = 0, 1$
 - Assume some distribution for each hypothesis
- Given
 - Likelihood $p(x|H_i)$, i = 0, 1, Prior probabilities $p_i = P(H_i)$
- Compute posterior $P(H_i|x)$
 - How likely is H_i given the data and prior knowledge?
- Bayes' Rule:

$$P(H_i|x) = \frac{p(x|H_i)p_i}{p(x)} = \frac{p(x|H_i)p_i}{p(x|H_0)p_0 + p(x|H_1)p_1}$$

MAP: Minimum Probability of Error

• Probability of error:

$$P_{err} = P(\widehat{H} \neq H) = P(\widehat{H} = 0|H_1)p_1 + P(\widehat{H} = 1|H_0)p_0$$

• Write with integral:

$$P(\widehat{H} \neq H) = \int p(x) P(\widehat{H} \neq H | x) dx$$

- It can be shown (you won't have to) that error is minimized with MAP estimator $\widehat{H} = 1 \Leftrightarrow P(H_1|x) \ge P(H_0|x)$
- Key takeaway: MAP estimator minimizes the probability of error

Making it more interesting, full on Bayes

- What does it cost for a mistake? Plane with a missile, not a big bird?
- Define loss or cost:

 $L(\alpha(x), y)$: cost of decision $\alpha(x)$ when state is y

also often denoted C_{ij}

	$\mathbf{Y} = 0$	Y = 1
$\alpha(x) = 0$	Correct, cost L(0,0)	Incorrect, cost L(0,1)
$\alpha(x) = 1$	incorrect, cost L(1,0)	Correct, cost L(1,1)

• Classic: Pascal's wager

	God exists (G)	God does not exist (¬G)
Belief (B)	+∞ (infinite gain)	−1 (finite loss)
Disbelief (¬B)	−∞ (infinite loss)	+1 (finite gain)

Risk Minimization

• So now we have: the likelihood functions p(x | y)priors p(y)decision rule $\alpha(x)$ loss function $L(\alpha(x), y)$:

• *Risk* is expected loss:

$$E[L] = L(0,0) p(\alpha(x) = 0, y = 0) + L(0,1) p(\alpha(x) = 0, y = 1) + L(1,0) p(\alpha(x) = 1, y = 0) + L(1,1) p(\alpha(x) = 1, y = 1)$$

• Without loss of generality, zero cost for correct decisions $E[L] = L(1,0) p(\alpha(x) = 1 | y = 0)p(y = 0)$ $+ L(0,1) p(\alpha(x) = 0 | y = 1)p(y = 1)$

• Bayes Decision Theory says "pick decision rule $\alpha(x)$ to minimize risk"

Bayes Risk Minimization

• As before, express risk as integration over *x*:

$$R = \int \sum_{ij} C_{ij} P(y=j|x) \mathbf{1}_{\{\hat{y}(x)=i\}} p(x) dx$$

- To minimize, select $\hat{y} = 1$ when
 - $C_{10}P(y=0|x) + C_{11}P(y=1|x) \le C_{00}P(y=0|x) + C_{01}P(y=1|x)$
 - $P(y = 0|x)/P(y = 1|x) \ge (C_{10} C_{00})/(C_{11} C_{01})$

• By Bayes Theorem, equivalent to an LRT with

$$\frac{P(x|y=1)}{P(x|y=0)} \ge \frac{(C_{10} - C_{00})p_0}{(C_{11} - C_{01})p_1}$$

Outline

- Decision Theory
 - Classification, Maximum Likelihood and Log likelihood
 - MAP Estimation, Bayes Risk
 - Probability of errors, ROC
- Empirical Risk Minimization
 - Problems with decision theory, empirical risk minimization
 - Probably approximately correct learning
- Curse of Dimensionality
- Parameter Estimation
 - Probabilistic models for supervised and unsupervised learning
 - ML and MAP estimation
 - Examples

Computing Error Probabilities

- How do we compute errors?
- Suppose that decision rule is of the form: $\hat{y} = \begin{cases} 1 & \text{if } g(x) > t \\ 0 & \text{if } g(x) \le t \end{cases}$
 - g(x) is called the discriminator
 - *t* is the threshold
- Ex: Decision rule for scalar Gaussians
 - $\hat{y} = \begin{cases} 1 & \text{if } x > t \\ 0 & \text{if } x \le t \end{cases}$
 - Uses a linear discriminator g(x) = x
 - Threshold *t* will depend on estimator type ML, MAP, Bayes risk, ..
- We will compute the error as a function of t

Types of Errors

- Consider binary case: $y \in \{0,1\}$
- Two possible errors:
 - Type I error (False alarm or False Positive): Decide $\hat{y} = 1$ when y = 0
 - Type II error (Missed detection or False Negative): Decide $\hat{y} = 0$ when y = 1
- The effect of the errors may be very different
- Example: Disease diagnosis: y = 1 patient has disease, y = 0 patient is healthy
 - Type I error: You say patient is sick when patient is healthy Error can cause extra unnecessary tests, stress to patient, etc...
 - Type II error: You say patient is fine when patient is sick Error can miss the disease, disease could progress, ...

Visualizing Errors

- Type I error (False alarm or False Positive): Decide H1 when H0
- Type II error (Missed detection or False Negative): Decide H0 when H1
- Trade off
- Can work out error probabilities from conditional probabilities

Scalar Gaussian Example: False Alarm

- Scalar Gaussian: For j = 0,1:
 p(x|y = j) = N(x|μ_i, σ²), μ₁ > μ₀
- False alarm:
 - $P_{FA} = P(\hat{y} = 1 | y = 0) = P(x \ge t | y = 0)$
 - This is the area under curve, $P_{FA} = \int_t^\infty p(x|y=0) dx$
 - But, we can compute this using Gaussians
 - Given y = 0, $x \sim N(\mu_0, \sigma^2)$

• Therefore:
$$P_{FA} = P(x \ge t | y = 0) = Q\left(\frac{t-\mu_0}{\sigma}\right)$$

Scalar Gaussian Example: Missed Detection

- Scalar Gaussian: For j = 0,1: • $p(x|y = j) = N(x|\mu_j, \sigma^2), \mu_1 > \mu_0$
- Missed detection can be computed similarly

•
$$P_{MD} = P(\hat{y} = 0 | y = 1) = P(x \le t | y = 1)$$

- This is the area under curve
- But, we can compute this using Gaussians
- Given y = 1, $x \sim N(\mu_1, \sigma^2)$
- Therefore: $P_{FA} = P(x \le t | y = 1) = 1 Q\left(\frac{t-\mu_1}{\sigma}\right)$

Review: Gaussian Q-Function

- Problem: Suppose $X \sim N(\mu, \sigma^2)$.
 - Often must compute probabilities like $P(X \ge t)$
 - No closed-form expression.
- Define Marcum Q-function: $Q(z) = P(Z \ge z), Z \sim N(0,1)$
- Let $Z = (X \mu)/\sigma$
- Then

$$P(X \ge t) = P\left(Z \ge \frac{t-\mu}{\sigma}\right) = Q\left(\frac{t-\mu}{\sigma}\right)$$

FA vs. MD Tradeoff

- We see that there is a tradeoff:
 - Increasing threshold $t \Rightarrow$ Decreases P_{FA}
 - But, increasing threshold $t \Rightarrow$ Increases P_{MD}
- What threshold value we select depends on their relative costs
 - What is the effect of a FA vs. MD
 - Consider medical diagnosis case

ROC Curve

- Receiver Operating Characteristic (ROC) curve
 - For each threshold level t compute $P_D(t) = 1 P_{MD}(t)$ and $P_{FA}(t)$
 - Plot $P_D(t)$ vs. $P_{FA}(t)$
 - Shows the how large the detection probability can be for a given P_{FA}
 - Name "ROC" comes from communications receivers where these were first used
- Comparing ROC curves
 - Higher curve is better
 - Random guessing gets red line: Guess $\hat{y} = 1$ with probability t
 - So, any decent estimator should be above the red line

Multiple Classes

- Often have multiple classes. $y \in 1, ..., K$
- Most methods easily extend:
 - ML: Take max of K likelihoods:

$$\hat{y} = \arg \max_{i=1,\dots,K} p(x|y=i)$$

• MAP: Take max of *K* posteriors:

$$\hat{y} = \arg \max_{i=1,\dots,K} p(y=i|x) = \arg \max_{i=1,\dots,K} p(x|y=i)p(y=i)$$

• LRT: Take max of *K* weighted likelihoods:

$$\hat{y} = \arg \max_{i=1,\dots,K} p(x|y=i) \gamma_i$$

35

Outline

- Decision Theory
 - Classification, Maximum Likelihood and Log likelihood
 - MAP Estimation, Bayes Risk
 - Probability of errors, ROC
 - Empirical Risk Minimization
 - Problems with decision theory, empirical risk minimization
 - Probably approximately correct learning
- Curse of Dimensionality
- Parameter Estimation
 - Probabilistic models for supervised and unsupervised learning
 - ML and MAP estimation
 - Examples

Two Approaches

- Bayesian formulation for classification: Requires we know p(x|y)
- But, we only have samples (x_i, y_i) , i = 1, ..., N, from this density
- What do we do?
- Approach 1: Probabilistic approach
 - Learn distributions p(x|y) from data (x_i, y_i)
 - Then apply Bayesian decision theory using estimated densities
- Approach 2: Decision rule
 - Use hypothesis testing to select a form for the classifier
 - Learn parameters of the classifier directly from data

Example with Scalar Data and Linear Discriminator

- Given data $(x_i, y_i), i = 1, ..., N$
- Probabilistic approach:
 - Assume $x_i \sim N(\mu_0, \sigma^2)$ when $y_i = 0$; $x_i \sim N(\mu_1, \sigma^2)$ when $y_i = 1$
 - Learn sample means for two classes: $\hat{\mu}_j$ = mean of samples x_i in class j
 - From decision theory, we have the decision rule:

$$\hat{y} = \alpha(x,t) = \begin{cases} 1 & x > t \\ 0 & x < t \end{cases}, \qquad t = \frac{\hat{\mu}_0 + \hat{\mu}_1}{2}$$

- Empirical Risk minimization
 - For each threshold t, we get decisions on the training data: $\hat{y}_i = \alpha(x_i, t)$
 - Look at empirical risk, e.g. training error $L(t) \coloneqq \frac{1}{N} #\{\hat{y}_i \neq y_i\}$
 - Select t to minimize empirical risk $\hat{t} = \arg \min_{t} L(t)$

UCI

Why ERM may be Better

- Suppose data is as shown
- We estimate class means: $\hat{\mu}_0 \approx -2$, $\hat{\mu}_1 \approx 1$
- Decision rule from probabilistic approach

•
$$\hat{y} = \begin{cases} 1 & x > t \\ 0 & x < t \end{cases}, \quad t = \frac{\hat{\mu}_0 + \hat{\mu}_1}{2} \approx -0.5 \end{cases}$$

- Threshold misclassifies many points
- Empirical risk minimization
 - Select t to minimize classification errors on training data
 - Will get $t \approx 0.5 \Rightarrow$ Leads to better rule
- Why probabilistic approach failed?
 - We assumed both distributions were Gaussian
 - But, p(x|y = 0) is not Gaussian. It is bimodal
 - ERM does not require such assumptions

40

Example of Decision Rule Approach

- Decision rule approach :
 - Assume a rule: $\hat{y} = \alpha(x) = \begin{cases} 1 & x > t \\ 0 & x < t \end{cases}$
 - Rule has an unknown parameter t
 - Find *t* to minimize empirical risk $R_{emp}(\alpha, X_N) \coloneqq \frac{1}{N} \sum_i \mathbb{1}(y_i \neq \alpha(x_i))$
 - Minimizes error on training data
- Motivation for decision rule approach over probabilistic approach
 - Why bother learning probabilities densities if your final goal is a decision rule
 - Assumptions on probability densities may be incorrect (see next slide)
 - Concentrate your efforts by dealing with data that is hard to classify

R1 easy to classify hard to classify

R2

Dangers of Using Probabilistic Approach

- Needs to assume specific form of densities
- Ex: Suppose we assume Gaussian densities
 - Gaussians are not robust
 - Outlier values can make large changes in mean and variance estimates
- Risk minimization alternative:
 - Search over planes that separates classes
 - Only pay attention to data near boundary
 - Good in case of limited data

Outline

- Decision Theory
 - Classification, Maximum Likelihood and Log likelihood
 - MAP Estimation, Bayes Risk
 - Probability of errors, ROC
- Empirical Risk Minimization
 - Problems with decision theory, empirical risk minimization
 - Probably approximately correct learning
 - Curse of Dimensionality
- Parameter Estimation
 - Probabilistic models for supervised and unsupervised learning
 - ML and MAP estimation
 - Examples

Intuition in High-Dimensions

- Examples of Bayes Decision theory can be misleading
 - Examples are in low dimensional spaces, 1 or 2 dim
 - Most machine learning problems today have high dimension
 - Often our geometric intuition in high-dimensions is wrong
- Example: Consider volume of sphere of radius r = 1 in D dimensions
 - What is the fraction of volume in a thin shell of a sphere between $1 \epsilon \le r \le 1$?

UCI

Example: Sphere Hardening

- Let V_D(r) = volume of sphere of radius r, dimension D
 From geometry: V_D(r) = K_Dr^D
- Let $\rho_D(\epsilon) = \text{fraction of volume in a shell of thickness } \epsilon$ $\rho_D(\epsilon) = \frac{V_D(1) - V_D(1 - \epsilon)}{V_D(1)}$ $= \frac{K_D - K_D(1 - \epsilon)^D}{K_D} = 1 - (1 - \epsilon)^D$
- For any ϵ , we see as $\rho_D(\epsilon) \to 1$ as $D \to \infty$
- All volume concentrates in a thin shell
- This is very different than in low dimensions

Gaussian Sphere Hardening

- Consider a Gaussian i.i.d. vector
 - $x = (x_1, ..., x_D), x_i \sim N(0, 1)$
- As $D \to \infty$, probability density concentrates on shell $||x|| \approx \sqrt[2]{D}$, even though x = 0 is most likely point
- Let $r = (x_1^2 + x_2^2 + \dots + x_D^2)^{1/2}$ • D = 1: $p(r) = c e^{-r^2/2}$ • D = 2: $p(r) = c r e^{-r^2/2}$ • general D: $p(r) = c r^{D-1} e^{-r^2/2}$

Example: Sphere Hardening

- Conclusions: As dimension increases,
 - All volume of a sphere concentrates at its surface!
- Similar example: Consider a Gaussian i.i.d. vector
 - $x = (x_1, ..., x_d), x_i \sim N(0, 1)$
 - As $d \to \infty$, probability density concentrates on shell $\|x\|^2 \approx d$
 - Even though x = 0 is most likely point

Computational Issues

- In high dimensions, classifiers need large number of parameters
- Example:
 - Suppose $x = (x_1, ..., x_d)$, each x_i takes on L values
 - Hence x takes on L^d values
- Consider general classifier f(x)
 - Assigns each *x* some value
 - If there are no restrictions on f(x), needs L^d paramters

Curse of Dimensionality

- Curse of dimensionality: As dimension increases
 - Number parameters for functions grows exponentially
- Most operations become computationally intractable
 - Fitting the function, optimizing, storage
- What ML is doing today
 - Finding tractable approximate approaches for high-dimensions