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We consider the sampling problem for functional PCA (fPCA), where
the simplest example is the case of taking time samples of the underlying
functional components. More generally, we model the sampling operation as
a continuous linear map from H to R

m, where the functional components to
lie in some Hilbert subspace H of L2, such as a reproducing kernel Hilbert
space of smooth functions. This model includes time and frequency sampling
as special cases. In contrast to classical approach in fPCA in which access to
entire functions is assumed, having a limited number m of functional sam-
ples places limitations on the performance of statistical procedures. We study
these effects by analyzing the rate of convergence of an M-estimator for the
subspace spanned by the leading components in a multi-spiked covariance
model. The estimator takes the form of regularized PCA, and hence is com-
putationally attractive. We analyze the behavior of this estimator within a
nonasymptotic framework, and provide bounds that hold with high probabil-
ity as a function of the number of statistical samples n and the number of
functional samples m. We also derive lower bounds showing that the rates
obtained are minimax optimal.

1. Introduction. The statistical analysis of functional data, commonly re-
ferred to as functional data analysis (FDA), is an established area of statistics with
a great number of practical applications; see the books [26, 27] and references
therein for various examples. When the data is available as finely sampled curves,
say in time, it is common to treat it as a collection of continuous-time curves or
functions, each being observed in totality. These datasets are then termed “func-
tional,” and various statistical procedures applicable in finite dimensions can be
extended to this functional setting. Among such procedures is principal compo-
nent analysis (PCA), which is the focus of present work.

If one thinks of continuity as a mathematical abstraction of reality, then treating
functional data as continuous curves is arguably a valid modeling device. How-
ever, in practice, one is faced with finite computational resources and is forced to
implement a (finite-dimensional) approximation of true functional procedures by
some sort of truncation procedure, for instance, in the frequency domain. It is then
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important to understand the effects of this truncation on the statistical performance
of the procedure. In other situations, such as in longitudinal data analysis [13],
a continuous curve model is justified as a hidden underlying generating process to
which one has access only through sparsely sampled measurements in time, possi-
bly corrupted by noise. Studying how the time-sampling affects the estimation of
the underlying functions in the presence of noise shares various common elements
with the frequency-domain problem described above.

The aim of this paper is to study effects of “sampling”—in a fairly general
sense—on functional principal component analysis in smooth function spaces. In
order to do so, we adopt a functional-theoretic approach by treating the sampling
procedure as a (continuous) linear operator. This set-up provides us with a no-
tion of sampling general enough to treat both the frequency-truncation and time-
sampling within a unified framework. We take as our smooth function space a
Hilbert subspace H of L2[0,1] and denote the sampling operator by � : H → R

m.
We assume that there are functions xi(t), t ∈ [0,1], in H for i = 1, . . . , n, gener-
ated i.i.d. from a probabilistic model (to be discussed). We then observe the collec-
tion {�xi}ni=1 ⊂ R

m in noise. We refer to the index n as the number of statistical
samples, and to the index m as the number of functional samples.

We analyze a natural M-estimator which takes the form of a regularized PCA
in R

m, and provide nonasymptotic bounds on the estimation error in terms of n

and m. The eigen-decay of two operators govern the rates, the product of the sam-
pling operator � and its adjoint, and the product of the map embedding H in L2

and its adjoint. Our focus will be on the setting where H is a reproducing kernel
Hilbert space (RKHS), in which case the two eigen-decays are intimately related
through the kernel function (s, t) �→ K(s, t). In such cases, the two components
of the rate interact and give rise to optimal values for the number of functional
samples (m) in terms of the number of statistical samples (n) or vice versa. This
has practical appeal in cases where obtaining either type of samples is costly.

Our model for the functions {xi} is an extension to function spaces of the spiked
covariance model introduced by Johnstone and his collaborators [18, 19], and
studied by various authors (e.g., [1, 19, 23]). We consider such models with r

components, each lying within the Hilbert ball BH(ρ) of radius ρ, with the goal
of recovering the r-dimensional subspace spanned by the spiked components in
this functional model. We analyze our M-estimators within a high-dimensional
framework that allows both the number of statistical samples n and the number of
functional samples m to diverge together. Our main theoretical contributions are
to derive nonasymptotic bounds on the estimation error as a function of the pair
(m,n), which are shown to be sharp (minimax-optimal). Although our rates also
explicitly track the number of components r and the smoothness parameter ρ, we
do not make any effort to obtain optimal dependence on these parameters.

The general asymptotic properties of PCA in function spaces have been in-
vestigated by various authors (e.g., [8, 11, 15]). Accounting for smoothness of
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functions by introducing various roughness/smoothness penalties is a standard ap-
proach, used in the papers [7, 24, 28, 29], among others. The problem of principal
component analysis for sampled functions, with a similar functional-theoretic per-
spective, is discussed by Besse and Ramsey [5] for the noiseless case. A more
recent line of work is devoted to the case of functional PCA with noisy sampled
functions [10, 16, 32]. Cardot [10] considers estimation via spline-based approxi-
mation, and derives MISE rates in terms of various parameters of the model. Hall
et al. [16] study estimation via local linear smoothing, and establish minimax-
optimality in certain settings that involve a fixed number of functional samples.
Both papers [10, 16] demonstrate trade-offs between the numbers of statistical and
functional samples; we refer the reader to Hall et al. [16] for an illuminating dis-
cussion of connections between FDA and LDA approaches (i.e., having full versus
sampled functions), which inspired much of the present work. We note that the
regularization present in our M-estimator is closely related to classical roughness
penalties [28, 29] in the special case of spline kernels, although the discussion there
applies to fully-observed functions, as opposed to the sampled models considered
here.

After initial posting of this work, we became aware of more recent work on
sampled functional PCA. Working within the framework of Hall et al. [16], the
analysis of Li and Hsing [21] allows for more flexible sample sizes per curve; they
derive optimal uniform (i.e., L∞) rates of convergence for local linear smooth-
ing estimators of covariance function and the resulting eigenfunctions. Another
line of work [17, 25] has analyzed sampled forms of Silverman’s criterion [29],
with some variations. Huang et al. [17] derive a criterion based on rank-one ap-
proximation coupled with scale invariance considerations, combined with an extra
weighting of the covariance matrix. Xi and Zhao [25] also show the consistency
of their estimator for both regular and irregular sampling. The regular (time) sam-
pling setup in both papers have an overlap with our work; the eigenfunctions are
assumed to lie in a second order Sobolev space, corresponding to a special case
of a RKHS. However, even in this particular case, our estimator is different, and
it is an interesting question whether a version of the results presented here can be
used to show the minimax optimality of these Silverman-type criteria. There has
also been recent work with emphasis on sampled functional covariance estimation,
including the work of Cai and Yuan [9], who analyze an estimator which can be de-
scribed as regularized least-squares with penalty being the norm of tensor product
of RKHS with itself. They provide rates of convergence for the covariance func-
tion, from which certain rates (argued to be optimal within logarithmic factors) for
eigenfunctions follow.

As mentioned above, our sampled model resembles very much that of spiked co-
variance model for high-dimensional principal component analysis. A line of work
on this model has treated various types of sparsity conditions on the eigenfunctions
[1, 19, 23]; in contrast, here the smoothness condition on functional components
translates into an ellipsoid condition on the vector principal components. Perhaps
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an even more significant difference is that in this paper, the effective scaling of
noise in R

m is substantially smaller in some cases (e.g., the case of time sampling).
This difference could explain why the difficulty of “high-dimensional” setting is
not observed in such cases as one lets m,n → ∞. On the other hand, a difficulty
particular to our sampled model is the lack of orthonormality between components
after sampling. It not only leads to identifiability issues, but also makes recovering
individual components difficult.

In order to derive nonasymptotic bounds on our M-estimator, we exploit vari-
ous techniques from empirical process theory (e.g., [30]), as well as the concen-
tration of measure (e.g., [20]). We also exploit recent work [22] on the localized
Rademacher complexities of unit balls in a reproducing kernel Hilbert space, as
well as techniques from nonasymptotic random matrix theory, as discussed in
Davidson and Szarek [12], in order to control various norms of random matrices.
These techniques allow us to obtain finite-sample bounds that hold with high prob-
ability, and are specified explicitly in terms of the pair (m,n), and the underlying
smoothness of the Hilbert space.

The remainder of this paper is organized as follows. Section 2 is devoted to
background material on reproducing kernel Hilbert spaces, adjoints of operators,
as well as the class of sampled functional models that we study in this paper. In
Section 3, we describe M-estimators for sampled functional PCA, and discuss
various implementation details. Section 4 is devoted to the statements of our main
results, and discussion of their consequences for particular sampling models. In
subsequent sections, we provide the proofs of our results, with some more tech-
nical aspects deferred to the supplementary material [3]. Section 5 is devoted to
bounds on the subspace-based error. We conclude with a discussion in Section 6.
In the supplementary material [3], Section 7 is devoted to proofs of bounds on
error in the function space, whereas Section 8 provides proofs of matching lower
bounds on the minimax error, showing that our analysis is sharp.

Notation. We will use ||| · |||HS to denote the Hilbert–Schmidt norm of an op-
erator or a matrix. The corresponding inner product is denoted as 〈〈·, ·〉〉. If T is
an operator on a Hilbert space H with an orthonormal basis {ej }, then |||T |||2HS =∑

j ‖T ej‖2
H. For a matrix A = (aij ), we have |||A|||2HS = ∑

i,j |aij |2. For a linear
operator �, the adjoint is denoted as �∗, the range as Ra(�) and the kernel as
Ker(�).

2. Background and problem set-up. In this section, we begin by introducing
background on reproducing kernel Hilbert spaces, as well as linear operators and
their adjoints. We then introduce the functional and observation model that we
study in this paper, and conclude with discussion of some approximation-theoretic
issues that play an important role in parts of our analysis.

2.1. Reproducing kernel Hilbert spaces. We begin with a quick overview of
some standard properties of reproducing kernel Hilbert spaces; we refer the reader
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to the books [14, 31] and references therein for more details. A reproducing kernel
Hilbert space (or RKHS for short) is a Hilbert space H of functions f :T → R

that is equipped with a symmetric positive semidefinite function K :T × T → R,
known as the kernel function. We assume the kernel to be continuous, and the
set T ⊂ R

d to be compact. For concreteness, we think of T = [0,1] through-
out this paper, but any compact set of R

d suffices. For each t ∈ T , the function
Rt := K(·, t) belongs to the Hilbert space H and it acts as the representer of eval-
uation, meaning that 〈f,Rt 〉H = f (t) for all f ∈ H.

The kernel K defines an integral operator TK on L2(T ), mapping the function f

to the function g(s) = ∫
T K(s, t)f (t) dt . By the spectral theorem in Hilbert spaces,

this operator can be associated with a sequence of eigenfunctions ψk, k = 1,2, . . . ,
in H, orthogonal in H and orthonormal in L2(T ), and a sequence of nonnegative
eigenvalues μ1 ≥ μ2 ≥ · · · . Most useful for this paper is the fact that any function
f ∈ H has an expansion in terms of these eigenfunctions and eigenvalues, namely

f =
∞∑

k=1

√
μkαkψk(1)

for some (αk) ∈ �2. In terms of this expansion, we have the representations
‖f ‖2

H = ∑∞
k=1 α2

k and ‖f ‖2
L2 = ∑∞

k=1 μkα
2
k . Many of our results involve the decay

rate of these eigenvalues: in particular, for some parameter α > 1/2, we say that
the kernel operator has eigenvalues with polynomial-α decay if there is a constant
c > 0 such that

μk ≤ c

k2α
for all k = 1,2, . . . .(2)

Let us consider an example to illustrate.

EXAMPLE 1 (Sobolev class with smoothness α = 1). In the case T = [0,1]
and α = 1, we can consider the kernel function K(s, t) = min{s, t}. As discussed
in Appendix A of the supplementary material [3], this kernel generates the class of
functions

H := {
f ∈ L2([0,1]) | f (0) = 0, f absolutely continuous and f ′ ∈ L2([0,1])}.

The class H is an RKHS with inner product 〈f,g〉H = ∫ 1
0 f ′(t)g′(t) dt , and the

ball BH(ρ) corresponds to a Sobolev space with smoothness α = 1. The eigen-
decomposition of the kernel integral operator is

μk =
[
(2k − 1)π

2

]−2

, ψk(t) = √
2 sin

(
μ

−1/2
k t

)
, k = 1,2, . . . .(3)

Consequently, this class has polynomial decay with parameter α = 1.
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We note that there are natural generalizations of this example to α = 2,3, . . . ,
corresponding to the Sobolev classes of α-times differentiable functions; for ex-
ample, see the books [4, 14, 31].

In this paper, the operation of generalized sampling is defined in terms of a
bounded linear operator � : H → R

m on the Hilbert space. Its adjoint is a map-
ping �∗ : Rm → H, defined by the relation 〈�f,a〉Rm = 〈f,�∗a〉H for all f ∈ H
and a ∈ R

m. In order to compute a representation of the adjoint, we note that by
the Riesz representation theorem, the j th coordinate of this mapping—namely,
f �→ [�f ]j —can be represented as an inner product 〈φj , f 〉H, for some element
φj ∈ H, and we can write

�f = [ 〈φ1, f 〉H 〈φ2, f 〉H · · · 〈φm,f 〉H ]T .(4)

Consequently, we have 〈�f,a〉Rm = ∑m
j=1 aj 〈φj , f 〉H = 〈∑m

j=1 ajφj , f 〉H, so
that for any a ∈ R

m,

�∗a =
m∑

j=1

ajφj .(5)

This adjoint operator plays an important role in our analysis.

2.2. Functional model and observations. Let s1 ≥ s2 ≥ s3 ≥ · · · ≥ sr > 0 be a
fixed sequence of positive numbers, and let {f ∗

j }rj=1 be a fixed sequence of func-

tions orthonormal in L2[0,1]. Consider a collection of n i.i.d. random functions
{x1, . . . , xn}, generated according to the model

xi(t) =
r∑

j=1

sjβijf
∗
j (t) for i = 1, . . . , n,(6)

where {βij } are i.i.d. N(0,1) across all pairs (i, j). This model corresponds to a
finite-rank instantiation of functional PCA, in which the goal is to estimate the
span of the unknown eigenfunctions {f ∗

j }rj=1. Typically, these eigenfunctions are
assumed to satisfy certain smoothness conditions; in this paper, we model such
conditions by assuming that the eigenfunctions belong to a reproducing kernel
Hilbert space H embedded within L2[0,1]; more specifically, they lie in some ball
in H,

‖f ∗
j ‖H ≤ ρ, j = 1, . . . , r.(7)

For statistical problems involving estimation of functions, the random functions
might only be observed at certain times (t1, . . . , tm), such as in longitudinal data
analysis, or we might collect only projections of each xi in certain directions, such
as in tomographic reconstruction. More concretely, in a time-sampling model, we
observe m-dimensional vectors of the form

yi = [xi(t1) xi(t2) · · · xi(tm) ]T + σ0wi for i = 1,2, . . . , n,(8)
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where {t1, t2, . . . , tm} is a fixed collection of design points, and wi ∈ R
m is a noise

vector. Another observation model is the basis truncation model in which we ob-
serve the projections of f onto the first m basis functions {ψj }mj=1 of the kernel
operator—namely,

yi = [ 〈ψ1, xi〉L2 〈ψ2, xi〉L2 · · · 〈ψm,xi〉L2 ]T + σ0wi
(9)

for i = 1,2, . . . , n,

where 〈·, ·〉L2 represents the inner product in L2[0,1].
In order to model these and other scenarios in a unified manner, we introduce a

linear operator �m that maps any function x in the Hilbert space to a vector �m(x)

of m samples, and then consider the linear observation model

yi = �m(xi) + σmwi for i = 1,2, . . . , n.(10)

This model (10) can be viewed as a functional analog of the spiked covariance
models introduced by Johnstone [18, 19] as an analytically-convenient model for
studying high-dimensional effects in classical PCA.

Both the time-sampling (8) and frequency truncation (9) models can be repre-
sented in this way, for appropriate choices of the operator �m. Recall representa-
tion (4) of �m in terms of the functions {φj }mj=1.

• For the time sampling model (8), we set φj = K(·, tj )/√m, so that by the re-
producing property of the kernel, we have 〈φj , f 〉H = f (tj )/

√
m for all f ∈ H,

and j = 1,2, . . . ,m. With these choices, the operator �m maps each f ∈ H to
the m-vector of rescaled samples

1√
m

[f (t1) · · · f (tm) ]T .

Defining the rescaled noise σm = σ0√
m

yields an instantiation of model (10)
which is equivalent to time-sampling (8).

• For the basis truncation model (9), we set φj = μjψj so that the op-
erator � maps each function f ∈ H to the vector of basis coefficients
[〈ψ1, f 〉L2 · · · 〈ψm,f 〉L2]T . Setting σm = σ0 then yields another instantiation
of model (10), this one equivalent to basis truncation (9).

A remark on notation before proceeding: in the remainder of the paper, we use
(�,σ) as shorthand notation for (�m,σm), since the index m should be implicitly
understood throughout our analysis.

In this paper, we provide and analyze estimators for the r-dimensional eigen-
subspace spanned by {f ∗

j }, in both the sampled domain R
m and in the functional

domain. To be more specific, for j = 1, . . . , r , define the vectors z∗
j := �f ∗

j ∈ R
m,

and the subspaces

Z∗ := span
{
z∗

1, . . . , z
∗
r

} ⊂ R
m and F∗ := span

{
f ∗

1 , . . . , f ∗
r

} ⊂ H,(11)
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and let Ẑ and F̂ denote the corresponding estimators. In order to measure the per-
formance of the estimators, we will use projection-based distances between sub-
spaces. In particular, let PZ∗ and PẐ be orthogonal projection operators into Z∗
and Ẑ, respectively, considered as subspaces of �m

2 := (Rm,‖ · ‖2). Similarly, let
PF∗ and PF̂ be orthogonal projection operators into F∗ and F̂, respectively, consid-
ered as subspaces of (H,‖ · ‖L2). We are interested in bounding the deviations

dHS
(
Ẑ,Z∗) := |||PẐ − PZ∗ |||HS and dHS

(
F̂,F∗) := |||PF̂ − PF∗ |||HS,(12)

where ||| · |||HS is the Hilbert–Schmidt norm of an operator (or matrix).

2.3. Approximation-theoretic quantities. One object that plays an important
role in our analysis is the matrix K := ��∗ ∈ R

m×m. From the form of the adjoint,
it can be seen that [K]ij = 〈φi,φj 〉H. For future reference, let us compute this
matrix for the two special cases of linear operators considered thus far:

• For the time sampling model (8), we have φj = K(·, tj )/√m for all
j = 1, . . . ,m, and hence [K]ij = 1

m
〈K(·, ti),K(·, tj )〉H = 1

m
K(ti, tj ), using the

reproducing property of the kernel.
• For the basis truncation model (9), we have φj = μjψj , and hence

[K]ij = 〈μiψi,μjψj 〉H = μiδij . Thus, in this special case, we have
K = diag(μ1, . . . ,μm).

In general, the matrix K is a type of Gram matrix, and so is symmetric and
positive semidefinite. We assume throughout this paper that the functions {φj }mj=1
are linearly independent in H, which implies that K is strictly positive definite.
Consequently, it has a set of eigenvalues which can be ordered as

μ̂1 ≥ μ̂2 ≥ · · · ≥ μ̂m > 0.(13)

Under this condition, we may use K to define a norm on R
m via ‖z‖2

K := zT K−1z.
Moreover, we have the following interpolation lemma, which is proved in Ap-
pendix B.1 of the supplementary material [3]:

LEMMA 1. For any f ∈ H, we have ‖�f ‖K ≤ ‖f ‖H, with equality if and only
if f ∈ Ra(�∗). Moreover, for any z ∈ R

m, the function g = �∗K−1z has smallest
Hilbert norm of all functions satisfying �g = z, and is the unique function with
this property.

This lemma is useful in constructing a function-based estimator, as will be clar-
ified in Section 3.

In our analysis of the functional error dHS(F̂,F∗), a number of approximation-
theoretic quantities play an important role. As a mapping from an infinite-
dimensional space H to R

m, the operator � has a nontrivial nullspace. Given the
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observation model (10), we receive no information about any component of a func-
tion f ∗ that lies within this nullspace. For this reason, we define the width of the
nullspace in the L2-norm, namely the quantity

Nm(�) := sup
{‖f ‖2

L2 | f ∈ Ker(�),‖f ‖H ≤ 1
}
.(14)

In addition, the observation operator � induces a semi-norm on the space H, de-
fined by

‖f ‖2
� := ‖�f ‖2

2 =
m∑

j=1

[�f ]2
j .(15)

It is of interest to assess how well this semi-norm approximates the L2-norm. Ac-
cordingly, we define the quantity

Dm(�) := sup
f ∈Ra(�∗)
‖f ‖H≤1

∣∣‖f ‖2
� − ‖f ‖2

L2

∣∣,(16)

which measures the worst-case gap between these two (semi)-norms, uniformly
over the Hilbert ball of radius one, restricted to the subspace of interest Ra(�∗).
Given knowledge of the linear operator �, the quantity Dm(�) can be computed
in a relatively straightforward manner. In particular, recall the definition of the
matrix K , and let us define a second matrix � ∈ S

m+ with entries �ij := 〈ϕi, ϕj 〉L2 .

LEMMA 2. We have the equivalence

Dm(�) = ∣∣∣∣∣∣K − K−1/2�K−1/2∣∣∣∣∣∣
2,(17)

where ||| · |||2 denotes the �2-operator norm.

See Appendix B.2 of the supplementary material [3] for the proof of this claim.

3. M-estimator and implementation. With this background in place, we
now turn to the description of our M-estimator, as well as practical details as-
sociated with its implementation.

3.1. M-estimator. We begin with some preliminaries on notation, and our rep-
resentation of subspaces. Recall definition (11) of Z∗ as the r-dimensional sub-
space of R

m spanned by {z∗
1, . . . , z

∗
r }, where z∗

j = �f ∗
j . Our initial goal is to

construct an estimate Ẑ, itself an r-dimensional subspace, of the unknown sub-
space Z∗.

We represent subspaces by elements of the Stiefel manifold Vr(R
m), which

consists of m × r matrices Z with orthonormal columns

Vr

(
R

m) := {
Z ∈ R

m×r | ZT Z = Ir

}
.
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A given matrix Z acts as a representative of the subspace spanned by its columns,
denoted by col(Z). For any U ∈ Vr(R

r ), the matrix ZU also belongs to the Stiefel
manifold, and since col(Z) = col(ZU), we may call ZU a version of Z. We let
PZ = ZZT ∈ R

m×m be the orthogonal projection onto col(Z). For two matrices
Z1,Z2 ∈ Vr(R

m), we measure the distance between the associated subspaces via
dHS(Z1,Z2) := |||PZ1 − PZ2 |||HS, where ||| · |||HS is the Hilbert–Schmidt (or Frobe-
nius) matrix norm.

3.1.1. Subspace-based estimator. With this notation, we now specify an M-
estimator for the subspace Z∗ = span{z∗

1, . . . , z
∗
r }. Let us begin with some intu-

ition. Given the n samples {y1, . . . , yn}, let us define the m×m sample covariance
matrix �̂n := 1

n

∑n
i=1 yiy

T
i . Given the observation model (10), a straightforward

computation shows that

E[�̂n] =
r∑

j=1

s2
j z∗

j

(
z∗
j

)T + σ 2
mIm.(18)

Thus, as n becomes large, we expect that the top r eigenvectors of �̂n might give a
good approximation to span{z∗

1, . . . , z
∗
r }. By the Courant–Fischer variational repre-

sentation, these r eigenvectors can be obtained by maximizing the objective func-
tion

〈〈�̂n,PZ〉〉 := tr
(
�̂nZZT )

over all matrices Z ∈ Vr(R
m).

However, this approach fails to take into account the smoothness constraints
that the vectors z∗

j = �f ∗
j inherit from the smoothness of the eigenfunctions f ∗

j .
Since ‖f ∗

j ‖H ≤ ρ by assumption, Lemma 1 implies that∥∥z∗
j

∥∥2
K = (

z∗
j

)T
K−1z∗

j ≤ ∥∥f ∗
j

∥∥2
H ≤ ρ2 for all j = 1,2, . . . , r .

Consequently, if we define the matrix Z∗ := [z∗
1 · · · z∗

r ] ∈ R
m×r , then it must

satisfy the trace smoothness condition

〈〈
K−1,Z∗(Z∗)T 〉〉 = r∑

j=1

(
z∗
j

)T
K−1z∗

j ≤ rρ2.(19)

This calculation motivates the constraint 〈〈K−1,PZ〉〉 ≤ 2rρ2 in our estimation pro-
cedure.

Based on the preceding intuition, we are led to consider the optimization prob-
lem

Ẑ ∈ arg max
Z∈Vr(Rm)

{〈〈�̂n,PZ〉〉 | 〈〈K−1,PZ

〉〉 ≤ 2rρ2},(20)
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where we recall that PZ = ZZT ∈ R
m×m. Given any optimal solution Ẑ, we return

the subspace Ẑ = col(Ẑ) as our estimate of Z∗. As discussed at more length in Sec-
tion 3.2, it is straightforward to compute Ẑ in polynomial time. The reader might
wonder why we have included an additional factor of two in this trace smoothness
condition. This slack is actually needed due to the potential infeasibility of the
matrix Z∗ for to problem (20), which arises since the columns of Z∗ are not guar-
anteed to be orthonormal. As shown by our analysis, the additional slack allows
us to find a matrix Z̃∗ ∈ Vr(R

m) that spans the same subspace as Z∗, and is also
feasible for to problem (20). More formally, we have:

LEMMA 3. Under condition (27b), there exists a matrix Z̃∗ ∈ Vr(R
m) such

that

Ra
(
Z̃∗) = Ra

(
Z∗) and

〈〈
K−1, Z̃∗(Z̃∗)T 〉〉 ≤ 2rρ2.(21)

See Appendix B.3 of the supplementary material [3] for the proof of this claim.

3.1.2. The functional estimate F̂. Having thus obtained an estimate2

Ẑ = span{̂z1, . . . , ẑr} of Z∗ = span{z∗
1, . . . , z

∗
r }, we now need to construct a

r-dimensional subspace F̂ of the Hilbert space to be used as an estimate of
F∗ = span{f ∗

1 , . . . , f ∗
r }. We do so using the interpolation suggested by Lemma 1.

For each j = 1, . . . , r , let us define the function

f̂j := �∗K−1ẑj =
m∑

i=1

(
K−1ẑj

)
iφi .(22)

Since K = ��∗ by definition, this construction ensures that �f̂j = ẑj . Moreover,
Lemma 1 guarantees that f̂j has the minimal Hilbert norm (and hence is smoothest
in a certain sense) over all functions that have this property. Finally, since � is as-
sumed to be surjective (equivalently, K assumed invertible), �∗K−1 maps linearly
independent vectors to linearly independent functions, and hence preserves dimen-
sion. Consequently, the space F̂ := span{f̂1, . . . , f̂r} is an r-dimensional subspace
of H that we take as our estimate of F∗.

3.2. Implementation details. In this section, we consider some practical as-
pects of implementing the M-estimator, and present some simulations to illustrate
its qualitative properties. We begin by observing that once the subspace vectors
{̂zj }rj=1 have been computed, then it is straightforward to compute the function es-

timates {f̂j }rj=1, as weighted combinations of the functions {φj }mj=1. Accordingly,
we focus our attention on solving problem (20).

2Here, {̂zj }rj=1 ⊂ R
m is any collection of vectors that span Ẑ. As we are ultimately only interested

in the resulting functional “subspace,” it does not matter which particular collection we choose.
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On the surface, problem (20) might appear nonconvex, due to the Stiefel mani-
fold constraint. However, it can be reformulated as a semidefinite program (SDP),
a well-known class of convex programs, as clarified in the following:

LEMMA 4. Problem (20) is equivalent to solving the SDP

X̂ ∈ arg max
X�0

〈〈�̂n,X〉〉
(23)

such that |||X|||2 ≤ 1, tr(X) = r , and
〈〈
K−1,X

〉〉 ≤ 2rρ2

for which there always exists an optimal rank r solution. Moreover, by Lagrangian
duality, for some β > 0, the problem is equivalent to

X̂ ∈ arg max
X�0

〈〈
�̂n − βK−1,X

〉〉
such that |||X|||2 ≤ 1 and tr(X) = r,(24)

which can be solved by an eigen decomposition of �̂n − βK−1.

As a consequence, for a given Lagrange multiplier β , the regularized form of
the estimator can be solved with the cost of solving an eigenvalue problem. For a
given constraint 2rρ2, the appropriate value of β can be found by a path-tracing
algorithm, or a simple dyadic splitting approach.

In practice where the radius ρ is not known, one could use cross-validation to
set a proper value for the Lagrange multiplier β . A possibly simpler approach is
to evaluate 〈〈K−1,X〉〉 for the optimal X on a grid of β and choose a value around
which 〈〈K−1,X〉〉 is least variable. As for the choice of the number of compo-
nents r , a standard approach for choosing it would be to compute the estimator
for different choices, and plot the residual sum of eigenvalues of the sample co-
variance matrix. As in ordinary PCA, an elbow in such a plot indicates a proper
trade-off between the number of components to keep and the amount of variation
explained.

In order to illustrate the estimator, we consider the time sampling model (8),
with uniformly spaced samples, in the context of a first-order Sobolev RKHS [with
kernel function K(s, t) = min(s, t)]. The parameters of the model are taken to be
r = 4, (s1, s2, s3, s4) = (1,0.5,0.25,0.125), σ0 = 1, m = 100 and n = 75. The
regularized form (24) of the estimator is applied, and the results are shown in
Figure 1. The top row corresponds to the four “true” signals {f ∗

j }, the leftmost
being f ∗

1 (i.e., having the highest signal-to-noise ratio) and the rightmost f ∗
4 . The

subsequent rows show the corresponding estimates {f̂j }, obtained using different
values of β . The second, third and fourth rows correspond to β = 0, β = 0.0052
and β = 0.83.

One observes that without regularization (β = 0), the estimates for the two
weakest signals (f ∗

3 and f ∗
4 ) are poor. The case β = 0.0052 is roughly the one

which achieves the minimum for the dual problem. One observes that the quality
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FIG. 1. Regularized PCA for time sampling in first-order Sobolev RKHS. Top row shows, from
left to right, plots of the r = 4 “true” principal components f ∗

1 , . . . , f ∗
4 with signal-to-noise ratios

s1 = 1, s2 = 0.5, s3 = 0.25 and s4 = 0.125, respectively. The number of statistical and functional
samples are n = 75 and m = 100. Subsequent rows show the corresponding estimators f̂1, . . . , f̂4
obtained by applying the regularized form (24).

of the estimates of the signals, and in particular the weakest ones, are consider-
ably improved. The optimal (oracle) value of β , that is, the one which achieves
the minimum error between {f ∗

j } and {f̂j }, is β = 0.0075 in this problem. The
corresponding estimates are qualitatively similar to those of β = 0.0052 and are
not shown.

The case β = 0.83 shows the effect of over-regularization. It produces very
smooth signals, and although it fails to reveal f ∗

1 and f ∗
2 , it reveals highly accurate

versions of f ∗
3 and f ∗

4 . It is also interesting to note that the smoothest signal, f ∗
4 ,

now occupies the position of the second (estimated) principal component. That
is, the regularized PCA sees an effective signal-to-noise ratio which is influenced
by smoothness. This suggests a rather practical appeal of the method in revealing
smooth signals embedded in noise. One can vary β from zero upward, and if some
patterns seem to be present for a wide range of β (and getting smoother as β is
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increased), one might suspect that they are indeed present in data but masked by
noise.

4. Main results. We now turn to the statistical analysis of our estimators, in
particular deriving high-probability upper bounds on the error of the subspace-
based estimate Ẑ, and the functional estimate F̂. In both cases, we begin by stating
general theorems that apply to arbitrary linear operators �—Theorems 1 and 2,
respectively—and then derive a number of corollaries for particular instantiations
of the observation operator.

4.1. Subspace-based estimation rates (for Ẑ). We begin by stating high-
probability upper bounds on the error dHS(Ẑ,Z∗) of the subspace-based estimates.
Our rates are stated in terms of a function that involves the eigenvalues of the ma-
trix K = ��∗ ∈ R

m, ordered as μ̂1 ≥ μ̂2 ≥ · · · ≥ μ̂m > 0. Consider the function
F : R+ → R+ given by

F (t) :=
[

m∑
j=1

min
{
t2, rρ2μ̂j

}]1/2

.(25)

As will be clarified in our proofs, this function provides a measure of the statistical
complexity of the function class

Ra
(
�∗) =

{
f ∈ H

∣∣∣ f =
m∑

j=1

ajφj for some a ∈ R
m

}
.

We require a few regularity assumptions. Define the quantity

Cm

(
f ∗) := max

1≤i,j≤r

∣∣〈f ∗
i , f ∗

j

〉
� − δij

∣∣ = max
1≤i,j≤r

∣∣〈z∗
i , z

∗
j

〉
Rm − δij

∣∣,(26)

which measures the departure from orthonormality of the vectors z∗
j := �f ∗

j

in R
m. A straightforward argument using a polarization identity shows that

Cm(f ∗) is upper bounded (up to a constant factor) by the uniform quantity Dm(�),
as defined in equation (16). Recall that the random functions are generated accord-
ing to the model xi = ∑r

j=1 sjβijf
∗
j , where the signal strengths are ordered as

1 = s1 ≥ s2 ≥ · · · ≥ sr > 0, and that σm denotes the noise standard deviation in the
observation model (10).

In terms of these quantities, we require the following assumptions:

(A1)
s2
r

s2
1

≥ 1

2
and σ 2

0 := sup
m

σ 2
m ≤ κs2

1 ,(27a)

(A2) Cm

(
f ∗) ≤ 1

2r
and(27b)

(A3)
σm√

n
F (t) ≤ √

κt for the same constant κ as in (A1),(27c)
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(A4) r ≤ min
{
m

2
,
n

4
, κ

√
n

σm

}
.(27d)

REMARKS. The first part of condition (A1) is to prevent the ratio sr/s1 from
going to zero as the pair (m,n) increases, where the constant 1/2 is chosen for con-
venience. Such a lower bound is necessary for consistent estimation of the eigen-
subspace corresponding to {s1, . . . , sr}. The second part of condition (A1), involv-
ing the constant κ , provides a lower bound on the signal-to-noise ratio sr/σm.
Condition (A2) is required to prevent degeneracy among the vectors z∗

j = �f ∗
j ob-

tained by mapping the unknown eigenfunctions to the observation space R
m. [In

the ideal setting, we would have Cm(f ∗) = 0, but our analysis shows that the upper
bound in (A2) is sufficient.] Condition (A3) is required so that the critical toler-
ance εm,n specified below is well-defined; as will be clarified, it is always satisfied
for the time-sampling model, and holds for the basis truncation model whenever
n ≥ m. Condition (A4) is easily satisfied, since the right-hand side of (27d) goes
to infinity while we usually take r to be fixed. Our results, however, are still valid
if r grows slowly with m and n subject to (27d).

THEOREM 1. Under conditions (A1)–(A3) for a sufficiently small constant κ ,
let εm,n be the smallest positive number satisfying the inequality

σm√
n
r3/2F (ε) ≤ κε2.(28)

Then there are universal positive constants (c0, c1, c2) such that

P
[
d2

HS
(
Ẑ,Z∗) ≤ c0ε

2
m,n

] ≥ 1 − ϕ(n, εm,n),(29)

where ϕ(n, εm,n) := c1{r2 exp(−c2r
−3 n

σ 2
m
(εm,n ∧ ε2

m,n)) + r exp(− n
64)}.

We note that Theorem 1 is a general result, applying to an arbitrary bounded
linear operator �. However, we can obtain a number of concrete results by making
specific choices of this sampling operator, as we explore in the following sections.

4.1.1. Consequences for time-sampling. Let us begin with the time-sampling
model (8), in which we observe the sampled functions

yi = [xi(t1) xi(t2) · · · xi(tm) ]T + σ0wi for i = 1,2, . . . ,m.

As noted earlier, this set-up can be modeled in our general setting (10) with φj =
K(·, tj )/√m and σm = σ0/

√
m.

In this case, by the reproducing property of the RKHS, the matrix K = ��∗ has

entries of the form Kij = 〈φi,φj 〉H = K(ti ,tj )

m
. Letting μ̂1 ≥ μ̂2 ≥ · · · ≥ μ̂m > 0

denote its ordered eigenvalues, we say that the kernel matrix K has polynomial-
decay with parameter α > 1/2 if there is a constant c such that μ̂j ≤ cj−2α for all
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j = 1,2, . . . ,m. Since the kernel matrix K represents a discretized approximation
of the kernel integral operator defined by K, this type of polynomial decay is to
be expected whenever the kernel operator has polynomial-α decaying eigenvalues.
For example, the usual spline kernels that define Sobolev spaces have this type
of polynomial decay [14]. In Appendix A of the supplementary material [3], we
verify this property explicitly for the kernel K(s, t) = min{s, t} that defines the
Sobolev class with smoothness α = 1.

For any such kernel, we have the following consequence of Theorem 1:

COROLLARY 1 (Achievable rates for time-sampling). Consider the case of a
time-sampling operator �. In addition to conditions (A1) and (A2), suppose that
the kernel matrix K has polynomial-decay with parameter α > 1/2. Then we have

P

[
d2

HS
(
Ẑ,Z∗) ≤ c0 min

{(
κr,ρσ 2

0

mn

)2α/(2α+1)

, r3 σ 2
0

n

}]
≥ 1 − ϕ(n,m),(30)

where κr,ρ := r3+1/(2α)ρ1/α , and ϕ(n,m) := c1{exp(−c2{(r−2ρ2mn)1/(2α+1) ∧
m}) + exp(−n/64)}.

REMARKS. (a) Disregarding constant pre-factors not depending on the pair
(m,n), Corollary 1 guarantees that solving problem (20) returns a subspace esti-
mate Ẑ such that

d2
HS

(
Ẑ,Z∗) � min

{
(mn)−2α/(2α+1), n−1}

with high probability as (m,n) increase. Depending on the scaling of the number of
time samples m relative to the number of functional samples n, either term in this
upper bound can be the smallest (and hence active) one. For instance, it can be ver-
ified that whenever m ≥ n1/(2α), then the first term is smallest, so that we achieve
the rate d2

HS(Ẑ,Z∗) � (mn)−2α/(2α+1). The appearance of the term (mn)−2α/(2α+1)

is quite natural, as it corresponds to the minimax rate of a nonparametric regres-
sion problem with smoothness α, based on m samples each of variance n−1. Later,
in Section 4.3, we provide results guaranteeing that this scaling is minimax opti-
mal under reasonable conditions on the choice of sample points; in particular, see
Theorem 3(a).

(b) To be clear, although bound (30) allows for the possibility that the error is of
order lower than n−1, we note that the probability with which the guarantee holds
includes a term of the order exp(−n/64). Consequently, in terms of expected error,
we cannot guarantee a rate faster than n−1.

PROOF OF COROLLARY 1. We need to bound the critical value εm,n defined
in the theorem statement (28). Define the function G 2(t) := ∑m

j=1 min{μ̂j , t
2},

and note that F (t) = √
rρG( t√

rρ
) by construction. Under the assumption of

polynomial-α eigendecay, we have

G 2(t) ≤
∫ ∞

0
min

{
cx−2α, t2}dx,
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and some algebra then shows that G(t) � t1−1/(2α). Disregarding constant factors,
an upper bound on the critical εm,n can be obtained by solving the equation

ε2 = σm√
n
r3/2√rρ

(
ε√
rρ

)1−1/(2α)

.

Doing so yields the upper bound ε2 � [σ 2
m

n
r3(

√
rρ)1/α]2α/(2α+1). Otherwise, we

also have the trivial upper bound F (t) ≤ √
mt , which yields the alternative upper

bound εm,n � (
mσ 2

m

n
r3)1/2. Recalling that σm = σ0/

√
m and combining the pieces

yields the claim. Notice that this last (trivial) bound on F (t) implies that condition
(A3) is always satisfied for the time-sampling model. �

4.1.2. Consequences for basis truncation. We now turn to some consequences
for the basis truncation model (9).

COROLLARY 2 (Achievable rates for basis truncation). Consider a basis trun-
cation operator � in a Hilbert space with polynomial-α decay. Under conditions
(A1), (A2) and m ≤ n, we have

P

[
d2

HS
(
Ẑ,Z∗) ≤ c0

(
κr,ρσ 2

0

n

)2α/(2α+1)]
≥ 1 − ϕ(n,m),(31)

where κr,ρ := r3+1/(2α)ρ1/α , and ϕ(n,m) := c1{exp(−c2(r
−2ρ2n)1/(2α+1)) +

exp(−n/64)}.

PROOF. We note that as long as m ≤ n, condition (A3) is satisfied, since
σm√

n
F (t) ≤ σ0

√
m
n
t ≤ σ0t . The rest of the proof follows that of Corollary 1, not-

ing that in the last step we have σm = σ0 for the basis truncation model. �

4.2. Function-based estimation rates (for F̂). As mentioned earlier, given the
consistency of Ẑ, the consistency of F̂ is closely related to approximation prop-
erties of the semi-norm ‖ · ‖� induced by �, and in particular how closely it ap-
proximates the L2-norm. These approximation-theoretic properties are captured in
part by the nullspace width Nm(�) and defect Dm(�) defined earlier in equations
(14) and (16), respectively. In addition to these previously defined quantities, we
require bounds on the following global quantity:

Rm(ε;ν) := sup
{‖f ‖2

L2 | ‖f ‖2
H ≤ ν2,‖f ‖2

� ≤ ε2}.(32)

A general upper bound on this quantity is of the form

Rm(ε;ν) ≤ c1ε
2 + ν2Sm(�).(33)

In fact, it is not hard to show that such a bound exists with c1 = 2 and
Sm(�) = 2(Dm(�) + Nm(�)) using the decomposition H = Ra(�∗) ⊕ Ker(�).
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However, this bound is not sharp. Instead, one can show that in most cases of
interest, the term Sm(�) is of the order of Nm(�).

There are a variety of conditions that ensure that Sm(�) has this scaling; we
refer the reader to the paper [2] for a general approach. Here we provide a simple
sufficient condition, namely,

(B1) � � c0K
2(34)

for a positive constant c0.

LEMMA 5. Under (B1), bound (33) holds with c1 = 2c0 and
Sm(�) = 2Nm(�).

See Appendix B.4 of the supplementary material [3] for the proof of this claim.
In the sequel, we show that the first-order Sobolev RKHS satisfies condition (B1).

THEOREM 2. Suppose that condition (A1) holds, and the approximation-
theoretic quantities satisfy the bounds Dm(�) ≤ 1

4rρ2 ≤ 1 and Nm(�) ≤ 1. Then

there is a constant κ ′
r,ρ such that

d2
HS

(
F̂,F∗) ≤ κ ′

r,ρ

{
ε2
m,n + Sm(�) + [

Dm(�)
]2}(35)

with the same probability as in Theorem 1.

As with Theorem 1, this is a generally applicable result, stated in abstract form.
By specializing it to different sampling models, we can obtain concrete rates, as
illustrated in the following sections.

4.2.1. Consequences for time-sampling. We begin by returning to the case of
the time sampling model (8), where φj = K(·, tj )/√m. In this case, condition (B1)
needs to be verified by some calculations. For instance, as shown in Appendix A of
the supplementary material [3], in the case of the Sobolev kernel with smoothness
α = 1 [namely, K(s, t) = min{s, t}], we are guaranteed that (B1) holds with c0 = 1,
whenever the samples {tj } are chosen uniformly over [0,1]; hence, by Lemma 5,
Sm(�) = 2Nm(�). Moreover, in the case of uniform sampling, we expect that the
nullspace width Nm(�) is upper bounded by μm+1, and so will be proportional
to m−2α in the case of a kernel operator with polynomial-α decay. This is verified
in [2] (up to a logarithmic factor) for the case of the first-order Sobolev kernel. In
Appendix A of the supplementary material [3], we also show that, for this kernel,
[Dm(�)]2 is of the order m−2α , that is, of the same order as Nm(�).

COROLLARY 3. Consider the basis truncation model (9) with uniformly
spaced samples, and assume condition (B1) holds and that Nm(�)+[Dm(�)]2 �
m−2α . Then the M-estimator returns a subspace estimate F̂ such that

d2
HS

(
F̂,F∗) ≤ κ ′

r,ρ

{
min

{(
σ 2

0

nm

)2α/(2α+1)

,
σ 2

0

n

}
+ 1

m2α

}
(36)
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with the same probability as in Corollary 1.

In this case, there is an interesting trade-off between the bias or approximation
error which is of order m−2α and the estimation error. An interesting transition
occurs at the point when m � n1/(2α), at which:

• the bias term m−2α becomes of the order n−1, so that it is no longer dominant,
and

• for the two terms in the estimation error, we have the ordering

(mn)−2α/(2α+1) ≤ (
n1+1/(2α))−2α/(2α+1) = n−1.

Consequently, we conclude that the scaling m = n1/(2α) is the minimal number
of samples such that we achieve an overall bound of the order n−1 in the time-
sampling model. In Section 4.3, we will see that these rates are minimax-optimal.

4.2.2. Consequences for basis truncation. For the basis truncation operator �,
we have � = K2 = diag(μ2

1, . . . ,μ
2
m) so that condition (B1) is satisfied trivially

with c0 = 1. Moreover, Lemma 2 implies Dm(�) = 0. In addition, a function
f = ∑∞

j=1
√

μjajψj satisfies �f = 0 if and only if a1 = a2 = · · · = am = 0, so
that

Nm(�) = sup
{‖f ‖2

L2 | ‖f ‖H ≤ 1,�f = 0
} = μm+1.

Consequently, we obtain the following corollary of Theorem 2:

COROLLARY 4. Consider the basis truncation model (9) with a kernel oper-
ator that has polynomial-α decaying eigenvalues. Then the M-estimator returns a
function subspace estimate F̂ such that

d2
HS

(
F̂,F∗) ≤ κ ′

r,ρ

{(
σ 2

0

n

)2α/(2α+1)

+ 1

m2α

}
(37)

with the same probability as in Corollary 2.

By comparison to Corollary 3, we see that the trade-offs between (m,n) are
very different for basis truncation. In particular, there is no interaction between the
number of functional samples m and the number of statistical samples n. Increas-
ing m only reduces the approximation error, whereas increasing n only reduces
the estimation error. Moreover, in contrast to the time sampling model of Corol-
lary 3, it is impossible to achieve the fast rate n−1, regardless of how we choose
the pair (m,n). In Section 4.3, we will also see that the rates given in Corollary 4
are minimax optimal.
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4.3. Lower bounds. We now turn to lower bounds on the minimax risk,
demonstrating the sharpness of our achievable results in terms of their scaling
with (m,n). In order to do so, it suffices to consider the simple model with a single
functional component f ∗ ∈ BH(1), so that we observe yi = βi1�m(f ∗) + σmwi

for i = 1,2, . . . , n, where βi1 ∼ N(0,1) are i.i.d. standard normal variates. The
minimax risk over the unit ball of the function space H in the �-norm is given by

M H
m,n

(‖ · ‖�

) := inf
f̃

sup
f ∗∈BH(1)

E
∥∥f̃ − f ∗∥∥2

�,(38)

where the function f ∗ ranges over the unit ball BH(1) = {f ∈ H | ‖f ‖H ≤ 1} of
some Hilbert space, and f̃ ranges over measurable functions of the data matrix
(y1, y2, . . . , yn) ∈ R

m×n.

THEOREM 3 (Lower bounds for ‖f̃ − f ∗‖�). Suppose that the kernel matrix
K has eigenvalues with polynomial-α decay and (A1) holds.

(a) For the time-sampling model, we have

M H
m,n

(‖ · ‖�

) ≥ C min
{(

σ 2
0

mn

)2α/(2α+1)

,
σ 2

0

n

}
.(39)

(b) For the frequency-truncation model, with m ≥ (c0n)1/(2α+1), we have

M H
m,n

(‖ · ‖�

) ≥ C

(
σ 2

0

n

)2α/(2α+1)

.(40)

Note that part (a) of Theorem 3 shows that the rates obtained in Corollary 3
for the case of time-sampling are minimax optimal. Similarly, comparing part (b)
of the theorem to Corollary 4, we conclude that the rates obtained for frequency
truncation model are minimax optimal for n ∈ [m,c1m

2α+1]. As will become clear
momentarily (as a consequence of our next theorem), the case n > c1m

2α+1 is not
of practical interest.

We now turn to lower bounds on the minimax risk in the ‖ · ‖L2 norm—namely

M H
m,n

(‖ · ‖L2
) := inf

f̃
sup

f ∗∈BH(1)

E
∥∥f̃ − f ∗∥∥2

L2 .(41)

Obtaining lower bounds on this minimax risk requires another approximation
property of the norm ‖ · ‖� relative to ‖ · ‖L2 . Consider matrix � ∈ R

m×m with
entries �ij := 〈ψi,ψj 〉�. Since the eigenfunctions are orthogonal in L2, the de-
viation of � from the identity measures how well the inner product defined by �

approximates the L2-inner product over the first m eigenfunctions of the kernel
operator. For proving lower bounds, we require an upper bound of the form

(B2) λmax(�) ≤ c1
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for some universal constant c1 > 0. As the proof will clarify, this upper bound
is necessary in order that the Kullback–Leibler divergence—which controls the
relative discriminability between different models—can be upper bounded in terms
of the L2-norm.

THEOREM 4 (Lower bounds for ‖f̃ − f ∗‖2
L2 ). Suppose that condition (B2)

holds, and the operator associated with kernel function K of the reproducing ker-
nel Hilbert space H has eigenvalues with polynomial-α decay.

(a) For the time-sampling model, the minimax risk is lower bounded as

M H
m,n

(‖ · ‖L2
) ≥ C

{
min

{(
σ 2

0

mn

)2α/(2α+1)

,
σ 2

0

n

}
+

(
1

m

)2α}
.(42)

(b) For the frequency-truncation model, the minimax error is lower bounded as

M H
m,n

(‖ · ‖L2
) ≥ C

{(
σ 2

0

n

)2α/(2α+1)

+
(

1

m

)2α}
.(43)

Verifying condition (B2) requires, in general, some calculations in the case of
the time-sampling model. It is verified for uniform time-sampling for the first-
order Sobolev RKHS in Appendix A of the supplementary material [3]. For the
frequency-truncation model, condition (B2) always holds trivially since � = Im.
By this theorem, the L2 convergence rates of Corollaries 3 and 4 are minimax
optimal. Also note that due to the presence of the approximation term m−2α in (43),
the �-norm term n2α/(2α+1) is only dominant when m ≥ c2n

1/(2α+1) implying that
this is the interesting regime for Theorem 3(b).

5. Proof of subspace-based rates. We now turn to the proofs of the results
involving the error dHS(Ẑ,Z∗) between the estimated Ẑ and true subspace Z∗. We
begin by proving Theorem 1, and then turn to its corollaries.

5.1. Preliminaries. We begin with some preliminaries before proceeding to
the heart of the proof. Let us first introduce some convenient notation. Consider
the n × m matrices

Y := [y1 y2 · · · yn ]T and W := [w1 w2 · · · wn ]T ,

corresponding to the observation matrix Y and noise matrix W , respectively.
In addition, we define the matrix B := (βij ) ∈ R

n×r , and the diagonal matrix
S := diag(s1, . . . , sr ) ∈ R

r×r . Recalling that Z∗ := (z∗
1, . . . , z

∗
r ) ∈ R

m×r , the ob-
servation model (10) can be written in the matrix form Y = B(Z∗S)T + σmW .
Moreover, let us define the matrices B := BT B

n
∈ R

r×r and W := WT B
n

∈ R
m×r .
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Using this notation, some algebra shows that the associated sample covariance
�̂n := 1

n
Y T Y can be written in the form

�̂n = Z∗SBS
(
Z∗)T︸ ︷︷ ︸

�

+�1 + �2,(44)

where �1 := σm[WS(Z∗)T + Z∗SWT ] and �2 := σ 2
m

WT W
n

.
Lemma 3, proved in Appendix B.3 of the supplementary material [3], estab-

lishes the existence of a matrix Z̃∗ ∈ Vr(R
m) such that Ra(Z̃∗) = Ra(Z∗). As

discussed earlier, due to the nature of the Steifel manifold, there are many versions
of this matrix Z̃∗, and also of any optimal solution matrix Ẑ, obtained via right
multiplication with an orthogonal matrix. For the subsequent arguments, we need
to work with a particular version of Z̃∗ (and Ẑ) that we describe here.

Let us fix some convenient versions of Z̃∗ and Ẑ. As a consequence of CS
decomposition, as long as r ≤ m/2, there exist orthogonal matrices U,V ∈ R

r×r

and an orthogonal matrix Q ∈ R
m×m such that

QT Z̃∗U =
⎛⎝ Ir

0
0

⎞⎠ and QT ẐV =
⎛⎝ Ĉ

Ŝ

0

⎞⎠ ,(45)

where Ĉ = diag(ĉ1, . . . , ĉr ) and Ŝ = diag(̂s1, . . . , ŝr ) such that 1 ≥ ŝ1 ≥ · · · ≥ ŝr ≥
0 and Ĉ2 + Ŝ2 = Ir . See Bhatia [6], Theorem VII.1.8, for details on this decompo-
sition. In the analysis to follow, we work with Z̃∗U and ẐV instead of Z̃∗ and Ẑ.
To avoid extra notation, from now on, we will use Z̃∗ and Ẑ for these new ver-
sions, which we refer to as properly aligned. With this choice, we may assume
U = V = Ir in the CS decomposition (45).

The following lemma isolates some useful properties of properly aligned sub-
spaces:

LEMMA 6. Let Z̃∗ and Ẑ be properly aligned, and define the matrices

P̂ := PẐ − PZ̃∗ = ẐẐT − Z̃∗(Z̃∗)T and Ê := Ẑ − Z̃∗.(46)

In terms of the CS decomposition (45), we have:

|||Ê|||HS ≤ |||P̂ |||HS,(47a) (
Z̃∗)T (PZ̃∗ − PẐ)Z̃∗ = Ŝ2 and(47b)

d2
HS

(
Ẑ, Z̃∗) = |||PZ̃∗ − PẐ|||2HS

= 2
∣∣∣∣∣∣Ŝ2∣∣∣∣∣∣2

HS + 2|||ĈŜ|||2HS(47c)

= 2
∑
k

ŝ2
k

(̂
s2
k + ĉ2

k

) = 2 tr
(
Ŝ2).
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PROOF. From the CS decomposition (45), we have

Z̃∗(Z̃∗)T − Ẑ(Ẑ)T = Q

⎛⎝ Ŝ2 −ĈŜ 0
−ŜĈ −Ŝ2 0

0 0 0

⎞⎠QT ,

from which relations (47b) and (47c) follow. From decomposition (45) and the
proper alignment condition U = V = Ir , we have

|||Ê|||2HS = ∣∣∣∣∣∣QT (
Ẑ − Z̃∗)∣∣∣∣∣∣2

HS = |||Ir − Ĉ|||2HS + |||Ŝ|||2HS
(48)

= 2
r∑

i=1

(1 − ĉi ) ≤ 2
r∑

i=1

(
1 − ĉ2

i

) = 2
r∑

i=1

ŝ2
i = |||P̂ |||2HS,

where we have used the relations Ĉ2 + Ŝ2 = Ir , ĉi ∈ [0,1] and
2 tr(Ŝ2) = |||PZ̃∗ − PẐ|||2HS. �

5.2. Proof of Theorem 1. Using the notation introduced in Lemma 6, our goal
is to bound the Hilbert–Schmidt norm |||P̂ |||HS. Without loss of generality we will
assume s1 = 1 throughout. Recalling definition (44) of the random matrix �, the
following inequality plays a central role in the proof:

LEMMA 7. Under condition (A1) and s1 = 1, we have

|||P̂ |||2HS ≤ 128〈〈P̂ ,�1 + �2〉〉(49)

with probability at least 1 − exp(−n/32).

PROOF. We use the shorthand notation � = �1 + �2 for the proof. Since
Z̃∗ is feasible and Ẑ is optimal for problem (20), we have the basic inequality
〈〈�̂n,PZ̃∗〉〉 ≤ 〈〈�̂n,PẐ〉〉. Using the decomposition �̂ = � + � and rearranging
yields the inequality

〈〈�,PZ̃∗ − PẐ〉〉 ≤ 〈〈�,PẐ − PZ̃∗〉〉.(50)

From definition (44) of � and Z∗ = Z̃∗R, the left-hand side of the inequality (50)
can be lower bounded as

〈〈�,PZ̃∗ − PẐ〉〉 = 〈〈
B,SRT (

Z̃∗)T (PZ̃∗ − PẐ)Z̃∗RS
〉〉

= trBSRT Ŝ2RS

≥ λmin(B)λmin
(
S2)λmin

(
RT R

)
tr
(
Ŝ2),

where we have used (90) and (91) of Appendix I several times (cf. the supple-
mentary material [3]). We note that λmin(S

2) = s2
r ≥ 1

2 and λmin(R
T R) ≥ 1

2 pro-
vided rCm(f ∗) ≥ 1

2 ; see equation (70). To bound the minimum eigenvalue of B ,
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let γmin(B) denote the minimum singular value of the n × r Gaussian matrix B .
The following concentration inequality is well known (cf. [12, 20]):

P
[
γmin(B) ≤ √

n − √
r − t

] ≤ exp
(−t2/2

)
for all t > 0.

Since λmin(B) = γ 2
min(B/

√
n), we have that λmin(B) ≥ (1−√

r/n− t)2 with prob-
ability at least 1 − exp(−nt2/2). Assuming r/n ≤ 1

4 and setting t = 1
4 , we get

λmin(B) ≥ 1
16 with probability at least 1−exp(−n/32). Putting the pieces together

yields the claim. �

Inequality (49) reduces the problem of bounding |||P̂ |||2HS to the sub-problem of
studying the random variable 〈〈P̂ ,�1 + �2〉〉. Based on Lemma 7, our next step is
to establish an inequality (holding with high probability) of the form

〈〈P̂ ,�1 + �2〉〉 ≤ c1

{
σm√

n
r3/2F

(|||Ê|||HS
) + κ|||Ê|||2HS + ε2

m,n

}
,(51)

where c1 is some universal constant, κ is the constant in condition (A1) and εm,n is
the critical radius from Theorem 1. Doing so is a nontrivial task: both matrices P̂

and � are random and depend on one another, since the subspace Ẑ was obtained
by optimizing a random function depending on �. Consequently, our proof of
bound (51) involves deriving a uniform law of large numbers for a certain matrix
class.

Suppose that bound (51) holds, and that the subspaces Z̃∗ and Ẑ are properly
aligned. Lemma 6 implies that |||Ê|||HS ≤ |||P̂ |||HS, and since F is a nondecreasing
function, inequality (51) combined with Lemma 7 implies that

(1 − 128κc1)|||P̂ |||2HS ≤ c1

{
σm√

n
r3/2F

(|||P̂ |||HS
) + ε2

m,n

}
,

from which the claim follows as long as κ is suitably small (e.g., κ ≤ 1
256c1

suf-
fices). Accordingly, in order to complete the proof of Theorem 1, it remains to
prove bound (51), and the remainder of our work is devoted to this goal. Given the
linearity of trace, we can bound the terms 〈〈P̂ ,�1〉〉 and 〈〈P̂ ,�2〉〉 separately.

5.2.1. Bounding 〈〈P̂ ,�1〉〉. Let {zj }, {̃z∗
j } and {̂ej } and {wj } denote the

columns of Ẑ, Z̃∗, Ê and W , respectively, where we recall the definitions of these
quantities from equation (44) and Lemma 6. Note that wj = n−1 ∑n

i=1 wiβij . In
Appendix C.1 of the supplementary material [3], we show that

〈〈P̂ ,�1〉〉 ≤ √
6σr3/2 max

j,k

∣∣〈wk, êj 〉
∣∣ +

√
3

2
σr|||Ê|||2HS max

j,k

∣∣〈wj, z̃
∗
k

〉∣∣.(52)

Consequently, we need to obtain bounds on quantities of the form |〈wj, v〉|, where
the vector v is either fixed (e.g., v = z̃∗

j ) or random (e.g., v = êj ). The following
lemmas provide us with the requisite bounds:
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LEMMA 8. We have

max
j,k

σ r3/2∣∣〈wk, êj 〉
∣∣ ≤ C

{
σ√
n
r3/2F

(|||Ê|||HS
) + κ|||Ê|||2HS + κε2

m,n

}
with probability at least 1 − c1r exp(−κ2r−3n

ε2
m,n

2σ 2 ) − r exp(−n/64).

LEMMA 9. We have

P

[
max
j,k

σ r
∣∣wT

k z̃∗
j

∣∣ ≤ √
6κ

]
≥ 1 − r2 exp

(−κ2r−2n/2σ 2).
See Appendices C.2 and C.3 in the supplementary material [3] for the proofs of

these claims.

5.2.2. Bounding 〈〈P̂ ,�2〉〉. Recalling definition (44) of �2 and using linearity
of the trace, we obtain

〈〈P̂ ,�2〉〉 = σ 2

n

r∑
j=1

{
(zj )

T WT Wzj − (̃
z∗
j

)T
WT Wz̃∗

j

}
.

Since êj = zj − z̃∗
j , we have

〈〈P̂ ,�2〉〉 = σ 2
r∑

j=1

{
2
(̃
z∗
j

)T (
1

n
WT W − Ir

)
êj + 1

n
‖Wêj‖2

2 + 2
(̃
z∗
j

)T
êj

}
(53)

≤ σ 2
r∑

j=1

{
2
(̃
z∗
j

)T (
1

n
WT W − Ir

)
êj︸ ︷︷ ︸

T1 (̂ej ;̃z∗
j )

+ 1

n
‖Wêj‖2

2︸ ︷︷ ︸
T2 (̂ej )

}
,

where we have used the fact that 2
∑

j (̃z
∗
j )

T êj = 2
∑

j [(̃z∗
j )

T zj − 1] = 2
∑

j (ĉj −
1) = −|||Ê|||2HS ≤ 0.

The following lemmas provide high probability bounds on the terms T1 and T2.

LEMMA 10. We have the upper bound

σ 2
r∑

j=1

T1
(̂
ej ; z̃∗

j

) ≤ C

{
σ0

σ√
n
rF

(|||Ê|||HS
) + κ|||Ê|||2HS + κε2

m,n

}

with probability 1 − c2 exp(−κ2r−2n
εm,n∧ε2

m,n

16σ 2 ) − r exp(−n/64).

LEMMA 11. We have the upper bound σ 2 ∑r
j=1 T2(̂ej ) ≤ Cκ{|||Ê|||2HS + ε2

m,n}
with probability at least 1 − c3 exp(−κ2r−2nε2

m,n/2σ 2).

See Appendices C.4 and C.5 in the supplementary material [3] for the proofs of
these claims.
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6. Discussion. We studied the problem of sampling for functional PCA from
a functional-theoretic viewpoint. The principal components were assumed to lie
in some Hilbert subspace H of L2, usually a RKHS, and the sampling opera-
tor, a bounded linear map � : H → R

m. The observation model was taken to be
the output of � plus some Gaussian noise. The two main examples of � con-
sidered were time sampling, [�f ]j = f (tj ) and (generalized) frequency trunca-
tion [�f ]j = 〈ψj ,f 〉L2 . We showed that it is possible to recover the subspace
spanned by the original components, by applying a regularized version of PCA in
R

m followed by simple linear mapping back to function space. The regularization
involved the “trace-smoothness condition” (19) based on the matrix K = ��∗
whose eigendecay influenced the rate of convergence in R

m.
We obtained the rates of convergence for the subspace estimators both in the

discrete domain, R
m, and the function domain, L2. As examples, for the case

of a RKHS H for which both the kernel integral operator and the kernel matrix
K have polynomial-α eigendecay (i.e., μj � μ̂j � j−2α), the following rates in
HS-projection distance for subspaces in the function domain were worked out in
detail:

Time sampling Frequency truncation

( 1
mn

)2α/(2α+1) + ( 1
m

)2α ( 1
n
)2α/(2α+1) + ( 1

m
)2α

The two terms in each rate can be associated, respectively, with the estimation
error (due to noise) and approximation error (due to having finite samples of an
infinite-dimensional object). Both rates exhibit a trade-off between the number
of statistical samples (n) and that of functional samples (m). The two rates are
qualitatively different: the two terms in the time sampling case interact to give
an overall fast rate of n−1 for the optimal trade-off m � n1/(2α), while there is no
interaction between the two terms in the frequency truncation; the optimal trade-off
gives an overall rate of n−2α/(2α+1), a characteristics of nonparametric problems.
Finally, these rates were shown to be minimax optimal.

SUPPLEMENTARY MATERIAL

Proofs and auxiliary results (DOI: 10.1214/12-AOS1033SUPP; .pdf). This
supplement contains some of the proofs and auxiliary results referenced in the
text.
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