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We study the concentration of random kernel matrices around their mean.
We derive nonasymptotic exponential concentration inequalities for Lipschitz
kernels assuming that the data points are independent draws from a class of
multivariate distributions on R

d , including the strongly log-concave distri-
butions under affine transformations. A feature of our result is that the data
points need not have identical distributions or zero mean, which is key in cer-
tain applications such as clustering. Our bound for the Lipschitz kernels is
dimension-free and sharp up to constants. For comparison, we also derive the
companion result for the Euclidean (inner product) kernel for a class of sub-
Gaussian distributions. A notable difference between the two cases is that,
in contrast to the Euclidean kernel, in the Lipschitz case, the concentration
inequality does not depend on the mean of the underlying vectors. As an ap-
plication of these inequalities, we derive a bound on the misclassification rate
of a kernel spectral clustering (KSC) algorithm, under a perturbed nonpara-
metric mixture model. We show an example where this bound establishes the
high-dimensional consistency (as d → ∞) of the KSC, when applied with a
Gaussian kernel, to a noisy model of nested nonlinear manifolds.

1. Introduction. Kernel methods are quite widespread in statistics and machine learn-
ing, since many “linear” methods can be turned into nonlinear ones by replacing the Gram
matrix with one based on a nonlinear kernel, the so-called kernel trick. The approach is often
motivated as follows: One first maps the data x ∈ R

d to a point �(x) in a higher dimensional
space H via a nonlinear feature map � : Rd → H . In this new space, the data are better be-
haved (e.g., linearly separated in the case of classification), hence one can run a simple linear
algorithm. Often this algorithm relies only on the inner products 〈�(x),�(y)〉 = K(x,y).
Thus the transformation is effectively equivalent to replacing the usual inner product 〈x, y〉
with the kernelized version K(x,y), keeping the computational cost of the algorithm roughly
the same. This way of introducing nonlinearity without sacrificing efficiency, works well for
many commonly used algorithms such as principal component analysis, ridge regression,
support vector machines, k-means clustering, and so on [5, 23, 30].

To be concrete, let the data be the random sample X1, . . . ,Xn ∈ R
d drawn independently

from unknown distributions P1, . . . ,Pn. Then the kernel trick replaces the Gram matrix
(〈Xi,Xj 〉) ∈ R

n×n with the random kernel matrix K(X) := (K(Xi,Xj )) ∈ R
n×n. Under-

standing the behavior of this random matrix, and especially how well it concentrates around
its mean is key in evaluating the performance of the underlying kernel methods. This problem
has been studied in the literature, but often in the asymptotic setting, including the classical
asymptotics where d is fixed and n → ∞ or in the (moderately) high-dimensional regime
where d,n → ∞ and d/n → γ ∈ (0,1).

In this paper, we study finite-sample concentration of K(X) around its mean in the �2
operator norm, that is, ‖K(X) − EK(X)‖. We will make no assumptions about the relative
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sizes of d and n; our results hold for any scalings of the pair (n, d). We also do not assume
the kernel (function) to be positive semidefinite, using the term kernel broadly to refer to
any symmetric real-valued function defined on R

d ×R
d . We consider the class of Lipschitz

kernels and provide a concentration inequality when the data distributions {Pi} correspond
to certain classes of distributions, including the strongly log-concave distributions in R

d . In
particular, the result holds for general Gaussian distributions Pi = N(μi,�i), i = 1, . . . , n.
For comparison, we also derive a concentration inequality for the usual Euclidean kernel,
for certain classes of sub-Gaussian vectors. Our results highlight differences in dimension
dependence between the concentration of Lipschitz kernels versus that of the Euclidean one.
Another interesting observation is that, in contrast to the Euclidean case, the concentration
inequality for Lipschitz kernels does not depend on the mean kernel EK(X).

A feature of our results is that the data, although independent, are not assumed to be
identically distributed. This is important, for example, when studying clustering problems and
implies that the mean kernel matrix EK(X) is nontrivial and can carry information about the
underlying data distribution. Thus, one can study the behavior of a kernel method on the mean
matrix EK(X) and then translate the results to a random sample, using the concentration
equality.

We illustrate this approach by analyzing a kernel spectral clustering algorithm which is
recently introduced in the context of network clustering. We adapt the algorithm to general
kernel clustering, and provide bounds on its misclassification rate under a (nonparametric)
mixture model that is perturbed by noise. Due to our concentration results, the bound we
derive allows for anisotropic noise models as well as noise structures that vary with the sig-
nal. This, in turn, allows one to investigate an interesting trade-off between the noise and
signal structure. There could be multiple ways of breaking the data into the signal and noise
components. For example, consider Xi = μi + εi where μi is the signal component and
εi ∼ N(0,�) the independent isotropic noise. An alternative decomposition is

Xi = μ′
i + ε′

i for μ′
i = μi + �⊥

μi
εi, ε

′
i = �μi

εi,

where �μi
is the operator projecting onto the span of {μi}, and �⊥

μi
= Id − �μi

is its
complementary projection operator. This latter decomposition has varying anisotropic noise
ε′
i ∼ N(0,�μi

��μi
), but could allow for faster concentration of the kernel matrix (condi-

tioned on {μi}) when maxi ‖�μi
��μi

‖ is smaller than ‖�‖. We illustrate the application
of our concentration bound by analyzing a nested sphere cluster model under isotropic and
radial noise models, and show that the proposed kernel spectral clustering algorithm achieves
high-dimensional consistency under both noise structures.

In addition to the trade-off in decomposition, the bound on the misclassification rate
also shows an interesting trade-off between the approximation (by a block-constant matrix)
and estimation errors. This trade-off is controlled by certain parameters of the mean kernel
EK(X), denoted as γ 2 and v2 in Section 3, that characterize the between-cluster distance
and the within-cluster variation. Both of these are further affected by the noise level σ and,
in the case of the Gaussian kernel, by the kernel bandwidth.

1.1. Related work. Most of the prior work on the concentration of kernel matrices fo-
cuses on the asymptotic behavior. For fixed d , as n → ∞, the eigenvalues of the normalized
kernel matrix K(X)/n converge to the eigenvalues of the associated integral operator if (and
only if) the operator is Hilbert–Schmidt. This is shown in [17] which also provides rates of
convergence and distributional limits.

More recently, the so-called high-dimensional asymptotic regime where n,d → ∞ while
d/n converges to a constant is considered. The study of kernel matrices in this regime was
initiated by [10] where it was shown that for kernels with entries of the form f (XT

i Xj ) and
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f (‖Xi −Xj‖), under a certain scaling of the distribution of {Xi}, the empirical kernel matrix
asymptotically behaves similar to that obtained from a linear (i.e., Euclidean) kernel.

In particular, it was shown in [10] that the operator norm distance between the kernel ma-
trix and its linearized version vanishes asymptotically; hence, for example, the corresponding
spectral densities approach each other. The limiting spectral density (i.e., the limit of the em-
pirical density of the eigenvalues) has been further studied for kernels with entries of the form
f (XT

i Xj ) and f (‖Xi − Xj‖) in [8, 9, 12] under various (often relaxed) regularity assump-
tions on f and the distribution of {Xi}. In parallel work, [11] considers a signal-plus-noise
model for Xi and shows that the kernel matrix, in this case, approaches a kernel matrix which
is based on the signal component alone. Although the results are mostly asymptotic, they have
similarities with our approach. We make a detailed comparison with [11] in Remark 1 and
Section 3.4.

Early results on finite-sample concentration bounds for kernel matrices include [5, 6, 22]
for individual eigenvalues or their partial sums. In [5, 6], the deviation of the eigenvalues
of the empirical kernel matrices (or their partial sums) from their counterparts based on the
associated integral operator are considered. In [22], nonasymptotic concentration bounds on
the eigenvalues have been obtained for bounded kernels. In our notation, these bounds show
that |λi(K) − Eλi(K)| are small. In contrast, a consequence of our results is a control on
|λi(K) − λi(EK)|. In applications, getting a handle on λi(EK) is often much easier than
Eλi(K).

More recently, sharp nonasymptotic upper bounds on the operator norm of random kernel
matrices were obtained in [16] for the case of polynomial and Gaussian kernels. These results
focus on the case where Xi are centered sub-Gaussian vectors and provide direct bounds on
the operator norm of the kernel matrix: ‖K‖. In contrast, we focus on the case where Xi

have a nonzero mean μi and EK has nontrivial information about these mean vectors, and
we provide bounds on the deviation of K from EK .

Much of the work on the analysis of spectral clustering focuses on the Laplacian-based
approach. In a line of work, the convergence of the adaptive graph Laplacian to the cor-
responding Laplace–Beltrami operator is established [4, 13–15, 24]. For a fixed kernel, the
convergence of the (empirical) graph Laplacian to the corresponding population-level inte-
gral operator is studied in [20, 27], and bounds on the deviation of the corresponding spectral
projection operators are derived. More recently, a finite-sample analysis for fixed kernels is
provided in [21] assuming an explicit mixture model for the data. Our work is close in spirit
to [21] with notable differences. We consider an adjacency-based kernel spectral clustering,
based on a recently proposed algorithm for network clustering, and provide direct bounds on
its misclassification rate. Our bound requires no assumption on the signal structure, and the
overall bound is simpler and in terms of explicit quantities related to the statistical proper-
ties of a mean kernel. We separate the contributions of the noise and signal (in contrast to
[21]), which allows for a more refined analysis. In particular, we show how this could lead to
high-dimensional consistency of the proposed kernel spectral clustering in some examples.
Another recent work in the same spirit as ours is that of [29] where both a spectral method and
a SDP relaxation are analyzed for clustering based on a kernel matrix. A mixture model with
isotropic sub-Gaussian noise is considered in [29] and consistency results are obtained for
both approaches, based on entrywise concentration bounds for the kernel matrix. We provide
more detailed comparisons with the existing literature on kernel clustering in Section 3.4.

The rest of the paper is organized as follows: In Section 2, we derive the concentration
inequalities for the Lipschitz and Euclidean kernels. Section 3 presents an application of
these results in deriving misclassification bounds for kernel spectral clustering. In Section 3.5,
we present simulation results corroborating the theory. We conclude by giving the proofs of
the main results in Section 4, leaving some details to the Appendices in the Supplementary
Material [3].
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2. Concentration of kernel matrices. Throughout, {Xi, i = 1, . . . , n} will be a collec-
tion of independent random vectors in R

d . The sequence is not assumed i.i.d., that is, the
distribution of Xi could in general depend on i. This, for example, is relevant to clustering
applications. We will collect {Xi} into the data matrix X = (X1, . . . ,Xn) ∈ R

d×n. We also
use the notation X = (X1 | · · · | Xn) to emphasize that Xi is the ith column of X. For a vector
x ∈ R

n, ‖x‖ = ‖x‖2 denotes the �2 norm. For a matrix A ∈ R
n×n, we use ‖A‖ to denote the

�2 operator norm, also known as the spectral norm.
We are interested in bounds on the deviation ‖K − EK‖, where K = (Kij ) ∈ R

n×n is a
kernel matrix. That is, Kij = K(Xi,Xj ), where with some abuse of notation, we will use the
same symbol K to denote both the kernel matrix and the kernel function K : Rd ×R

d → R.
Occasionally, we write K(X) for the kernel matrix when we want to emphasize the depen-
dence on X. Thus,

(1) K(X) = (
K(Xi,Xj )

) ∈ R
n×n.

For a random vector Xi , we denote its covariance matrix as cov(Xi). We often work with
Lipschitz functions. A function f : Rd → R is Lipschitz with respect to (w.r.t.) metric δ on
R

d if it has a finite Lipschitz seminorm:

‖f ‖Lip := sup
x,y

|f (x) − f (y)|
δ(x, y)

< ∞.

It is called L-Lipschitz if ‖f ‖Lip ≤ L. If the metric is not specified, it is assumed to be the
Euclidean metric, δ(x, y) := ‖x − y‖.

We consider the data model Xi = μi + √
�iWi , i = 1, . . . , n, where �i is a generalized

square-root of the positive semidefinite matrix �i , in the sense that
√

�i

√
�i

T = �i . Note
that

√
�i need not be symmetric.

2.1. Lipschitz kernels. Our first result is for the case where the kernel function K :Rd ×
R

d →R is L-Lipschitz, in the following sense:

(2)
∣∣K(x1, x2) − K(y1, y2)

∣∣≤ L
(‖x1 − y1‖ + ‖x2 − y2‖).

This class includes any kernel function which is L-Lipschitz w.r.t. the �2 norm on R
2d . It

also includes the important class of distance kernels of the form (see Appendix A.1 in the
Supplementary Material [3]):

(3) K(x1, x2) = f
(‖x1 − x2‖), f :R →R is L-Lipschitz,

which in turn includes the important case of the Gaussian kernel where f (t) ∝ e−t2/2σ 2
. We

also need the following definition.

DEFINITION 1. We say that a random vector Z ∈ R
d is strongly log-concave with

curvature α2 if it has a density f (x) = e−U(x) (w.r.t. the Lebesgue measure) such that
∇2U(x) � α2Id for every x ∈ R

d , that is, the Hessian of U exists and is uniformly bounded
below.

We often work with the following class of multivariate distributions.

DEFINITION 2 (LC class). We say that random vector X ∈ R
d belongs to class

LC(μ,�,ω) for some vector μ ∈ R
d , a d × d semidefinite matrix � and ω > 0, if we can

write X = μ + √
�W where W ∈ R

d is a random vector whose j th coordinate, Wj , satisfies
EWj = 0 and EW 2

j = 1 for all j . Moreover, either of the following conditions holds:
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(a) Wj = φj (Zj ), for some function φj with ‖φj‖Lip ≤ ω, for all j , and {Zj } is a collec-
tion of independent standard normal variables; or

(b) {Wj } are independent and Wj has a density (w.r.t. the Lebesgue measure) uniformly
bounded below by 1/ω; or

(c) W is strongly log-concave with curvature α2 ≥ 1/ω2, and EWWT = Id .

For part (b) of Definition 2, we say that a density f is uniformly bounded below, if f (x) ≥
1/ω > 0 for all x in the support of the distribution. Part (b) thus includes the case where the
marginals of X are uniformly distributed on bounded subsets of R and cov(X)−1/2(X −EX)

has independent coordinates. Note that a multivariate Gaussian random vector is a special
case of Definition 2 with ω = 1. Our main result for the Lipschitz kernels is the following.

THEOREM 1. Let Xi ∈ LC(μi,�i,ω), i = 1, . . . , n, be a collection of independent ran-
dom vectors, and let K = K(X) be the kernel matrix in (1) with kernel function satisfying
(2). Then, for some universal constant c > 0, with probability at least 1 − exp(−ct2),

(4) ‖K −EK‖ ≤ 2Lωσ∞(Cn + √
nt),

where σ 2∞ := maxi ‖�i‖ and C = c−1/2. When all Xi s are multivariate Gaussians, one can
take c = 1/2.

Although this result is stated for the LC classes of random vectors, it holds more broadly.
In fact, we can even relax the independence assumption on W1, . . . ,Wn. Inspection of the
proof shows that the result holds as long as �W ∈ R

dn, which is obtained by stacking {Wi} on
top of each other, satisfies the so-called concentration property; see Definition 3 in Section 4.

Bound (4) is dimension-free. To see this, consider the case where �i = σ 2Id for all i. Then
we have 1

n
‖K − EK‖ = O(Lωσ) with probability at least 1 − e−cn, for all d . The bound is

also independent of {μi}. The following proposition shows the bound is sharp.

PROPOSITION 1. Let Xi, i = 1, . . . , n be i.i.d. draws from a symmetric distribution with
P(|Xi | > σ) = 1/2, for example, the uniform distribution on (−2σ,2σ). Then, for any σ > 0,
there is an L-Lipschitz kernel function on R such that, when n ≥ 8, the corresponding kernel
matrix K = K(X) satisfies

(5) P
(‖K −EK‖ > Lσn/8

)≥ 1 − e−n/8.

The 1/2 in assumption P(|Xi | > σ) = 1/2, is for convenience. It can be replaced with any
positive constant by modifying the constants in (5).

REMARK 1. As an intermediate step in proving Theorem 1, we obtain (cf. Proposition 4),

(6)
1

n2E‖K −EK‖2
F ≤ 4

c
L2ω2 max

i
‖�i‖.

This is a significant strengthening of a result that follows from Theorem 1 in [11]: After a
rescaling to match the two models, the result there implies

(7)
1

n2E‖K − K̃‖2
F ≤ CL2[tr(�2)+ C1‖�‖]

for the case where �i = � for all i, the kernel is of the form (3) and K̃ is a modified ker-
nel matrix where f (·) is replaced with f (· + tr(�)) off the diagonal and with f (0) on the
diagonal.
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Our result is much sharper since the bound does not scale with d . It is also more general
in some aspects, namely, that it applies to any Lipschitz kernel, not necessarily of the form
(3), and we allow for heterogeneity in the covariance matrices of the data points. Our result is
stated in terms of the mean matrix EK which is a more natural object. Moreover, we prove a
full concentration result in Theorem 1 which goes beyond controlling the mean of the devia-
tion as in (6) and (7). On the other hand, the result in [11] is more general in another direction:
it applies to Xi = μi + √

�Wi where Wi have independent coordinates with bounded fourth
moments. (Note that � is the same for all data points in [11].) Since we seek exponential
concentration, we need stronger control of the tail probabilities.

EXAMPLE 1 (Gaussian kernel and isotropic noise). Let us consider the implications of
Theorem 1 for the Gaussian kernel, assuming that the underlying random vectors follow:

(8) Xi = μi + σi√
d

wi, wi
i.i.d.∼ N(0, Id).

As will be discussed in Section 3, by allowing μi to vary over some latent clusters in the
data, (8) provides a simple model for studying clustering problems. The scaling of the noise
variances by

√
d is so that the two terms μi and (σi/

√
d)wi are balanced in size as d → ∞.

Without the scaling, since ‖wi‖ concentrates around
√

d , the noise σiwi will wash out the
information in the signal μi (assuming ‖μi‖ = O(1) as d → ∞).

Consider the Gaussian kernel on (Rd)2 with bandwidth parameter τ :

(9) K(x,y) = exp
(
− 1

2τ 2 ‖x − y‖2
)

= fτ

(‖x − y‖), fτ (t) := e−t2/2τ 2
.

This is a Lipschitz kernel with L = ‖f ′
τ‖∞ = √

2/(eτ). The expected kernel matrix EK has
the following entries (see Appendix B.4):

[EK]ij = 1

sd
ij

exp
(
−‖μi − μj‖2

2s2
ij τ

2

)
, s2

ij = 1 + σ 2
i + σ 2

j

dτ 2 , i �= j.

Consider the special case where σi = σ for all i, and let s2 = 1 + 2σ 2/(dτ 2). Then the
mean kernel matrix EK is itself a kernel matrix, based on a Gaussian kernel with updated
bandwidth parameter τs, applied to mean vectors {μi}, that is,

K̃σ (μi,μj ) := [EK]ij = s−dfτs

(‖μi − μj‖).
Note that the mean kernel matrix depends on the noise variance σ . Also, because of the
scaling of the variance in (8), the prefactor s−d stabilizes as d → ∞, that is, s−d = (1 +
2σ 2/(dτ 2))−d/2 → e−σ 2/τ 2

and the kernel function approaches the standard Gaussian kernel
fsτ → f1. (Without the variance scaling, the prefactor would go to zero.)

Applying (4) with σ∞ = σ , ω = 1, c = 1/2, L = √
2/(eτ) and replacing t with

√
2t ,

(10)
1

n
‖K −EK‖ ≤ 4

e

σ

τ

1√
d

(
1 + t√

n

)
, w.p. ≥ 1 − e−t2

.

It is interesting to note that the deviation is controlled by the ratio σ/τ . For example, we
could have started with the alternative model without the scaling of the standard deviation
by

√
d , that is, model (8) with σi/

√
d replaced with σ , but instead rescaled the bandwidth

by changing τ to τ
√

d . Then we would have the same exact concentration bound as in (10).
This observation somewhat justifies the rule of thumb used in practice where one sets the
bandwidth ∝ √

d in the absence of additional information. According to the above discussion,
this choice roughly corresponds to the belief that the per-coordinate standard deviation is
O(1) as d → ∞.
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Example 1 can be easily extended to the case of anisotropic noise, using the invariance
of both the Gaussian kernel and the Gaussian distribution to unitary transformations. More
generally, consider an extension of model (8) as follows:

(11) Xi = μi + 1√
d

wi, wi
i.i.d.∼ N(0,�).

This is similar to the model in [11], assuming in addition the Gaussianity of the noise. Ap-
plying (4), replacing � with �/

√
d , we have for model (11),

(12)
1

n
‖K −EK‖ ≤ 2

√
2L

√
‖�‖
d

(
1 + t√

n

)
, w.p. ≥ 1 − e−t2

.

In practice, it is often reasonable to assume ‖�‖ = O(1). Then 1
n
‖K − EK‖ = Op(d−1/2)

as d → ∞, that is, we get consistency in estimating E(K/n) by K/n, as dimension d grows.

2.2. Euclidean kernel. We now consider the kernel function K(x1, x2) = 〈x1, x2〉 which
we refer to as the Euclidean or inner product kernel. The kernel matrix in this case is the
Gram matrix of {Xi}:
(13) K(X) = (〈Xi,Xj 〉)= XT X.

Our main result for the Euclidean kernel is the following.

THEOREM 2. Let Xi = μi + √
�iWi , where {Wi, i = 1, . . . , n} ⊂ R

d is a collection
of independent centered random vectors, each with independent sub-Gaussian coordinates.
Here, μi = E[Xi] ∈R

d and each �i is a d × d positive semidefinite matrix, with generalized
square root

√
�i . Let

M = (μ1 | · · · | μn) ∈ R
d×n, κ = max

i,j
‖Wij‖ψ2,

σ 2∞ := max
i

‖�i‖, η = d +
(‖M‖

κσ∞

)2
.

For K = K(X) as in (13) and for any u ≥ 0, with probability at least 1 − 4n−c1 exp(−c2u
2),

‖K −EK‖ ≤ 2κ2σ 2∞η max
(
δ2, δ

)
where δ =

√
n

η
+ u√

η
.

In particular, with probability at least 1 − 4n−c1 ,

(14)
‖K −EK‖ = O

(
κ2σ 2∞(n + √

nη)
)

= O
(
κ2σ 2∞(n + √

nd) + κσ∞
√

n‖M‖).
A special case of this result, when Xi s are centered and isotropic (μi = 0, �i = Id and

EW 2
ij = 1 for all i and j ), appears in [25], Section 5.5. The normalized n × n kernel matrix

1
n
XT X is dual to the d × d matrix 1

n
XXT = 1

n

∑n
i=1 XiX

T
i which is the main component of

the sample covariance matrix of {Xi}. Thus, Theorem 2 is dual to the well-known concentra-
tion results for covariance matrices. However, a major difference with covariance estimation
is that with Gram matrices, the data points need not have identical distributions.

An interesting feature of bound (14) is its dependence on the mean of the underlying
vectors through ‖M‖. Contrast this with the result of Theorem 1 where the bound is not
affected by the mean of the random vectors Xi . Under the assumptions of Theorem 2, the
mean kernel matrix is EK = diag(E‖X̃i‖2, i ∈ [n]) + MT M , where X̃i = Xi − μi is the
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centered version of Xi . The second term has operator norm ‖MT M‖ = ‖M‖2, whereas the
relevant term in (14) is of lower order in ‖M‖. More precisely, ‖K−EK‖

‖EK‖ � 1
‖M‖ as ‖M‖ → ∞,

confirming that (14) is indeed a concentration result.

EXAMPLE 2. Let us continue with model (8) of Example 1. The model corresponds to
�i = σ 2

i Id/d and κ � 1 in Theorem 2. Assume that σi ≤ σ for all i. It follows that σ∞ ≤
σ/

√
d and Theorem 2 gives

1

n
‖K −EK‖� σ 2

(
1

d
+ 1√

nd

)
+ σ√

nd
‖M‖, w.p. ≥ 1 − 4n−c1 .

Compared with (10), the deviation bound improves as d is increased. On the other hand, the
bound directly depends on the mean matrix M = EX, as opposed to (10).

The bound in (14) is sharp in general. To see this, first consider the term κ2σ 2∞(n + √
nd).

Without loss of generality, assume σ 2∞ = 1. Consider the case Xi ∼ N(0, Id), drawn i.i.d., and
let yk be the kth row of (X1 | · · · | Xn). Then yk , k = 1, . . . , d are i.i.d. draws from N(0, In).
Hence, 1

d
‖K −EK‖ = ‖ 1

d

∑
k yiy

T
i − In‖ is the deviation of a sample covariance matrix from

its expectation which is known to scale as
√

n
d

+ n
d

; see, for example, [26], Theorem 4.7.1.
The last term in (14) is also unavoidable when n ≥ Cd for a sufficiently large constant C.

To see this, let X = σ−1∞ M + σ∞W ∈ R
d×n where Xi , Mi and Wi are the ith columns

of X, M and W , respectively, and Wi ∼ N(0, Id) drawn i.i.d. Letting σ∞ → 0, we have
‖K − EK‖ → 2‖MT W‖. Note that 1

n
WWT is a sample covariance matrix, concentrated

around Id . By taking n ≥ Cd for a large constant C, we have 1
n
WWT � 1

2Id , with high

probability. It follows that 2‖MT W‖ = 2
√

‖MT WWT M‖ ≥ 2(n
2‖MT M‖)1/2 ≥ √

2n‖M‖,

which is proportional to bound (14) after replacing M with σ−1∞ M and letting σ∞ → 0.

3. Kernel spectral clustering. We now consider how the concentration bounds of Sec-
tion 2 can be used to derive performance bounds for the kernel spectral clustering.

3.1. A kernel clustering algorithm. Let μ �→ �(μ) be a map from R
d to positive

semidefinite matrices, and let
√

�(μ) denote its matrix square-root. We consider a nonpara-
metric mixture model perturbed by noise, as follows:

(15) Xi = μi + σ√
d

√
�(μi)wi, μi

i.i.d.∼
R∑

k=1

π̄kPk,wi
i.i.d.∼ N(0, Id),

for i = 1, . . . , n, where μi is the signal, wi is the noise, and the two pieces are independent.
Note that the distribution of Xi goes beyond a nonparametric mixture model unless μ �→
�(μ) is constant. The reason for introducing the extra parameter σ is the convenience of
setting �(μi) = Id to study the case of isotropic noise. We think of �(μ) as a normalized
covariance matrix (say ‖�(μ)‖ ≤ 1) measuring anisotropy of the noise, and of σ as the
overall noise level. The Gaussian assumption for wi is for simplicity; the result holds for all
the cases in Theorem 1. Here, {Pk} are the distributions constituting the mixture components,
and π̄k ∈ [0,1] are the class priors. In a typical case, components {Pk} are supported on lower-
dimensional submanifolds of Rd , singular w.r.t. the Lebesgue measure and singular w.r.t. to
each other; see, for example, Figure 1. Although, none of these assumptions are required for
the result we present. Intuitively, the kernel clustering should perform well if we only observe
{μi} and we would like to study the effect of adding noise to such ideal clustered data.
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FIG. 1. Example of the signal-plus-noise clustering model (16) with two signal component P1 and P2, each
a uniform distribution on a circle in d = 2 dimensions, and �0 = I2. The plots correspond to different noise
levels σ .

Model (15) is sufficiently general to allow the noise structure to vary based on the signal.
A special case is when �(μ) = �0 is constant, in which case the model is equivalent to

(16) Xi = μi + σ√
d

w′
i , μi

i.i.d.∼
R∑

k=1

π̄kPk,w
′
i

i.i.d.∼ N(0,�0).

This special case is often encountered in the literature.
Given a kernel function, we can form the kernel matrix K = K(X) as in (1). Throughout

this section, unless otherwise stated, we condition on μ = (μi), hence the expectations and
probability statements are w.r.t. the randomness in w = (wi). Let K̃σ (μ) := E[K(xi, xj )],
which should be interpreted as K̃σ (μ) = E[K(xi, xj ) | μ], by the convention just discussed.
The mean kernel matrix K̃(μ) has the following off-diagonal entries under model (15):

(17)
[
K̃σ (μ)

]
ij = [EK]ij = K̃σ (μi,μj ), i �= j,

where, with some abuse of the notation regarding K̃σ , we have defined:

(18) K̃σ (u, v) := E

[
K

(
u + σ√

d

√
�(u)w1, v + σ√

d

√
�(v)w2

)]
, u �= v.

Here, the expectation is w.r.t. the randomness in w1 and w2. Note that we are using K̃σ to
refer to both the mean kernel matrix and the corresponding kernel function. In the special
case of constant noise covariance, �(μ) = �0, we simply have

(19) K̃σ (u, v) := E

[
K

(
u + σ√

d
w′

1, v + σ√
d

w′
2

)]
, u �= v,

where w′
1 and w′

2 are independent N(0,�0) variates. The properties of the new kernel matrix
K̃σ (μ) plays a key role in our analysis.

We analyze the kernel-based spectral clustering (KSC) approach summarized in Algo-
rithm 1 which is based on the recent SC-RRE algorithm of [31] for network clustering. An

Algorithm 1 A kernel spectral clustering (KSC) algorithm
Input: (a) Data points x1, . . . , xn ∈ R, (b) the number of clusters R and (c) the kernel func-

tion (x, y) �→ K(x,y), not necessarily positive semidefinite.

Output: Cluster labels.

1: Form the normalized kernel matrix A := (K(xi, xj )/n) ∈ R
n×n.

2: Obtain A(R) = Û1�̂1Û
T
1 , the R-truncated eigenvalue decomposition (EVD) of A. That

is, if A = Û�̂ÛT is the full EVD of A, where �̂ = diag(λ̂1, . . . , λ̂n) with |λ̂1| ≥ · · · ≥
|λ̂n|, then �̂1 = diag(λ̂1, . . . , λ̂R), and Û1 ∈R

n×R collects the first R columns of Û .

3: Apply an isometry-invariant, constant-factor, k-means algorithm (with R clusters) on

Û1�̂1 to recover the cluster labels.
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advantage of this spectral algorithm is that we can provide theoretical guarantees that are
explicitly expressed in terms of the original parameters of the model, avoiding eigenvalues in
the statement of the bounds. The connection with network clustering is as follows: We can
treat K/n ∈ R

n×n as a similarity matrix, effectively defining a weighted network among n

entities, and then use the adjacency-based spectral clustering described in [31].
Algorithm 1 proceeds by forming the R-truncated eigenvalue decomposition of the simi-

larity matrix A = K/n, denoted as A(R) = Û1�̂1Û
T
1 . One then performs a constant-factor ap-

proximate k-means algorithm on the rows of Û1�̂1 to obtain the estimated cluster labels. The
details of this step are as follows: For a set Y = {y1, . . . , yR} ⊂ R

D and any point x ∈ R
D ,

let d(x,Y) = miny∈Y ‖x − y‖. The k-means problem, with R clusters, seeks to minimize∑n
i=1 d(Xi,Y)2 over R-element subsets Y of RD . This problem is in general NP-hard. How-

ever, it is possible to find κ-approximate solutions in polynomial-time, that is, Ŷ such that∑
i d(Xi, Ŷ)2 ≤ κ · minY

∑
i d(Xi,Y)2. Given, Ŷ , every point Xi is mapped to the closest

element of Ŷ , producing cluster labels. We further assume that the algorithm for deriving
the κ-approximate solution is isometry-invariant, that is, it only depends on the pairwise dis-
tances among {Xi}. Examples of such algorithms for deriving a κ = 1 + ε approximation are
the approach of [18] with time complexity O(2poly(R/ε)nD) [1] and that of [7] with complex-
ity O(nDR + 2poly(R/ε)D2 logD+2 n). Since we apply these algorithms with ε = O(1) and
D = R, assuming R = O(1), both algorithms run in O(n) time.

3.2. Finite-sample bounds on misclassification error. Let zi ∈ {0,1}R be the label of
data point i, determining the component of the mixture to which μi belongs. We use one-
hot encoding for zi , so that zik = 1 if and only if data point i belongs to cluster k, that is,
μi ∼ Pk . Let Ck := {i : zik = 1} denote the indices of data points in the kth cluster, nk := |Ck|
and πk := nk/n, the size and the (empirical) proportion of the kth cluster, respectively.

For k, � ∈ [R], let P̂k,� be the empirical measure on R
d ×R

d given by

P̂k� := P̂k�(μ) = 1

nkn�

∑
(i,j)∈[n]2

zikzj�δ(μi,μj ) = 1

nkn�

∑
i∈Ck,j∈C�

δ(μi,μj ),

where δ(μi,μj ) is a point-mass measure at (μi,μj ). In words, P̂k� is the empirical measure
when the data consists of pairs (μi,μj ), as i and j range over the kth and �th clusters,
respectively. Consider the mean and variances of these empirical measures:

(20) �k� := E
[
K̃σ (X,Y )

]
, v2

k� := var
(
K̃σ (X,Y )

)
, (X,Y ) ∼ P̂k�.

Let v2 be the average variance

(21) v2 := ∑
k,�∈[R]

πkπ�v
2
k�,

and define the following minimum separations:

(22) γ 2 := min
k �=�

Dk�, γ̃ 2 := min
k �=�

π�Dk�, Dk� :=
R∑

r=1

πr(�kr − ��r)
2.

When the clusters are roughly balanced, we have πk � 1/R for all k ∈ [R], hence γ̃ 2 � γ 2/R.
If the number of clusters does not grow with n, then γ̃ 2 � γ 2.

Let {̂zi} be the labels outputted by Algorithm 1 and let Mis be the corresponding average
misclassification rate relative to the true labels. That is, Mis = minσ

1
n

1{σ (̂zi) �= zi} where
the minimum is take over all permutations σ : [R] → [R]. (Here, we treat both ẑi and zi as
elements of [R].) We are now ready to state our result on the performance of kernel spectral
clustering.
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THEOREM 3. Assume that the data points {Xi, i = 1, . . . , d} ⊂ R
d follow the nonpara-

metric noisy mixture model (15). Consider the kernel spectral clustering Algorithm 1 with an
L-Lipschitz kernel function as in (2). Let v2 and γ 2 be defined, based on K̃σ , as given in (18).
Fix t ≥ 0, and let

(23) F
(
γ 2, v2) := 16R

γ 2

[
4L2σ 2

d

(
1 + t√

n

)2
max

i

∥∥�(μi)
∥∥+ v2

]
and C1 := 4(1 + κ)2 where κ is the approximation factor of the k-means algorithm. Assume
that F(γ̃ 2, v2) ≤ C−1

1 . Then, with probability at least 1 − exp(−t2), the average misclassifi-
cation rate of Algorithm 1 satisfies

(24) Mis ≤ C1F
(
γ 2, v2).

A similar result can be stated for the Euclidean kernel of Section 2.2. Consider the special
case where �(μ) = �0 for all μ. The quantity v2/γ 2 in (23) is a measure of the hardness of
the noiseless clustering problem, which we refer to as the approximation error. The first term
in bound (23) is the contribution due to noise, the so-called estimation error. Both quantities
depend on the noise level σ as well as the noise structure �(μi), through K̃σ in (19). Thus,
a more precise statement is that v2/γ 2 measures the hardness of the noiseless problem at the
appropriate level determined by the noise level σ , and noise structure �(μi). This depen-
dence on noise can become negligible in the high-dimensional setting where d → ∞; see
Section 3.3.

The geometry of the signal directly affects the approximation error. In a classical paramet-
ric mixture model, Pk = δμ∗

k
, that is, point masses at {μ∗

1, . . . ,μ
∗
R}, in which case v2 = 0, that

is, the approximation error vanishes. Another example with v2 = 0, is the case of separating
a point mass at the origin, P1 = δ0, from the sphere, P2 = Unif(Sd−1). A more elaborate
example is the nested sphere model discussed below.

In addition, both the approximation and estimation errors depend on the choice of the ker-
nel function K(·, ·): the estimation error through the Lipschitz constant L and approximation
error clearly as the definitions of v2 and γ 2 show. When the kernel class has a tuning param-
eter, one might be able to trade-off the contributions of these terms as the following example
shows.

EXAMPLE 3 (Spectral clustering with Gaussian kernel). Consider the case of constant
isotropic noise �0 = Id and the Gaussian kernel (9) with bandwidth τ . As discussed in Ex-
ample 1, the Lipschitz constant is L� 1/τ . Thus the misclassification bound (23) in this case
reduces to

(25) Mis � R

γ 2

[
σ 2

τ 2

1

d

(
1 + t√

n

)2
+ v2

]
which holds with probability ≥ 1 − e−t2

. Roughly speaking, assuming R = O(1), the esti-
mation error is � σ 2/(γ 2τ 2d) and the approximation error � v2/γ 2. The estimation error is
O(d−1), as d → ∞, assuming that γ 2 stays away from 0, which is the case as discussed in
Section 3.3.

As argued in Example 1, K̃σ is again a Gaussian kernel, with modified bandwidth:

(26) K̃σ (μi,μj ) = s−dfτs

(‖μi − μj‖), s2 = 1 + 2σ 2

dτ 2 .

Since v2 and γ 2 are defined based on K̃σ , both the approximation and estimation errors de-
pend on the normalized bandwidth τ/σ . In addition, the approximation error also depends on
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FIG. 2. Plots of the first two coordinates of Xi for the “nested spheres” example, with radii ri = 1,5,10, noise
level σ = 1.5 and variable d . The top and bottom rows corresponds to the isotropic versus radial noise models,
respectively. The plots look qualitatively the same in both cases. As can be seen, for large d , it is very hard to
distinguish the clusters from a low-dimensional projection. (The scale of the plots varies with d .)

the bandwidth-normalized pairwise distances of the signal component, that is, ‖μi − μj‖/τ ,
for i, j ∈ [n]. It is interesting to note that the dependence of the approximation error on the
noise level σ vanishes as d → ∞. In Example 5 below, we provide explicit limit expressions
for v2 and γ 2.

EXAMPLE 4 (Nested spheres with radial noise). Assume that the signal mixture com-
ponents {Pk} are uniform distributions on nested spheres in R

d of various radii: r1, . . . , rR .
Assume that to each μi , drawn from the mixture, we add a Gaussian noise in the direction
perpendicular to the sphere, that is,

(27) Xi = μi + σ√
d

μi

‖μi‖ξi, ξi
i.i.d.∼ N(0,1).

Figure 2 illustrates an example of this noise setup in comparison with the isotropic case.
The radial noise structure falls under model (15) with �(μ) := μμT /‖μ‖2, i.e., the rank-one
projection onto the span of μ. Since maxi ‖�(μi)‖ = 1, the misclassification bound obtained
from (23) is similar to (25) in the isotropic case, with 1/τ 2 replaced with L2. Thus, the
dominant term in the estimation error is � (RL2σ 2)/(γ 2d) which is O(1/d) as d → ∞,
assuming that γ 2 stays bounded away from 0. (This is the case as discussed in Section 3.3.)
Note that the behavior of the estimation error is the same as that of the isotropic case. Let us
also compute the mean kernel function, assuming as the base, the usual Gaussian kernel (9).
We have

K̃σ (u, v) := E

[
K

(
u + σ√

d
ũξ1, v + σ√

d
ṽξ2

)]

= E exp
(
−‖u − v + (σ/

√
d)w‖2

2τ 2

)
,

where ũ = u/‖u‖, ṽ = v/‖v‖, and w = ũξ1 − ṽξ2 ∼ N(0, ũũT + ṽṽT ). One can show that

K̃σ (u, v) = 1

s1s2
exp

{
− 1

2τ 2

[
λ1

2s2
1

(‖u‖ − sign(α)‖v‖)2
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+ λ2

2s2
2

(‖u‖ + sign(α)‖v‖)2]},(28)

s2
i = 1 + σ 2λi

τ 2d
, i = 1,2,

λ1 = 1 + |α|, λ2 = 1 − |α|, α = 〈u, v〉
‖u‖‖v‖

assuming that α �= 0, and u �= v. See Appendix B.1 for details. It is interesting to note that
this mean kernel mostly depends on the norms of u and v. The dependence on α, the angle
between u and v, is quite weak (through s2

i and sign(α)) and mostly goes away as d → ∞. In
the next section, we argue that the approximation error v2/γ 2 based on this kernel also goes
to zero as n,d → ∞.

3.3. Population-level parameters. The quantities v2
k� and �2

k� that underlie v2 and γ 2,
and control the approximation error in Theorem 3, are defined based on the empirical mea-
sures P̂k�. But it is also possible to state them directly in terms of the underlying population-
level components {Pk} and the related integrals. The main idea is that P̂k�, in general, has a
well-defined limit:

(29) P̂k� → Pk ⊗ P� as n → ∞,w.h.p.,

where the convergence can be interpreted in various senses (e.g., weak convergence of prob-
ability measures, or convergence in Lp Wasserstein distances). The notation Pk ⊗ P� repre-
sents a product measure, that is, if (X,Y ) ∼ Pk ⊗P�, then X and Y are independent variables
with marginal distributions Pk and P�. The convergence in (29) holds even when k = � (cf.
Proposition 2 below). Let

�∗
k� :=

∫
K̃σ

(
μ,μ′)dPk(μ)dP�

(
μ′), (

v∗
k�

)2 := var
(
K̃σ (X,Y )

)
,

where (X,Y ) ∼ Pk ⊗ P�. Similarly, let D∗
k�, γ 2∗ and v2∗ be the population-level versions

of Dk�, γ 2 and v2 obtained by replacing �k� and v2
k� with their starred versions in the

corresponding definitions. The above discussion suggests that for large n, �k� ≈ �∗
k� and

v2
k� ≈ (v∗

k�)
2 and similarly for the other related quantities. The following result formalizes

these ideas.

PROPOSITION 2. Assume that K̃σ has constant diagonal and is uniformly bounded on
the union of the supports of Pk, k ∈ [R], so that |K̃σ (μi,μj )| ≤ b a.s. for all i, j ∈ [n] and
some b > 0. Then, with probability at least 1 − 4R2 exp(−t2), for all k, � ∈ [R],

∣∣�k� − �∗
k�

∣∣≤ 3bt√
nk ∧ n�

=: δk�,
∣∣v2

k� − (
v∗
k�

)2∣∣≤ 9b2t√
nk ∧ n�

.

Letting πmin = mink πk , on the same event, we have

(30) γ 2 ≥ γ 2∗ − 24b2t√
πmin

1√
n
, v2 ≤ v2∗ + 9b2t√

πmin

1√
n
.

Note that the bounds in (30) are dimension-free: Assume that πmin is bounded below. Then,
as long as n is sufficiently large, both γ 2∗ and v2∗ are good approximations for their empirical
versions, irrespective of how large d is. When γ 2∗ is bounded below, we can replace γ 2 and
v2 in the misclassification bound in Theorem 3 and only pay a price of O(n−1/2).
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COROLLARY 1. Consider the setup of Theorem 3 and further assume that γ 2∗ is bounded
below, as d → ∞. Then, for any t ≥ 0, there is a constant C2 = C2(πmin, b, t), such that for
n ≥ C2γ

−2∗ , with probability at least 1 − 5R2 exp(−t2), the average misclassification rate of
Algorithm 1 satisfies

(31) Mis ≤ 2C1F
(
γ 2∗ , v2∗

)+ C3(t)√
n

,

where C3(t) = 18b2t/(
√

πminγ
2∗ ), assuming that F(γ̃ 2∗ , v2∗) + C3√

n
≤ C−1

1 .

The boundedness assumption in Proposition 2 holds if either K̃σ is uniformly bounded on
R

d (as in the case of the Gaussian kernel), or {Pk} are supported on some bounded mani-
folds and K̃σ is continuous. The second assumption is quite reasonable since it assumes the
“true” signal μi to be bounded whereas the noisy observation xi can still have an unbounded
distribution.

In some cases, one might be able to explicitly compute γ 2∗ and v2∗ as the next examples
show.

EXAMPLE 5 (Nested spheres with isotropic noise). Consider the case where {Pk} are
uniform distributions on nested spheres in R

d of various radii: r1, . . . , rR . Recalling the defi-
nition of s in (26), let

r̃k = rk

τ s
, ũk := s−d/2e−r̃2

k /2 and uk := e−(r2
k +σ 2)/2τ 2

for k ∈ [R]. Let θ and θ ′ be independent variables distributed uniformly on the unit sphere
Sd−1, and set ψd(u) = E exp(u〈θ, θ ′〉). Then it is not hard to see that

�∗
k� = E

[
K̃σ

(
rkθ, r�θ

′)]= ũkũ�ψd (̃rkr̃�),(
v∗
k�

)2 = var
[
K̃σ

(
rkθ, r�θ

′)]= ũ2
kũ

2
�

[
ψd(2̃rkr̃�) − ψd(̃rkr̃�)

]
.

Although, ψd can be written as a Beta integral, let us consider the case of large d (high-
dimensional data) which simplifies the expressions. As d → ∞, both r̃k and ũk stabilize since
s → 1 and s−d/2 → e−σ 2/2τ 2

(see Example 1). It follows that r̃k → rk/τ and ũk → uk . One
can also show that ψd(u) ≈ exp(u2/4d) for u � d (see Appendix B.2). Then �k� → uku�

and v2
k� → 0 as d → ∞, assuming that the bandwidth τ and the radii {rk} remain fixed.

The population-level approximation error is bounded (up to constants) by

(32)
v2∗
γ 2∗

= O

(
C1(u)

C2(u)

(rkr�)
2

τ 4d

)
= O

(
1

d

)
as d → ∞,

which is vanishing as d gets large. Here,

C1(u) = max
k

u4
k, C2(u) =

(∑
t

πtu
2
t

)
min
k �=�

(uk − u�)
2.

To simplify the numerator, we have used ψ(u)/ψ(2u) ≈ 1 − e−3u2/4d ≈ 3u2/4d as d → ∞.
Note that the prefactor in (32) makes intuitive sense: The bound is controlled by the closest
sphere to the origin (having largest uk , hence largest variance) in the numerator and the two
closest spheres in the denominator.

Let us now consider the population-level estimation error. As discussed in Example 3, the
estimation error is bounded up to constants by

1

γ 2∗
σ 2

τ 2

1

d
� 1

C2(u)

σ 2

τ 2

1

d
.
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Increasing τ 2 decreases the effect of noise by reducing σ 2/τ 2, but increases 1/γ 2∗ � 1/C2(u)

by making {uk} closer, since all uk approach 1 as τ → ∞. This also increases the approx-
imation error (32) in general. Thus the bandwidth to noise level τ/σ plays a subtle role in
balancing the effect of the two terms. Since both the estimation and approximation errors go
down as O(d−1), KSC is consistent at an overall rate of O(d−1 +n−1/2), as implied by (31).

EXAMPLE 6 (Nested spheres with radial noise). Consider again the nested spheres as
the signal model, but this time with (anisotropic) radial noise model of Example 4. We can
proceed as in Example 5 in estimating parameters γ 2∗ and v2∗. The only difference is that
we need to use the appropriate kernel mean matrix K̃σ , given by (28) in this case. Let uk =
e−r2

k /2τ 2
. Then one can show that (cf. Appendix B.3) as d → ∞,

�∗
k� = E

[
K̃σ

(
rkθ, r�θ

′)]→ uku�,
(
v∗
k�

)2 = var
[
K̃σ

(
rkθ, r�θ

′)]� u2
ku

2
�

τ 4d
.

These estimates are similar to those obtained in Example 5, hence the same bound (32) holds
for v2∗/γ 2∗ in this case; that is, the population-level approximation error goes down as O(d−1),
similar to the case of the isotropic noise. Since the estimation error also goes down as O(d−1)

in this case (cf. Example 4), KSC is consistent at an overall rate of O(d−1 +n−1/2), as implied
by (31).

Let us summarize our analysis for the nested spheres example with the isotropic and radial
noise models. Assume that σ , τ (the kernel bandwidth), πmin and the radii of the spheres re-
main constant. For both noise models, the bound on the approximation error vanishes at a rate
O(d−1 + n−1/2), while the bound on the estimation error vanishes at a rate O(d−1), for suf-
ficiently large n. Irrespective of which noise structure one assumes (i.e., radial or isotropic),
the KSC is consistent at a rate O(d−1 + n−1/2) for the nested sphere signal. This conclusion
is corroborated by simulations in Section 3.5.

3.4. Comparison with existing literature. The work of [29] considers a model of the
form (15) with Pk = δμ∗

k
, that is, point masses at {μ∗

1, . . . ,μ
∗
R}, σ = 1 and �(μ∗

k) = σ 2
k Id for

k = 1, . . . ,R. They consider clustering based on a kernel of the form K(x,y) = f (‖x − y‖2)

where f is both bounded and Lipschitz. They analyze a Laplacian-based spectral clustering
algorithm, using a row and column normalized version of the kernel matrix K , and obtain
bounds on its misclassification rate, involving the eigenvalues of a block-constant version
of K . When all the noise variances, and pairwise distances among {μ∗

k}, are equal, the eigen-
value bound simplifies to give a consistency rate of O(logd/d).

When d ≥ 2, the class of multivariate Lipschitz kernels allowed by Theorem 3 is much
larger than that of the bounded distance-based kernels considered in [29]. For example, a
kernel that takes two input images and processes them through a ReLU neural network, with
operator-norm bounded weight matrices, falls within the Lipschitz class we consider. We
note, however, that the particular form considered in [29] is not necessarily a Lipschitz kernel
unless supt |tf ′(t2)| < ∞, hence could fall outside our class. Our result also allows for more
general noise and signal structures. In particular, the signal Pk = δμ∗

k
considered in [29] cor-

responds to the classical parametric mixtures. This model gives v2 = 0 in our result, leading
to zero approximation error, hence a O(1/d) convergence rate from Theorem 3, improving
the rate of [29] by a logd factor for Lipschitz kernels. This holds even if the entire covariance
matrix of the noise changes at every data point, as long as maxi ‖�i‖ � 1. It is also worth
noting that, in contrast to bounds based on eigenvalues which are often hard to interpret, our
bound is directly in terms of interpretable quantities v2 and γ 2. On the other hand, [29] allows
for the existence of outliers which we do not consider. They also obtain a strong consistency
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(exact recovery) result for a semidefinite programming variant of kernel clustering, which
falls outside the scope of this paper.

The work of [21] considers a finite nonparametric mixture model on a compact space.
Their model is equivalent to (16) with the noise component set to zero (σ = 0), that
is, assuming Xi ∼ ∑

k π̄kPk with Pk compactly supported. In contrast, we assume Xi ∼∑
k π̄kPk ∗ N(0, σ 2�0/d), in the special case of constant covariance noise. Here, ∗ denotes

convolution. In fact, we can allow for the convolution with any member of the LC class de-
fined earlier, including strongly log-concave densities. This allows us to model mixture com-
ponents with infinite support on R

d , a more realistic setup not covered in [21]. In addition,
compactness together with the continuity of the kernel function, assumed in [21], implies a
bounded kernel while we allow for unbounded Lipschitz kernels. Moreover, in contrast to
[21], we do not require the kernel function to be positive semidefinite. The main focus of
[21] is to establish a geometric property for the embedding of the data points obtained from
a Laplacian-based kernel representation.

Under suitable conditions, [21] establishes what they call an (α, θ)-orthogonal cone struc-
ture (OCS) for that embedding [21], Theorem 2. This means that a 1−α fraction of the points
from each mixture component lie within a cone of angle α centered at one of the coordinate
axes. They also show that under further assumptions on α and θ , a randomized k-means al-
gorithm applied to an embedding, with an (α, θ)-OCS structure, leads to a misclassification
rate at most α [21], Proposition 1. The implicit nature of the multiple conditions on α and θ

in these two results, however, makes it difficult to parse out an explicit misclassification rate.
Moreover, α at best is a constant and cannot go to zero to establish consistency. In contrast,
we provide an explicit misclassification bound in terms of easily computable quantities and
derive explicit rates of convergence as d and n diverge.

It is worth noting that our results apply to model (15) which in its general form (with
variable covariance structure) goes beyond even a finite nonparametric mixture model for
{Xi}. As far as we know, the general case of model (15) has not been analyzed for clustering
before. The special case in model (16) is the same as the signal plus noise model of [11]
with covariance matrix � in that paper replaced with σ�0. However, in contrast to (16), [11]
does not consider any structure for the signal and the problem there is only to establish the
closeness of the kernel matrix based on the pure signal and that based on the contaminated
signal.

Finally, our work is based on the technical machinery developed in [31] for the analysis
of network spectral clustering. In particular, we leveraged the approach of [31] in deriving
eigenvalue-free bounds on misclassification rate. The results of [31], however, are not di-
rectly applicable to kernel clustering, since the (symmetric) deviation matrix A − EA there,
is assumed to have independent entries on and above the diagonal. In contrast, the deviation
K − EK for a kernel matrix does not have independent entries on and above the diagonal.
Deriving a concentration bound for such a matrix was the main focus of this paper, allowing
us to provide the main missing ingredient of the analysis.

3.5. Simulations. We now provide some simulations to corroborate the theory we devel-
oped for the kernel spectral clustering. We use the “nested spheres” example that we ana-
lyzed in Sections 3.2 and 3.3. We compare the performance of the kernel spectral clustering
described in Algorithm 1 with the Lloyd’s algorithm (with kmeans++ initialization) applied
directly to the data points.

For the kernel function, we consider the Gaussian kernel with bandwidth set as τ 2 = α(1+
σ 2), for α = 1,2. This scaling of τ 2 in terms of σ 2 is motivated by the concentration bounds,
where the estimation error is controlled by σ 2/τ 2. Constant 1 is added to avoid degeneracy
when σ → 0.
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FIG. 3. Plots of NMI versus dimension for kernel spectral clustering Algorithm 1, under the noisy “nested
spheres” model with radii ri = 1,5,10 (three clusters). Left and right plots correspond to isotropic versus radial
noise, respectively. Here, n = 500, σ = 1.5 and τ2 = α(1 + σ 2).

In addition to the Gaussian kernel, we also use the simple pairwise distance (pairDist)
kernel K(x,y) = ‖x − y‖. Since this kernel is 1-Lipschitz, all the theory developed in the
paper applies in this case, with appropriate modifications to the mean kernel K̃σ . In particular,
one can argue as in Examples 4 and 6 that for the radial noise model, this kernel is also
consistent as n,d → ∞. Note that although a more appropriate choice would be (x, y) �→
−‖x −y‖ to make the kernel a similarity measure, the sign is irrelevant in spectral clustering.

Figure 3 shows the results. The plots show the normalized mutual information (NMI) ver-
sus dimension d , for a fixed value of σ = 1.5 and a sample size of n = 500. The “nested
spheres” signal with radii ri = 1,5,10 (three clusters) is considered along with both the
isotropic and radial noise models. The plots show the normalized mutual information (NMI)
obtained by the KSC algorithm (relative to the true labels) as the dimension varies from d = 2
to d = 104. The NMI is a similarity measure between two cluster assignments, more aggres-
sive than the average accuracy. A random clustering against the truth produces NMI ≈ 0,
while a prefect match gives NMI = 1. The plots are obtained by averaging over 12 indepen-
dent replicates.

The right and left panels in Figure 3 correspond to the radial and isotropic noise model, re-
spectively. The plots show that, with either noise structure, the KSC Algorithm 1 is consistent
for the pairwise distance as well as the Gaussian kernel, for both values of α, eventually, as
d grows. These results are as predicted by the theory. Note that for the Gaussian kernel with
α = 2, consistency in the isotropic case is achieved at a “slightly higher dimension d ,” con-
sistent with the intuition that the isotropic model corresponds to the radial case with spheres
“slightly closer.” The tuition is based on translating the isotropic model to the radial model
by projecting the noise onto the sphere. However, the linear projection is imperfect in putting
the transverse noise component exactly on the sphere, hence causing the spheres to appear
closer relative to the purely radial noise.

4. Proofs of the main results. Let us start by giving high-level ideas of the proofs. For
Theorem 1, we first show that ‖K − EK‖ is a Lipschitz function of X. The distributions in
class LC have the property that any Lipschitz function of X concentrates around its mean.
This allows us to show that ‖K − EK‖ is concentrated near E‖K − EK‖. We bound this
latter expectation by E‖K −EK‖F which in turn is bounded by controlling var(K(Xi,Xj ))

for all pairs (i, j), again using the Lipschitz concentration property.
For Theorem 2, we first derive a tail bound for |zT (K − EK)z|, given a fixed z ∈ Sn−1.

This bound requires an extension of the Hanson–Wright inequality to noncentered variables,
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which is presented and proved in Appendix A.3. Equipped with the tail bound, we use a
discretization argument to obtain uniform control over Sn−1 and complete the proof.

For Theorem 3, we first approximate the normalized kernel matrix A = K/n, in operator
norm, by a block-constant matrix, denoted as K∗

σ /n. Next, we argue that the eigenvalue-
truncated version of A, namely A(R), is close to K∗

σ /n in Frobenius norm. Finally, we use k-
means perturbation results to show that the misclassification error is bounded, up to constants,
by ‖A(R) − K∗

σ /n‖2
F /γ 2 where γ 2/n is related to the minimum center separation among the

rows of K∗
σ /n. Combining these bounds gives the desired inequality (24).

In the rest of this section, we give details of the proofs, starting with some preliminary
concentration results.

4.1. Preliminaries. Let us start with the following definition (borrowed from [2] with
modifications).

DEFINITION 3. A random vector Z ∈ R
d satisfies the concentration property with con-

stant κ > 0 if for any Lipschitz function f :Rd →R, with respect to the �2 norm, we have

(33) P
(
f (Z) −Ef (Z) > t‖f ‖Lip

)≤ exp
(−κt2) ∀t > 0.

Note that it is enough to have (3) for 1-Lipschitz functions (i.e., ‖f ‖Lip = 1) which then
implies the general case by rescaling. The following result is well known [19]; see also [26],
Theorem 5.2.2.

THEOREM 4. A standard Gaussian random vector Z ∼ N(0, Id) satisfies the concentra-
tion property with constant κ = 1/2.

A similar result holds for a strongly log-concave random vector [26], Theorem 5.2.15.

THEOREM 5. A strongly log-concave random vector Z ∈ R
d with curvature α2 > 0 sat-

isfies the concentration property with constant κ = Cα2 for some universal constant C > 0.

This result can be easily extended to a collection of independent strongly log-concave
random vectors.

COROLLARY 2. Let Z1, . . . ,Zn ∈ R
d be independent strongly log-concave random vec-

tors with curvatures α2
i > 0. Then �Z ∈ R

nd obtained by concatenating Z1, . . . ,Zn is strongly
log-concave with curvature α2 := mini α

2
i . In particular, �Z satisfies the concentration prop-

erty with constant κ = Cα2.

PROOF. It is enough to note that �Z has density f (z) = ∏
i e

−Ui(zi ) = e−U(z) where
U(z) :=∑

i Ui(zi) whose Hessian is block-diagonal with diagonal blocks ∇2Ui(zi) � α2
i Id .
�

We write Sn−1 = {x ∈ R
n : ‖x‖2 = 1} for the sphere in R

n. We frequently use the following
vector and matrix notation: For X1, . . . ,Xn ∈ R

d , we write X = [X1 | · · · | Xn] for the d × n

matrix with columns Xi , and let

(34) X �→ �X : Rd×n →R
dn

be the operator that maps a matrix X to a vector �X by concatenating its columns.



CONCENTRATION OF KERNEL MATRICES 549

4.2. Proof of Theorem 1. The key is the following lemma due to M. Rudelson which is
proved in Appendix A.2.

LEMMA 1 (Rudelson). Assume that K(X) is as in (1) and the kernel function is L-
Lipschitz as in (2). Then,

(a) ‖K(X) − K(X′)‖2
F ≤ 4nL2‖X − X′‖2

F for any X,X′ ∈ R
d×n, and

(b) for any a ∈R, X �→ ‖K(X) − a‖ is 2
√

nL-Lipschitz w.r.t. the Frobenius norm.

Part (a) of Lemma 1 can be interpreted as showing that the matrix-valued map X �→ K(X) :
R

d×n →R
n×n is (2

√
nL)-Lipschitz, assuming that both spaces are equipped with the Frobe-

nius norm. As a consequence of Lemma 1, we get the following concentration inequality.

PROPOSITION 3. Let Xi = μi + √
�iWi ∈ R

d , i = 1, . . . , n be random vectors and set
W = [W1 | · · · | Wn] ∈ R

d×n. Assume that the random vector �W ∈ R
dn satisfies the concen-

tration property (33) with constant κ = c/ω2 > 0. Let K(X) be as defined in (1) with a kernel
function satisfying (2). Then, V := ‖K −EK‖ is sub-Gaussian, and

P(V −EV ≥ 2
√

nLσ∞ωt) ≤ exp
(−ct2), t ≥ 0,

where σ 2∞ := maxi ‖�i‖.

An equivalent (up to constant) statement of this result is∥∥‖K −EK‖∥∥ψ2
�

√
nLσ∞ω,

where ‖ · ‖ψ2 denotes the sub-Gaussian norm.

PROOF. Set Si = √
�i and let S = diag(S1, . . . , Sn) be the dn×dn block diagonal matrix

with diagonal blocks {Si}. Also, let X,W,μ ∈R
d×n be the matrices with columns {Xi}, {Wi}

and {μi}, respectively. Using vector notation (34), we have �X = �μ + S �Z. With some abuse
of notation, we write K( �X) to denote K(X) as defined in (1). Note that, ‖ �W‖ = ‖W‖F , that
is, the �2 norm of vector �W is the same as the Frobenius norm of matrix W .

For any a ∈ R, we claim that �W �→ F( �W) := ‖K( �μ + S �W) − a‖ is (2
√

nLσ∞)-Lipschitz
w.r.t. the �2 norm on R

dn. Indeed,∣∣F( �W) − F
( �W ′)∣∣≤ 2

√
nL
∥∥S �W − S �W ′∥∥ (By Lemma 1(b))

≤ 2
√

nL‖S‖∥∥ �W − �W ′∥∥
and ‖S‖ = maxi ‖Si‖ = σ∞, since ‖Si‖2 = ‖�i‖. The result now follows from (33) after
replacing t with ωt . �

Next, we bound the expectation of ‖K − EK‖. Here, we pass to the Frobenius norm,
giving us an upper bound on the expectation.

PROPOSITION 4. Assume that {Xi}ni=1 satisfy the assumption of Proposition 3, and let
K = K(X) be as defined in (1) and satisfies (2). Then, with C = 2/

√
c,

E‖K −EK‖F ≤ CnLωσ∞.
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PROOF. By Lemma 2 below,

E‖K −EK‖2
F =

n∑
i,j=1

var
(
K(Xi,Xj )

)
≤ n2 max

i,j
var
(
K(Xi,Xj )

)≤ C2n2L2ω2σ 2∞.

Noting that E‖K −EK‖F ≤ (E‖K −EK‖2
F )1/2 completes the proof. �

LEMMA 2. Assume that Xi = μi + √
�iWi ∈ R

d are independent for i = 1,2, and �W =
(W1,W2) ∈ R

2d satisfies the concentration property (33) with κ = c/ω2 > 0. Then, with
C2 = 4/c,

var
(
K(X1,X2)

)≤ C2L2ω2 max
{‖�1‖,‖�2‖},

var
(
K(X1,X1)

)≤ C2L2ω2‖�1‖.

PROOF. For x, y ∈ R
d , let �z = (x, y) and define K̃ :R2d →R by K̃(�z) := K(x,y). Note

that K̃ is
√

2L-Lipschitz w.r.t. to the �2 norm on R
2d , that is, |K̃(�z) − K̃(�y)| ≤ √

2L‖�z − �y‖
for any �z, �y ∈ R

2d . Let �μ = (μ1,μ2) ∈ R
2d , �W = (W1,W2) ∈ R

2d and � = diag(�1,�2) ∈
R

2d×2d . We have K(X1,X2) = K̃( �μ + �1/2 �W). We note that

(35)
∥∥ �W �→ K̃

( �μ + �1/2 �W )∥∥
Lip ≤ √

2L
∥∥�1/2∥∥= √

2Lσ(12)∞ ,

where σ
(12)∞ := ‖�1/2‖ = max{‖�1/2

1 ‖,‖�1/2
2 ‖}. From the concentration property, it follows

that

P
(∣∣K(X1,X2) −EK(X1,X2)

∣∣> t
√

2Lσ(12)∞ ω
)≤ 2 exp

(−ct2) ∀t > 0.

Letting � = K(X1,X2) −EK(X1,X2) and α = √
2Lσ

(12)∞ ω, we have

E�2 =
∫ ∞

0
2tP

(|�| > t
)
dt = 2α2

∫ ∞
0

tP
(|�| > αt

)
dt ≤ 4α2

∫ ∞
0

te−ct2
dt = 2

c
α2,

which gives the desired result for var(K(X1,X2)) with C2 = 4/c.
For the second assertion, let J := [ Id

Id

]
and note that K(X1,X1) = K̃(Jμ1 + J�

1/2
1 W1).

We also have ‖W1 �→ K̃(Jμ1 + J�
1/2
1 W1)‖Lip ≤ √

2L‖�1/2
1 ‖. The rest of the argument

follows as in the case of K(X1,X1). �

Combining Propositions 3 and 4 and noting that EV ≤ E‖K −EK‖F establishes the result
for any collection of {Wi} for which the concentration property holds for �W with constant
c/ω2. It remains to verify that each case in Definition 2 has this property.

Verifying the three cases in the LC class. We first deduce the result for part (b) from (a).
Fix i and j and let f : R → R denote the density of Wij w.r.t. the Lebesgue measure, S the
support of the distribution, and F the corresponding CDF, that is, F(t) = ∫ t

−∞ f (x)dx. Pick
x ∈ S and note that x does not belong to flat parts of F . Then, by assumption f (x) ≥ 1/ω. Let
ν = F(x) so that x = F−1(ν). By the inverse function theorem, Q := F−1 is differentiable at
ν and we have Q′(ν) = 1/f (x) ≤ ω. Thus, Q is ω-Lipschitz on S. The range of Q restricted
to S is [0,1].

Let � be the CDF of the standard normal distribution which is (1/
√

2π)-Lipschitz. If
Zij ∼ N(0,1), then Uij := �(Zij ) are uniformly distributed on [0,1] and Q(Uij ) has the
same distribution as Wij . In other words, we can redefine Wij = φij (Zij ) for φij = Q ◦ �.
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We have ‖φij‖Lip ≤ ‖Q‖Lip‖�‖Lip ≤ ω/
√

2π , and the problem is reduced to part (a), up to
constants.

For part (a), we have Wi = (Wij ) with Wij = φij (Zij ) where Zij ∼ N(0,1) are indepen-
dent across i = 1, . . . , n and j = 1, . . . , d . We define �W and �Z based on the d ×n matrices W

and Z as in (34) and compactly write �W = φ( �Z). Let f :Rdn →R be a 1-Lipschitz function
and define g( �Z) := f (φ( �Z)) = f ( �W). Then∥∥g( �Z) − g

( �Z′)∥∥2 ≤∑
ij

(
φij (Zij ) − φij

(
Z′

ij

))2
≤∑

ij

‖φij‖2
Lip
(
Z′

ij − Zij

)2 ≤ ω2∥∥ �Z′ − �Z∥∥2
,

for any vectors �Z, �Z′ ∈ R
dn. It follows that g is ω-Lipschitz, hence by the concentration of

Gaussian measure (Theorem 4), we have

P
(
g( �Z) −Eg( �Z) ≥ ωt

)≤ exp
(−t2/2

)
.

Since g( �Z) = f ( �W), we have the concentration property for �W with constant 1/(2ω2).
For part (c), since each Wi has a strongly log-concave density with curvature α2

i ≥ 1/ω2,
it follows from Corollary 2 that �W is strongly log-concave with curvature 1/ω2. Then, by
Theorem 5, �W satisfies the desired concentration property with constant C/ω2.

4.3. Proof of Proposition 1. Let us define φ : R → R by setting φ(x) equal to −√
Lσ ,

x
√

L/σ and
√

Lσ on [−∞,−σ ], [−σ,σ ] and [σ,∞). Let K(x,y) := φ(x)φ(y). We note
that φ is

√
Lσ -bounded and

√
L/σ -Lipschitz, hence K(·, ·) is L-Lipschitz. Let ui = φ(Xi)

and u = (ui) ∈ R
n. We have EK(X) = αIn where α = E[φ(X1)]2 ≤ Lσ , and K(X) = uuT .

Let Zi = 1{|Xi | > σ }. When Zi = 1, ui = ±√
Lσ , hence u2

i Zi = LσZi . Assuming
‖u‖2 ≥ α, we have ‖K − EK‖ = ‖u‖2 − α ≥ ∑

i u
2
i Zi − α ≥ Lσ(

∑
i Zi − 1). Since∑

i Zi ∼ Bin(n, 1
2), by the Hoeffding’s inequality, P(

∑
i Zi ≤ n/4) ≤ exp(−n/8). On the

complement of this event,
∑

i Zi − 1 ≥ n/8 when n ≥ 8, completing the proof.

4.4. Proof of Theorem 2. We can write K = XT X where X = (X1 | · · · | Xn) ∈ R
d×n has

{Xi} as its columns. Let us fix z ∈ Sn−1 and consider

(36) Yz := zT (K −EK)z = ‖Xz‖2 −E‖Xz‖2.

Let X̃i = Xi −μi be the centered version of Xi , and let X̃ ∈ R
d×n be the matrix with columns

{X̃i}. Setting μz = Mz =∑
i ziμi , we have Xz = μz + X̃z, hence

Yz = ‖X̃z‖2 −E‖X̃z‖2 + 2〈μz, X̃z〉
using the fact that X̃z is zero-mean.

LEMMA 3. For any z ∈ Sn−1, Yz in (36) based on Xi = μi + √
�iWi is subexponential

and

(37) P
(|Yz| ≥ κ2σ 2∞t

)≤ 4 exp
[
−c min

(
t2

d + κ−2σ−2∞ ‖M‖2
, t

)]
.

Recalling η = d + κ−2σ−2∞ ‖M‖2, and changing t to ηt , (37) can be written as

P
(|Yz| ≥ κ2σ 2∞ηt

)≤ 4 exp
[−cη min

(
t2, t

)]
.
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Letting δ = (
√

Cn + u)/
√

η and setting t = max(δ2, δ), we obtain

P
(|Yz| ≥ κ2σ 2∞η max

(
δ2, δ

))≤ 4 exp
(−cηδ2)≤ 4 exp

[−c
(
Cn + u2)].

We can now use a discretization argument. Let N be a 1
4 -net of Sn−1, so that |N | ≤ 9n.

We have ‖K −EK‖ = supz∈Sn−1 |Yz| ≤ 2 maxz∈N |Yz|; see, for example, [26], Exercise 4.4.3.
Letting ε = 2κ2σ 2∞η max(δ2, δ), we have

P
(‖K −EK‖ ≥ ε

)≤ P

(
max
z∈N |Yz| ≥ ε/2

)
≤ 4 · 9n exp

[−c
(
Cn + u2)]≤ 4 exp

[−c
(
C1n + u2)],

where C1 = C − log 9/c which can be made positive by take C > log 9/c.

PROOF OF LEMMA 3. Without loss of generality, assume �i � 0 for all i. Define Yz as
in (36) based on Xi = μi + √

�iWi . Using vector notation (34), we have �X = �μ + √
� �W

where � = diag(�1, . . . ,�n) is the nd × nd block diagonal matrix with diagonal blocks �i .
We have zT Kz = ‖∑i ziXi‖2 = ‖Xz‖2. Let �z = zT ⊗Id ∈ R

d×nd where ⊗ is the Kronecker
matrix product. Then

(38) �z
�X = (

zT ⊗ Id

) �X = [
z1Id z2Id · · · znId

]⎡⎢⎣X1
...

Xn

⎤⎥⎦= Xz.

It follows that

Xz = �z �μ + �z

√
� �W = �z

√
�
(
�−1/2 �μ + �W )

.

Letting �ξ := �−1/2 �μ + �W , we have

‖Xz‖2 = ‖�z

√
��ξ‖2 = �ξT Az

�ξ,

where Az := √
�

T
�T

z �z

√
�. Hence, Yz := zT (K −EK)z = �ξT Az

�ξ −E(�ξT Az
�ξ) and we can

apply the extension of Hanson–Wright inequality, Theorem 6 in Appendix A.3 (with d = 1
and n replaced with nd), to obtain

P
(|Yz| ≥ κ2t

)≤ 4 exp
[
−c min

(
t2

‖Az‖2
F + κ−2‖MAz‖2

F

,
t

‖Az‖
)]

,

where M = (�−1/2 �μ)T ∈ R
1×nd . We obtain MAz = �μT �T

z �z

√
�. Using the inequality

‖AB‖F ≤ ‖A‖‖B‖F (∗) which holds for any two matrices A and B , we have

‖MAz‖2
F = ∥∥√�

T
�T

z �z �μ∥∥2
2 ≤ ‖√�‖2‖�z‖2‖�z �μ‖2

2 ≤ σ 2∞‖�z �μ‖2
2

since ‖�z‖ = ‖z‖2‖Id‖ = 1 and ‖√�‖2 = ‖�‖ = maxi ‖�i‖ = σ 2∞ where the last equality
is by definition. Also, by identity (38), �z �μ = Mz. Hence, supz∈Sd−1 ‖�z �μ‖ = ‖M‖. Putting
the pieces together, ‖MAz‖2

F ≤ σ 2∞‖M‖2.
Now, consider the operator norm of Az, for which we have

‖Az‖ ≤ ‖√�‖2‖�z‖2 = σ 2∞.

Finally, for the Frobenious norm of Az,

‖Az‖F ≤ ‖√�‖2‖�z‖‖�z‖F = σ 2∞
√

d

by repeated application of matrix inequality (∗) and ‖�z‖2
F = d‖z‖2

2 = d . We obtain

P
(|Yz| ≥ κ2t

)≤ 4 exp
[
−c min

(
t2

σ 4∞d + κ−2σ 2∞‖M‖2 ,
t

σ 2∞

)]
.

Changing t to tσ 2∞ gives the desired result. �
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4.5. Proof of Theorem 3. Consider a block-constant approximation of K̃(μ), denoted as
K∗

σ ∈R
n×n, and defined as follows:

(39)
[
K∗

σ

]
ij = �k� whenever (i, j) ∈ Ck × C�,

where {�k�} are the empirical averages defined in (20). Let Z ∈ {0,1}n×K be the membership
matrix with rows zT

i . It is not hard to see that 1
n
K∗

σ = Z(�/n)ZT which resembles the mean
matrix of a stochastic block model on the natural sparse scaling (see equation (4) in [31]).

The first step of the proof is to to show that the empirical (normalized) kernel matrix
K(X)/n is close of K∗

σ /n. Let us write

√
a := 1

n

∥∥K(X) − K∗
σ

∥∥, √
ω := 1

n

∥∥K(X) − K̃σ (μ)
∥∥,

and
√

b := 1
n
‖K̃σ (μ) − K∗

σ‖. Using the definition of vk� in (20),

b ≤ 1

n2

∥∥K̃σ (μ) − K∗
σ

∥∥2
F = 1

n2

∑
k,�

∑
i,j

zikzj�

(
K̃σ (μi,μj ) − [

K∗
σ

]
ij

)2
= 1

n2

∑
k,�

nkn�v
2
k� = v2.

To control ω, note that K̃σ (μ) = E[K(X)] and apply Theorem 1 with �i = σ 2�(μi)/d ,
c = 1/2, C = √

2 and t replaced with
√

2t , to get with probability ≥ 1 − e−t2
,

n2ω = ∥∥K(X) −EK(X)
∥∥2 ≤ 4L2σ 2∞(

√
2n + √

2nt)2

≤ 8L2σ 2

d
max

i

∥∥�(μi)
∥∥(n + √

nt)2.

By triangle inequality, a ≤ 2(ω + b). Thus, recalling the definition of F(γ 2, v2),

(40) a ≤ γ 2

8R
F
(
γ 2, v2).

Let A := K(X)/n and A(R) be obtained by truncating the EVD of A to its R largest
eigenvalues in absolute value. The second step is to control the deviation of A(R) from the
block-constant matrix K∗

σ /n. Lemma 6 in [31] gives

(41)
∥∥A(R) − (

K∗
σ /n

)∥∥2
F ≤ 8R

∥∥A − (
K∗

σ /n
)∥∥2 = 8Ra =: ε2.

The third and final step is to apply perturbation results for the k-means step of the algo-
rithm. We note that K∗

σ /n is a k-means matrix with R centers, meaning that it has (at most) R

distinct rows. Let us refer to these distinct vectors as q1, . . . , qR ∈ R
n. Let δk be the minimum

�2 distance of qk from qj , j �= r . Then nδ2
k = min�:� �=k Dk� where Dk� is as defined in (22).

Now, Corollary 1 in [31] implies that if ε2/(nπkδ
2
k ) = ε2/(nkδ

2
k ) < [4(1 + κ)2]−1 = C−1

1 , we
have

Mis ≤ C1
ε2

mink(nδ2
k )

= C1
8Ra

γ 2 ≤ C1F
(
γ 2, v2)

using the definition of γ 2 in (22) and inequality (40). Since, by definition, γ̃ 2 = mink(nπkδ
2
k ),

the required condition holds if 8Ra/γ̃ 2 = ε2/γ̃ 2 ≤ C−1
1 . A further sufficient condition, in

view of (40), is

F
(
γ̃ 2, v2)= γ 2F(γ 2, v2)

γ̃ 2 ≤ C−1
1 .
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This completes the proof for the case where one runs the k-means algorithm on the rows of
A(R). Since the pairwise distance among the rows of Û1�̂1 is the same as that of A(R), and
the k-means algorithm is assumed isometry-invariant, the same result holds for Û1�̂1. The
proof is complete.

4.6. Proof of Proposition 2. Let Y1, . . . , Yn be an independent sequence of variables
and consider the U -statistic U = (n

2

)−1∑
i<j h(Yi, Yj ) for some symmetric b-bounded func-

tion h. Then one has the following consequence of bounded difference inequality [28], Ex-
ample 2.23:

P
(|U −EU | > t

√
8b2/n

)≤ 2e−t2
.

Applying this result with Yi = μi for i ∈ Ck and h = K̃σ , with probability at least 1 − 2e−t2
,∣∣�kk − �∗

kk

∣∣≤ t
nk − 1

nk

√
8b2/nk ≤ t

√
8b2/nk.

Now assume that Y1, . . . , Yn,Z1, . . . ,Zm are independent and let

V = (nm)−1
∑
i,j

h(Yi,Zj ).

Then, by a similar bounded difference argument,

P
(|V −EV | > t

√
8b2/min{m,n})≤ 2e−t2

.

For k �= �, applying this result with Yi = μi , i ∈ Ck and Zj = μj , j ∈ C� gives the desired
result. For the variance, we have v2

k� = EK̃2
σ (X,Y )−�2

k� where (X,Y ) ∼ P̂k�. The first term
is controlled similarly with b replaced with b2, since K̃2

σ is b2-bounded. For the second term,
assume that |�k� − �∗

k�| ≤ δk�. Then, |�2
k� − (�∗

k�)
2| ≤ 2bδk�. Thus, under the event that the

bounds hold, we have

∣∣v2
k� − (

v∗
k�

)2∣∣≤ t
√

8b2

√
nk ∧ n�

+ (2b)
t
√

8b√
nk ∧ n�

.

By a similar argument, |Dk� −D∗
k�| ≤ 8bδk�. Applying union bound over 2R2 pairs, required

for controlling �k� and v2
k�, completes the proof.
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