
The Annals of Statistics
2023, Vol. 51, No. 6, 2366–2385
https://doi.org/10.1214/23-AOS2329
© Institute of Mathematical Statistics, 2023
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We propose a goodness-of-fit test for degree-corrected stochastic block
models (DCSBM). The test is based on an adjusted chi-square statistic for
measuring equality of means among groups of n multinomial distributions
with d1, . . . , dn observations. In the context of network models, the num-
ber of multinomials, n, grows much faster than the number of observations,
di , corresponding to the degree of node i, hence the setting deviates from
classical asymptotics. We show that a simple adjustment allows the statistic
to converge in distribution, under null, as long as the harmonic mean of {di}
grows to infinity. When applied sequentially, the test can also be used to deter-
mine the number of communities. The test operates on a compressed version
of the adjacency matrix, conditional on the degrees, and as a result is highly
scalable to large sparse networks. We incorporate a novel idea of compress-
ing the rows based on a (K + 1)-community assignment when testing for K

communities. This approach increases the power in sequential applications
without sacrificing computational efficiency, and we prove its consistency in
recovering the number of communities. Since the test statistic does not rely
on a specific alternative, its utility goes beyond sequential testing and can be
used to simultaneously test against a wide range of alternatives outside the
DCSBM family. In particular, we prove that the test is consistent against a
general family of latent-variable network models with community structure.
We show the effectiveness of the approach by extensive numerical experi-
ments with simulated and real data. In particular, applying the test to the
Facebook-100 data set, a collection of one hundred social networks, we find
that a DCSBM with a small number of communities (say < 25) is far from a
good fit in almost all cases.

1. Introduction. Network analysis has become an increasingly prominent part of data
analysis as the developments in the age of the internet and in various sciences, especially life
and social sciences, have produced a substantial collection of network data. Given a network,
it is of interest to understand its structure, which is often done by finding communities or
clusters. Probabilistic network models such as the Stochastic Block Model (SBM) [15] and
its variant the Degree-Corrected Stochastic Block Model (DCSBM) [18] are commonly used
to recover the community structure from network data. Both models use a latent variable,
the node label, to categorize nodes in a network into different communities. In the SBM,
the probability of an edge formation between two nodes depends on the communities they
belong to. The DCSBM incorporates an additional propensity parameter to determine the
edge probability, allowing heterogeneous node degrees within a community.

The SBM and its degree-corrected variant have been the subject of intense study in recent
years and numerous methods have been developed for fitting them (see Appendix B.2 [46]).
Many of these methods are based on the assumption that the number of communities K is
given and most come with consistency guarantees, when the data is generated from the corre-
sponding model with K communities. On the other hand, how well these network models fit
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the data, the so-called goodness-of-fit question, is studied comparatively much less. Promi-
nent work in this area include the graphical approach of [17] for general network models, and
the recent work of Bickel and Sarkar [6] and its extension by Lei [23], on a spectral goodness-
of-fit test for the SBM. Developing goodness-of-fit tests specifically for the DCSBM is more
challenging and to the best of our knowledge has not been considered so far, except for the
work of Karwa et al. [19] on the related β-SBM. A related problem is model selection, that is,
determining the number of communities assuming that the network is generated from some
SBM (or DCSBM). An application of model selection is designing the stopping rule in hier-
archical clustering [25]. Model selection has been studied more extensively, with a literature
overview provided in Section 1.2.

Compared to model selection, goodness-of-fit testing is a more general problem. When
applied sequentially, such tests can also be used for model selection. However, their utility
goes beyond model selection and they can be used to test against a wide range of alternatives.
They also provide a quantitative and baseline-normalized measure of how well the model
fits in various situations. On the other hand, the ability to simultaneously test against many
alternatives can be considered a weakness. To quote L. Breiman [7]:

“Work by Bickel, Ritov and Stoker (2001) [5] shows that goodness-of-fit tests have very little
power unless the direction of the alternative is precisely specified. The implication is that omnibus
goodness-of-fit tests, which test in many directions simultaneously, have little power and will not
reject until the lack of fit is extreme.”

In our experiments, we have found the opposite to be true for current network models.
It is possible to construct powerful tests, without specifying the direction of the alternative,
for one of the most established families of network models. For example, we demonstrate
both theoretically and empirically that the tests we develop for DCSBM are extremely pow-
erful against a latent-variable community-structured model outside the DCSBM family (cf.
Section 5.2 and Appendix A.2.2). Moreover, for the majority of the real networks that we
tested, the null hypothesis of a DCSBM with a small number of communities is strongly re-
jected (cf. Section 6). This is all the more surprising given that the DCSBM is considered the
state-of-the-art in modeling real community-structured networks.

1.1. Our contributions. In this paper, we propose the adjusted chi-square test for mea-
suring the goodness-of-fit of a DCSBM. The idea is as follows: Given a set of column labels,
we compress the adjacency matrix by summing each row over the communities specified by
the labels, a process we will refer to as column aggregation. Under a DCSBM, the rows of
the compressed matrix will have a multinomial distribution, conditional on the node degrees
di (i.e., the row sums). Rows in the same (row) community will have the same multinomial
parameter. Thus, the problem reduces to testing whether groups of multinomials have equal
means. The challenge is that the number of multinomials in each group is proportional to n,
the total number of nodes, which grows to infinity fast, while the number of observations in
each multinomial, di , grows much slower. We study this general multigroup testing problem
in Section 2 and show that under mild conditions, as long as the harmonic mean h(d1, . . . , dn)

goes to infinity, a modified version of the classical chi-square statistic, which we refer to as
Adjusted Chi-square (AC), has the standard normal distribution under the null hypothesis.

We then extend these ideas to the analysis of networks, leading to the Network Adjusted
Chi-square (NAC) family of tests. The family includes many variants depending on which
subsets of the adjacency matrix are used and how the columns are aggregated. Assume that
we want to test a K-community DCSBM. One variant of the test uses a subsampling scheme
and aggregates using K communities for the columns. We refer to this version as SNAC, for
subsampled NAC. We show that given a consistent set of labels, SNAC has the standard nor-
mal distribution under null. Another variant of the test uses subsampling but aggregates using
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(K + 1)-community column labels, while still using K-community row labels when testing
for the equality of multinomials. We refer to this variant as SNAC+. We show that SNAC+
has the same null distribution as SNAC, but is more powerful against DCSBM alternatives in
sequential applications (Section 5.1).

We also develop bootstrapped versions of the tests, which are more robust in practice and
can be applied even when the null distribution of the test statistic is difficult to compute.
Moreover, we introduce a smoothing idea that can further increase the robustness of sequen-
tial model selection.

Our theoretical results are nonasymptotic, controlling the Kolomogrov distance of the dis-
tribution of the test statistic to the target, with explicit constants. The results are valid in the
regime where the expected average degree of the network, λ, scales as � logn, hence ap-
plicable in the same sparsity regime where strong consistency (i.e., exact label recovery) is
possible for DCSBMs. Our results, however, only require weakly consistent labels subject
to bounds on the rate of convergence that are more relaxed than that of strong consistency.
From a computational standpoint, evaluating the statistic is highly scalable, with an expected
computational overhead of O(n(λ + K)) over the cost of applying the community detec-
tion algorithm. To test a sequence of DCSBMs with K = K1, . . . ,K2, the test requires an
application of a community detection algorithm at most K2 − K1 + 2 times.

We show the effectiveness of these ideas with extensive experiments on simulated and real
networks. The code for these experiments is available at [45]. In particular, we apply the test
to the Facebook-100 data set [35, 36], a collection of one hundred social networks, and find
that a DCSBM (or SBM) with a small number of communities (say < 25) is far from a good
fit in almost all cases.

1.2. Related work. Various methods have been developed to address the model selec-
tion problem in the SBM and DCSBM. The popular Bayesian information criterion (BIC)
has been adapted to the network setting in [16, 38, 40]. Likelihood ratio tests have been de-
veloped for comparing two block models in [29, 38, 41, 42]. Bayesian approaches, though
computationally intensive, can estimate the structure and the number of communities simul-
taneously. Ideas include the use of Dirichlet process prior [2] and mixture of priors [14, 30,
33]. Cross-validation, another widely used idea for model selection, has too been adapted to
network settings [8, 20, 26]. A leave-one-out scheme has been used in [20] with the posterior
predictive density of an edge, under the SBM, as the loss function. Chen and Lei [8] use a
node-pair splitting idea, while [26] uses edge sampling followed by low-rank matrix comple-
tion, an approach that can be applied to any low-rank network model. Spectral approaches
exploring the eigenstructures of the Bethe Hessian matrix and its variants are shown to be
useful in determining the number of communities in the SBM [21] and DCSBM [11]. The
approach of [21] can be extended to other low-rank structured models such as DCSBM.
Semidefinite programming have been shown in [39] to be capable of performing label recov-
ery and model selection in one shot. Modularity maximization can also perform the two tasks
simultaneously [31].

Comparatively, the goodness-of-fit problem has been explored much less. The pioneering
work of [17] graphically compares certain network statistics (such as degree distribution)
between the observed network and a collection of networks simulated from the fitted model.
In later work, Bickel et al. [4] establish general asymptotic properties of network statistics like
the empirical graph moments, which could potentially be used for goodness-of-fit testing.The
Monte Carlo simulation procedures in [17] have also been further exploited in other works
[27, 32] to test the goodness-of-fit of graph models. Among them, we note that Karwa et
al. [19] develops a chi-square test for SBM and uses Markov Chain Monte Carlo sampling to
approximate its exact p-value. For SBMs, a spectral goodness-of-fit test was developed in [6]
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for the case of K = 2 communities and subsequently extended to general K in [23]. The test is
based on the largest eigenvalue of a standardized residual adjacency matrix (cf. Appendix A.1
for more details). Using results from random matrix theory [12, 22], this eigenvalue has an
asymptotic Tracy–Widom distribution under the null, a result that can be used to set the
critical threshold. Although, we can apply the same ideas in the DCSBM setting, the null
distribution result does not hold, due to the uncertainty in estimating the node connection
propensity parameters. Whether a rigorous spectral goodness-of-fit test of this form exists
for DCSBM is not clear. We refer to Appendix B.1 for a more detailed comparison with the
existing literature.

The rest of the paper is organized as follows: Section 2 introduces the adjusted chi-square
test and its multigroup extension and establishes its null limiting distribution. Section 3 in-
troduces NAC family of tests. Section 4 establishes the null limiting distribution of SNAC
and SNAC+ and Section 5 shows their consistency against underfitted DCSBM and a latent-
variable community-structured network model. In Section 6, we illustrate how SNAC+ can
be used to assess the goodness-of-fit for an ensemble of real networks, namely the Facebook-
100 data set.

2. Adjusted chi-square test. We start by developing a general test for the equality of
the parameters among groups of multinomial observations. To set the ideas, we first consider
the case of a single group and show how the classical chi-square test can be adjusted to
accommodate a growing number of multinomials. We then discuss the multigroup extension
and provide quantitative bounds for the null distribution of the test statistic in this general
setting.

2.1. Single-group case. Let PL be the probability simplex in RL, and consider the fol-
lowing problem: We have

Xi ∼ Mult
(
di,p

(i)), i = 1, . . . , n,(1)

independently, where Xi = (Xi�) ∈ NL
0 and p(i) ∈ PL, and we would like to test the null

hypothesis

H0 : p(1) = p(2) = · · · = p(n) = p.(2)

Let ψ(x, y) := (x − y)2/y. The chi-square statistic for testing this hypothesis is

Ỹ ∗
(n,d) :=

n∑
i=1

L∑
�=1

ψ(Xi�, dip̃�), where p̃� =
∑n

i=1 Xi�∑n
i=1 di

, � ∈ [L].

Here, p̃ = (p̃�) ∈ PL is the pooled estimate of p under the null, and d = (d1, . . . , dn). We are
also using the shorthand notation [L] := {1, . . . ,L}.

Standard asymptotic theory gives the following (cf. [37], Chapter 17): If n is fixed and
dmin := mini di → ∞, then

Ỹ ∗
(n,d) � χ2

(n−1)(L−1), under H0.(3)

A heuristic for the degrees of freedom of the limiting χ2 distribution can be given by counting
parameters. In the unrestricted model, we have a total of n(L − 1) free parameters among
p(1), . . . , p(n), while under the restricted null model, we only have L − 1 free parameters.
The difference gives the degrees of freedom of the limit.

The setting we are interested in, however, is the opposite of the classical setting. We would
like to use the statistic when n → ∞, while dmin is fixed or grows slowly with n. Assuming



2370 L. ZHANG AND A. A. AMINI

that n is large enough so that (n−1)(L−1) ≈ n(L−1), (3) suggests that we can approximate
Ỹ ∗

(n,d) in distribution by the sum of n independent χ2
L−1 variables, that is,

Ỹ ∗
(n,d)

d≈
n∑

i=1

ξi

for some i.i.d. random variables ξi ∼ χ2
L−1. The approximate inequality above is only in

distribution and {ξi} are not necessarily related to Ỹ ∗
(n,d). Moreover, the central limit theorem

suggests that the standardized version of
∑

i ξi has a distribution close to a standard normal.
Based on the above heuristic argument, we propose the following adjusted test statistic:

T̃ ∗
n = 1√

2

( Ỹ ∗
(n,d)

γn

− γn

)
, where γn = √

n(L − 1).(4)

Note that γ 2
n is the expectation of

∑
i ξi and

√
2γn is its standard deviation. We refer to (4) as

the adjusted chi-square (AC) statistic.

2.2. Multigroup extension. Before proceeding, let us introduce an extension of the test-
ing problem (2) to groups of observations. This extension is needed for the network appli-
cations. Consider model (1) and assume that each observation is assigned to one of the K

known groups, denoted as [K] = {1, . . . ,K}. Let gi ∈ [K] be the group assignment of ob-
servation i and let Gk = {i ∈ [n] : gi = k} be the kth group. We would like to test the null
hypothesis that all the observations in the same group have the same parameter vector, that
is,

H0 : p(i) = pk∗, ∀i ∈ Gk, k ∈ [K],(5)

where for each k ∈ [K], pk∗ = (pk�)�∈[L] ∈ PL.
In some problems, it is reasonable to assume that the groups Gk are known. However, in

our network applications, the groups themselves are not known. In such settings, we first
estimate the label vector g from data, to obtain ĝ, and then form the test statistic based on
the estimated groups Ĝk = {i : ĝi = k}. The resulting test is based on the extended chi-square
statistic

Ŷ(n,d) =
K∑

k=1

∑
i∈Ĝk

L∑
�=1

ψ(Xi�, dip̂k�), where p̂k� =
∑

i∈Ĝk
Xi�∑

i∈Ĝk
di

, � ∈ [L].(6)

Alternatively, we have Ŷ(n,d) = ∑n
i=1

∑L
�=1 ψ(Xi�, dip̂ĝi�). We also let Y(n,d) be the idealized

version of Ŷ(n,d) with p̂k� replaced with pk� and Ĝk replaced with Gk . Let T̂n and Tn be the
adjusted chi-square statistics based on Ŷ(n,d) and Y(n,d), respectively, that is,

T̂n = 1√
2

(
Ŷ(n,d)

γn

− γn

)
, Tn = 1√

2

(
Y(n,d)

γn

− γn

)
.(7)

We are interested in understanding under what conditions T̂n has an approximately normal
null distribution. This question is nontrivial, since we would like to allow {di} as well as
groups sizes |Gk|, k ∈ [K] to vary with n. Moreover, we would like to allow the groups to be
estimated based on the same data we use for testing, in which case, ĝ and T̂n are most likely
statistically dependent.

We give a precise answer to the above question by quantifying the Kolomogorv distance
between the distribution of T̂n and that of a standard normal variable Z, for any choice of {di}
and {|Gk|} that satisfy a mild set of conditions, and for consistent label estimates of a certain
quality. We measure the quality of label estimation in terms of misclassification rate.
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DEFINITION 1. The misclassification rate between two label vectors g ∈ [K]n and ĝ ∈
[K]n is

Mis(g, ĝ) = min
ω

1

n

n∑
i=1

1
{
gi 
= ω(ĝi)

}
,

where the minimization ranges over all bijective maps ω : [K] → [K].
Recall that for two random variables X and Y , the Kolomogrov distance between their

distributions is defined as

dK(X,Y ) := sup
t∈R

∣∣P(X ≤ t) − P(Y ≤ t)
∣∣.(8)

For a vector d = (d1, . . . , dn), we write h(d) = (n−1 ∑n
i=1 d−1

i )−1 for the harmonic mean
of its elements, and dav = n−1 ∑n

i=1 di for the arithmetic mean. Since d has positive ele-

ments, dav ≥ h(d) ≥ dmin := mini di . Let πk = |Gk|/n and write d
(k)
av = 1

|Gk |
∑

i∈Gk
di for the

arithmatic average of {di} within group Gk , and define

ωn := min
k

πkd
(k)
av , dmax := max

i
di, τd := ωn/dmax(9)

The following result formalizes the heuristic argument of Section 2.1, by providing a quan-
titative finite-sample bound on the Kolomogrov distances of Tn and T̂n to a standard normal
variable:

THEOREM 1. Let Xi ∼ Mult(di,pk∗), i ∈ Gk , k ∈ [K] be n independent L-dimensional
multinomial variables, with probability vectors pk∗ = (pk�) and group labels g = (gi) ∈
[K]n so that Gk = {i : gi = k}. Let ĝ be some (estimated) group labels, potentially dependent
on {Xi} and consider T̂n, based on ĝ, and Tn as in (7). Let Z ∼ N(0,1) and p = mink,� pk�.
Assume that min{h(d),L} ≥ 2.

(a) Then, under the null hypothesis (5), for all n ≥ 1,

dK(Tn,Z) ≤ C1,p√
Ln

+ C2,p

h(d)
,(10)

where C1,p = 55/p4 and C2,p = (πe)−1/2 max{1,p−1 − L − 1}.
(b) Let C3,p = 6/(p τd) and pick a sequence {αn} such that

αn ≤ min
{

p

8C3,p

,
2

C2
3,pL

}
, for all n ≥ 1.(11)

Assume that
√

2dmax ≥ LC3,p , ωn ≥ L and log(Kωn)/ωn ≤ (p/8)2n. Then, under the null
hypothesis (5), for all n ≥ 1,

dK(T̂n,Z) ≤ dK(Tn,Z) + 12

√
L

p

(√
log(Kωn)

ωn

+ K log(Kωn)√
n

+ C3,p

3L
dmax

√
Knαn

)
+ 2P

(
Mis(ĝ, g) > αn

)
.

(12)

Note that we always have p−1 ≥ L since the elements of pk∗ are nonnegative and sum to
one. In the proof of Theorem 1, we will show that E[Y(n,d)] = γ 2

n . But the standard deviation
vn(p) := √

var[Y(n,d)] has a more complicated form and is not equal to
√

2γn in general. The
proof gives an explicit expression for this variance, and we could have alternatively defined
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T̂n by dividing by vn(p̂) instead of
√

2γn. Nevertheless, Theorem 1 shows that we do not lose
much by using the simpler standardization by

√
2γn.

In general, for Tn to converge in distribution to the standard normal, we need n → ∞
and h(d) → ∞. For T̂n to converge to the normal distribution, we further need ωn → ∞,
K log(Kωn) = o(

√
n),

αn = o
(
(dmax

√
n)−1)

and P
(
Mis(ĝ, g) > αn

) = o(1).(13)

Note that log(Kωn)/ωn ≤ (p/8)2n and (11) are satisfied for large n, as long as p is bounded

away from zero. The assumption
√

2dmax ≥ C3,pL also holds since dmax ≥ h(d) and we
require h(d) → ∞.

As we will see, in network applications, typically K , L and p are of constant order. Then
the requirements reduce to (13), h(d) → ∞, ωn → ∞ and log(ωn) = o(

√
n). The condition

h(d) → ∞ is fairly mild in network applications, since di will be the degree of node i,
and one often assumes that the network degrees grow to infinity as n → ∞ (a necessary
condition for weak label consistency). See also the empirical evidence in Appendix B.3. Even
if one does not want to assume h(d) → ∞ over the whole network, the condition can still
be reasonably achieved by manually filtering out nodes with small di , as will be discussed in
detail in Section 3.

Since, in networks, dmax grows much slower than
√

n (closer to logn in fact), Condi-
tion (13) on the misclassification rate αn is, in general, much milder than strong consistency
which is equivalent to αn = o(n−1). In the network setting, it is typical to assume that all the
degrees grow at the same rate, in which case, h(d)  dmax  ωn. Under these assumptions,
we obtain the following simplified bound.

COROLLARY 1. Suppose 1 � h(d)  dmax  ωn � √
n and that K , L and p are of

constant order. Then

dK(T̂n,Z)�
√

logωn

ωn

+ αnωn

√
n + P

(
Mis(ĝ, g) > αn

)
.

3. Network AC test. We are now ready to apply the AC test to DCSBMs. Let An×n

be the adjacency matrix of a random network on n nodes. A DCSBM with connectivity
matrix B ∈ [0,1]K×K , node label vector z = (zi) ∈ [K]n and connection propensity vector
θ = (θi) ∈ Rn+, assumes the following structure for the mean of A:

E[Aij | z] = θiθjBzizj
, ∀ i 
= j.(14)

One further assumes that A is symmetric and the entries Aij , i < j are drawn indepen-
dently, while Aii = 0 for all i. Common choices for the distribution of each element, Aij ,
are Bernoulli and Poisson. In this paper, unless otherwise stated, we assume the Poisson dis-
tribution for derivations, following the original DCSBM paper [18]. The Poisson assumption
simplifies the arguments and provides computational advantages. We show in simulations
that the tests so-derived work well in the Bernoulli case when the network is sparse. The
SBM is a special case of (14) with θi = 1 for all i.

3.1. NAC family of tests. The network AC test can be performed on a general submatrix
AS2S1 = (Aij : i ∈ S2, j ∈ S1) of the adjacency matrix, for S1, S2 ⊆ [n]. We first present this
general form, though one can assume S1 = S2 = [n] on the first reading. Consider another
label vector on S1, say ŷ = (ŷj )j∈S1 ∈ [L]S1—for some L that can be different from K . Let
R = (Rk�) ∈ RK×L+ be the weighted confusion matrix between zS1 and ŷ, given by

Rk� = 1

|S1|
∑
j∈S1

θj 1{zj = k, ŷj = �}.(15)
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Consider the column aggregation of AS2S1 w.r.t. ŷ, defined as X = (Xi�) ∈ R
|S2|×L
+ , with

Xi�(ŷ) = ∑
j∈S1

Aij 1{ŷj = �}.(16)

Assuming that ŷ is deterministic, we have

E
[
Xi�(ŷ)

] = ∑
j∈S1

Bzizj
θiθj 1{ŷj = �} = θi

K∑
k=1

Bzik

∑
j∈S1

θj 1{zj = k, ŷj = �}

= |S1| θi(BR)zi�.

Let di = ∑
j∈S1

Aij be the degree of node i in S2. Under the Poisson model, (Aij , j ∈ S1)

is a vector of independent Poisson cooridnates. It is well known that such a vector has a
multinomial distribution conditional on the sum of its entries. That is,

Xi∗(ŷ) | di ∼ Mult(di, ρzi∗),(17)

where ρzi∗ denotes the zi th row of ρ = (ρk�) ∈ [0,1]K×L, defined as

ρk� = (BR)k�∑
�′(BR)k�′

.(18)

In other words, conditioned on the degree sequence d = (di, i ∈ S2), all the rows of X corre-
sponding to z-community k, have multinomial distributions with probability vector ρk∗. This
observation allows us to apply the AC test developed in Section 2.2, to test whether all the
rows with zi = k, have the same multinomial distribution.

Now, consider two estimated label vectors ẑ = (̂zi) ∈ [K]n and ŷ = (ŷi) ∈ [L]S1 . Let Ĉk =
{i ∈ [n] : ẑi = k}, Ĝk = Ĉk ∩ S2 and ñ = |S2|. Consider the multigroup version of the AC
statistic based on ẑ and ŷ:

T̂n = 1√
2

(
1

γñ

K∑
k=1

∑
i∈Ĝk

L∑
�=1

ψ
(
Xi�(ŷ), di ρ̂k�

) − γñ

)
,(19)

where γñ = √
ñ(L − 1) and

ρ̂k� =
∑

i∈Ĝk
Xi�(ŷ)∑

i∈Ĝk
di

, k ∈ [K], � ∈ [L].(20)

The above construction specifies a family of test statistics, depending on the choices of
label vectors ẑ and ŷ, and subsets S1 and S2. We refer to this family, as the NAC family of
tests. The acronym NAC stands for Network Adjusted Chi-square, since the test is the natural
extension of the adjusted chi-square test, introduced earlier, to networks. As we see in Sec-
tion 4, since the degrees are fixed by conditioning and act as multinomial sample sizes, the
asymptotic null distribution of the test statistic is invariant to the degree distribution. Further-
more, NAC family of tests are easily applicable to nonsquare and nonsymmetric adjacency
matrices, as we discuss in Appendix B.4.

3.2. Full version. We now single out two specifc members of the NAC family. Let S1 =
S2 = [n] and consider the following choices for ẑ and ŷ:

1. FNAC: ŷ = ẑ and ẑ is an estimated label vector with K communities,
2. FNAC+: ẑ and ŷ are estimated label vectors with K and L = K + 1 communities.
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The acronym FNAC stands for Full NAC, where “full” refers to the choice S1 = S2 = [n].
There are two main reasons for introducing the FNAC+ version with L = K +1 column com-
munities. First, FNAC only works when K ≥ 2; when K = L = 1, (17) leads to a noninfor-
mative statistic for FNAC, because then Xi∗ = di almost surely, conditioned on di . FNAC+
on the other hand still produces an informative statistic when K = 1. Second, the choice
L = K + 1 makes FNAC+ especially powerful in determining the number of communities
by sequential testing from below, as we discuss extensively in Section 5.1.

3.3. Subsampled version. The asymptotic null distribution of the full version statistics,
FNAC and FNAC+, can be complicated. There are two main obstacles in applying Theorem 1
to these statistics. First, although the theorem allows for the dependence of ẑ on the entire
adjacency matrix A as long as it converges to the true label vector z, it cannot directly handle
the dependence of ŷ on the entire A. Because then, Xi∗(ŷ) will be formed by summing
elements of Ai∗ (the ith row of A) over subsets of the columns that depend on Ai∗ itself. This
dependence between ŷ and A is algorithm-specific, that is, itself depends on the particular
community detection algorithm used, leading to an unknown deviation of the distribution of
individual Xi�(ŷ) from a Poisson. Moreover, the joint dependence of ŷ and A induces an
algorithm-specific joint distribution on (Xi∗(ŷ), i ∈ [n]), which is hard to characterize for
interesting algorithms such as spectral clustering.

The above issues are resolved if we assume ŷ = z w.h.p., which holds if the algorithm is
strongly consistent, but this can only happen for FNAC; in the case of FNAC+, we always
estimate with one more community relative to the truth, and the breaking of at least one
true community causes an unknown skewness in the distribution of the resulting partitions;
imagine bisecting an Erdős–Rényi (ER) network, resulting in two subnetworks that are more
clustered than a typical ER network. The second obstacle to using the full version statistics is
the symmetry of A, which makes Xi∗(ŷ) and Xj∗(ŷ) (mildly) dependent through the shared
element Aij = Aji , even when ŷ = z, and hence applies to both FNAC and FNAC+.

To circumvent the above obstacles, we introduce a particular subsampling scheme, which
provides several advantages. It takes care of the dependence issues, making the results inde-
pendent of the community detection algorithm used. It also allows us to state unified results
that apply regardless of the choice of L, hence the same results will be applicable to both
SNAC and SNAC+. Moreover, as we will show, by using the scheme, we avoid the assump-
tion ŷ = z. In fact, we no longer even need ŷ to be consistent for z for the results to go
through. Finally, it allows us to implement a further degree filtering step, which potentially
improves the growth rate of the harmonic mean of the remaining degrees, h(d), making the
assumption h(d) → ∞ easier to satisfy in practice.

The scheme is detailed in Algorithm 1. It involves a sampling step so that: (a) ŷ no longer
depends on the entries of A needed to be summed; (b) the symmetry is broken. It also has a
filtering step to leave out nodes with small degrees, so that h(d) is large. A practical recipe
for selecting the quantile filtering threshold σ is discussed in Appendix B.5.

We refer to Algorithm 1 as subsampled NAC, or SNAC for short, when L = K and as
SNAC+ when L = K +1. Note that step 5, the quantile filtering, can be skipped if the degrees
are mostly large or if the normal approximation to the null distribution is not required. In the
latter case, we can use the bootstrap debiasing of Section 3.4 to determine the critical region.
In such cases, we set S ′

2 = S2 (equivalently σ = 0) and perform the test on AS2S1 .

REMARK 1 (On notation). In the sequel, we often state results that apply to either of
SNAC or SNAC+. We will use the notation SNAC(+) to mean the statement holds for either
version. Similarly, FNAC(+) refers to either of FNAC or FNAC+.
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Algorithm 1 SNAC(+)
Input: Adjacency matrix A, number of row clusters K , number of column clusters L ∈

{K,K + 1}, degree-filtering threshold σ ∈ [0,1). Critical threshold τ > 0.
Output: Test statistic T̂n and whether null is rejected.

1: Fit K clusters to the whole network to get labels ẑ ∈ [K]n and clusters Ĉk = {i : ẑi = k}.
2: (Sampling) Choose a subset S1 ⊂ [n] by including each index i ∈ [n], independently,

with probability 1/2. Let S2 = [n] \ S1 be the complement of S1.
3: Fit L clusters to AS1S1 = (Aij : i, j ∈ S1) to learn the label vector ŷ on S1.
4: Form partial degrees di := ∑

j∈S1
Aij for all i ∈ S2.

5: (Quantile filtering) Within each Ĝk = Ĉk ∩S2, keep nodes with di at least the σ th quantile
of all di in Ĝk to form Ĝ′

k . Let S′
2 = ⋃K

k=1 Ĝ′
k .

6: Perform the test on AS′
2S1

using row labels ẑS′
2

and column labels ŷ from Step 3 to form

T̂n as in (19) and reject the null if T̂n > τ .

In Section 4, we show that, under the null model, the distributions of the test statistics of
SNAC(+) are close to a standard normal. Furthermore, we show that they are large when
the model is underfitted, that is, the presumed number of communities is smaller than that of
the true model, with SNAC+ often being much larger than SNAC. We also show that under
DCLVM, a latent variable network model with clusters, SNAC(+) values are large. Such
properties allow us to use SNAC+ for assessing the goodness-of-fit of DCSBM or SBM to
an observed network and to determine the number of clusters in community detection.

3.4. Bootstrap debiasing. Per our discussion above, without subsampling, the full ver-
sion statistics, FNAC(+), do not have a standard normal null distribution in general. How-
ever, they are expected to produce more powerful tests since they utilize all the information
in the network. As a result, they are great choices in practice if we can approximate their null
distribution. The remedy is to use bootstrap simulation to determine their critical regions.
In addition, bootstrap can correct deviations of the null distribution of SNAC(+) from the
standard normal when some of the underlying assumptions fail to hold; see Remark 2.

Given adjacency matrix A, the null hypothesis that the number of communities is K , and
the test statistic T̂ = T̂ (A), the bootstrap debiasing is performed as follows:

1. Fit a K-community SBM to A and get label estimates ẑ and connectivity matrix B̂ .
2. For j = 1, . . . , J , sample A(j) ∼ SBM(ẑ, B̂) and compute test statistic T̂ (j) based on

A(j).
3. Construct the debiased statistic T̂ (boot) = (T̂ − μ̂)/σ̂ where μ̂ and σ̂ are the sample

mean and the standard deviation of {T̂ (j)}Jj=1.

Note that we sample from SBM instead of DCSBM. To simulate from DCSBM, one has to
estimate (θi)

n
i=1, which cannot be done consistently, and whose estimates are highly vari-

able. As a result, generating from an estimated DCSBM adds extra variance and produces
samples that are actually further from the original network than those produced by the SBM
fit. We also note that the distribution of our statistics are invariant to degrees, making SBM
generation further justified.

The test rejects for large values of T̂ (boot) (or |T̂ (boot)|), with the threshold set assuming that
T̂ (boot) has (approximately) a standard normal distribution under null. A similar idea is used
in [23] for the spectral test. An alternative to debiasing is to use the empirical quantiles of
{T (j } to set the critical threshold. We, however, found that the debiasing approach performs
better in practice. See Appendix B.6 for a detailed discussion and comparison of all the
bootstrap methods in a simulation setting.
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3.5. Model selection. A goodness-of-fit test can also be used as a model selection
method, through a process of sequential testing. In particular, we can use FNAC(+) (with
bootstrap debiasing) and SNAC(+) statistics to determine the number of communities when
fitting DCSBMs.

The idea is to test the null hypothesis of K communities, starting with K = Kmin, which
is usually taken to be 1, and increasing K to K + 1 if the null is rejected. The process is
repeated until we can no longer reject the null or a preset maximum number of communities,
Kmax, is reached. The value of K on which we stop is selected as the optimal number of
communities. We refer to this procedure as sequential testing from below. There is also the
possibility of starting at K = Kmax and working backwards. Testing from below is, however,
more advantageous, especially if one expects a small number of communities a priori.

The rejection thresholds for SNAC(+) can be determined based on the standard normal
distribution. For FNAC(+), we need to apply the bootstrap debiasing of Section 3.4 before
comparing the statistic with the threshold. Theorem 3 provides a theoretical guarantee for
the consistency of the sequential testing from below when SNAC(+) is used. An empirical
comparison of the model selection performance of this approach with existing methods is
provided in Appendix A.2.1.

4. Null distribution. We now derive the null distribution of SNAC(+). We consider a
DCSBM with K0 true community, and the edge probability matrix B = (νn/n)B0 where νn

is a scaling factor and B0 satisfies

min
k,�

B0
k� ≥ τB · max

k,�
B0

k�.(21)

Let Ck = {i ∈ [n] : zi = k} be the true community k. We assume that

nk := |Ck| ≥ τC n, θi ≥ τθ · max
i

θi(22)

for all k ∈ [K0] and i ∈ [n]. Here, τB , τC and τθ are in (0,1] and measure the deviation
of the corresponding parameters from being balanced. To make νn identifiable, we further
assume without loss of generality that ‖B0‖∞ := maxk,� B0

k� = 1 and ‖θ‖∞ := maxi θi = 1.
We require the following on the community detection algorithm.

ASSUMPTION 1. The community detection algorithm applied with K communities to
the DCSBM described above, producing labels {̂zi}, satisfies:

(a) Weak consistency: When K = K0, there is a sequence αn = o(1) such that

P
(
Mis(̂z, z) ≤ αn

) = 1 − o(1).

(b) Stability: For K ∈ [K0 + 1], we have |{i : ẑi = k}| ≥ τ0n for all k ∈ [K].

Assumption 1(a), known as the weak consistency or partial recovery, allows us to focus on
the event where ẑ is close to z, the true label vector. As long as νn → ∞, there are algorithms
that can achieve this [1]. We, in fact, need αn in Assumption 1(a) to go down faster than
o(1), but still much slower than what is needed for exact recovery (or strong consistency);
see the discussion after Theorem 2. The growth rate of νn is roughly that of the expected
average degree (EAD) of the network, assuming that B0, {nk/n}k and the distribution of {θi}
are roughly constant.

Assumption 1(b) is even milder, and ensures that the algorithm does not produce extremely
small communities when applied with K 
= K0. It can be guaranteed by explicitly enforcing
it in the algorithm: If the size of a recovered community is too small relative to n, we merge
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it with another community. Whether a specific community detection algorithm satisfies this
condition automatically without explicit enforcement is an interesting research question.

Recall σ , the threshold in step 5 of Algorithm 1, and let σ̄ := 1 − σ . To state further
assumptions, we define the following constants:

c1 := σ̄ τC
5K0

, C1 := τ 2
θ τC min

h

∥∥B0
h∗

∥∥
1,(23)

τa := τθτBτC, τρ := τθτBτ0,(24)

where τ0 is the constant in Assumption 1(b). Let βn = log[(3/4)K2
0νn]. We make the follow-

ing assumptions:

logn

n
≤ C1

300
, L ≥ 2,(25)

νn ≥ 1

C1
max

{
2
√

2C2L,103 logn,
154

τ 2
ρ c1K0

βn

n

}
,(26)

αn ≤ min
{

2

LC2
2

,
τC
5

1 − σ

1 + σ

}
,(27)

where C1 is as defined in (23) and C2 = 11/(c1C1τρ).

THEOREM 2 (Null distribution). Consider an n × n adjacency matrix A that is gener-
ated from a Poisson DCSBM with K0 blocks, satisfying (21) and (22). Let ẑ ∈ [K0]n be an
estimated label vector based on A and ŷ ∈ [L]|S1| an estimated label vector based on AS1S1

satisfying Assumption 1(b). Let T̂n be the test statistic of SNAC(+). Assume that (25)–(27)
hold. Then

dK(T̂n,Z) ≤ C3√
σ̄Ln

+ C4

C1νn

+ 19
√

L

τρ

(
1√
c1C1

√
βn

K0νn

+ K0βn√
σ̄ n

+ C2
K

3/2
0

σ̄L
νn

√
nαn

)
+ 3P

(
Mis(̂z, z) > αn

)
,

(28)

where C3 = 94τ−4
ρ and C4 = 4(πe)−1/2 max{1, τ−1

ρ − L − 1}.
The bound in Theorem 2 applies to both SNAC and SNAC+. Assuming the common

scaling logn � νn �
√

n and αn = o(1), the conditions on νn and αn are satisfied as n → ∞
and the bound simplifies to

dK(T̂n,Z)�
√

logνn

νn

+ νn

√
nαn + P

(
Mis(̂z, z) > αn

)
.

To have a null distribution close to the standard normal, we need to have

αn = o
(
(νn

√
n)−1)

with P
(
Mis(̂z, z) > αn

) = o(1).(29)

There are community detection algorithms that can achieve this as long as νn � logn [10,
24, 34]. In fact, if νn ≥ C logn for a sufficiently large constant C, there are algorithms that
achieve exact recovery, that is, we can take αn = 0 and still have P(Mis(̂z, z) > αn) = o(1). It
is also possible to satisfy (29) below the logn threshold on νn; see, for example, [13, 43, 47].
However, for the distribution to converge we still need νn � logn from (26). This is needed
to guarantee the concentration of degrees di uniformly over all nodes i ∈ S′

2. Whether this
requirement can be lifted and still achieve convergence in distribution is open.
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REMARK 2 (Bernoulli vs. Poisson). Theorem 2 assumes Poisson generation for the
DCSBM, and it is not clear if the result holds under the Bernoulli version. The main chal-
lenge is the conditional distribution of Xi∗(ŷ), which is no longer a multinomial—that is,
(17) no longer holds—under the Bernoulli model. To prove Theorem 1, we use the Esseen’s
bound and control the moments of the conditional distribution of Xi∗(ŷ). Under the Bernoulli
model, these moments do not have a closed form [9] and are also hard to approximate. An-
other approach is to show that the conditional distribution is close to a multinomial. For ex-
ample, using results in [28], one can show that, for any i, the Kolmogorov distance between
the distribution of Xi∗(ŷ) and a multinomial is of the order ν2

n/n, which goes to zero fast
under the typical sparse scaling of νn ∼ logn. However, since SNAC(+) are roughly sums
of n chi-square statistics divided by

√
n, the small distances of their individual terms to the

desired distribution may not carry over to the distribution of their sum. In general, it is not
clear if the Kolmogorov distance for sums of this form can be controlled based solely on the
distances of their individual terms. Despite the above theoretical challenges, the null distri-
bution under the Bernoulli setting is close enough to a standard normal in practice to make
these results useful, especially if the bootstrap debiasing is also applied. As we show in the
simulations, which are all based on Bernoulli DCSBM, SNAC+ can consistently select the
correct number of communities when applied sequentially, and the performances are similar
with or without bootstrap debiasing.

5. Consistency. We show the consistency of SNAC(+) against alternative models by
deriving lower bounds on the statistic that go to infinity, under the alternatives, as n → ∞. We
consider two alternative models: (1) DCSBM with the number of communities less than that
of the null; (2) DCLVM, a general class of degree-corrected latent variable models discussed
in more details in Section 5.2. Combined with the null distribution in Theorem 2, the first case
above shows that SNAC(+) can be applied in sequential testing from below to determine the
number of communities consistently. In addition, its power against DCLVM shows its utility
as a very general goodness-of-fit test beyond the DCSBM family.

5.1. Consistency against underfitted DCSBM. We analyze the power of SNAC(+) in
distinguishing the null hypothesis H0 : K = K0 from the alternative H1 : K < K0. Theorem 3
provides a lower bound on the growth rate of the test statistic T̂n under the alternative. Recall
that ŷ are labels derived for nodes S1 based on AS1S1 . Let parameters ρk� be defined as in (18),
and let

ω2 = 1

18
τ 2
θ τ 2

a c2
1 min

k,h∈[K0]: k 
=h

1

L
‖ρk∗ − ρh∗‖2

2.(30)

See (23) and (24) for the definitions of c1 and τa .

THEOREM 3. Let A be an n×n adjacency matrix generated from a Poisson DCSBM with
K0 ≥ 2 blocks that satisfies (21) and (22). Let T̂n be the SNAC(+) test statistic (19) formed
as detailed in Algorithm 1, with K < K0, estimated by a community detection algorithm
satisfying stability Assumption 1(b). Let C5 := c1C1/9, assume that (logn)/νn ≤ C1τ

2
ρ/64

and consider the event

�n :=
{

max
(

1

C5νn

,
768

τ 3
ρ

√
logn

C1νn

)
≤ ω2

}
.(31)

Then, with probability at least 1 − 9Ln−1 − P(�c
n) − P(Mis(̂z, z) > αn),

T̂n ≥ C5 ω2 νn

√
Ln.
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Quantity ω2 that appears in Theorem 3 is random (via {ρk�}), due to the randomness in
ŷ, and depends on the specific community detection algorithm used to form the test statistic.
As discussed below, for any reasonable algorithm, under mild conditions on the connectivity
matrix, we expect ω2 to be of constant order as n → ∞, that is, ω2  1. In particular, we
expect to have P(ω2 ≥ c0) → 1 for some constant c0 > 0, as n → ∞. Then we have P(�c

n) →
0, as long as (logn)/νn � c0.

Under these assumptions, Theorem 2 shows that for a given significance level α > 0,
SNAC(+) statistic T̂n  1 with probability approaching 1 − α when K = K0, while The-
orem 3 guarantees that T̂n � νn

√
n, w.h.p., when K < K0. This shows that SNAC(+) with a

constant threshold or one that grows slower than νn

√
n, leads to consistent model selection

when applied sequentially from below. In short, model selection consistency of SNAC(+)
only requires two assumptions: (a) (logn)/νn = O(1), that is, the expected degree should
grow no slower than logn, and (b) ω2 should remain bounded below in probability.

In addition to consistency, Theorem 3 suggests that SNAC+ is more powerful than SNAC
in sequential testing from below, due to using L = K + 1 clusters for column compression.
The difference between the two algorithms is manifested in their corresponding values of
ω2. Let us consider the hardest case in Theorem 3, that is, testing the null hypothesis K =
K0 − 1 against the alternative K = K0. To simplify the discussion, assume that νn � logn

and the community detection algorithm is strongly consistent (achieves exact recovery). First,
consider the SNAC+. Since L = K + 1 = K0 in this case, the estimated column labels ŷ

match the true labels z when computing the SNAC+ statistic. Recalling the definition of
the confusion matrix from (15), we obtain R = diag(π̃k), where π̃k = 1

|S1|
∑

j∈S1
θj 1{zj = k}

for all k ∈ [K0]. Then ρk� = B0
k�π̃�/(

∑
�′ B0

k�′π̃�′). Note that both B0 and {π̃k} are stable
as n → ∞. In particular, although the entries of B vanish under the scaling νn/n → 0, the
entries of (ρk�) do not. To guarantee that ω2 > 0, it suffices that the K0 × K0 matrix (B0

k�π̃�)

has no two colinear rows, a mild identifiability condition.
On the other hand, for SNAC we have L = K0 −1, causing the multinomial parameter ma-

trix ρ ∈ RK0×(K0−1) to have rows that are weighted averages of its counterpart when L = K0.
We refer to [38] for an example of how the weighted mixture of the rows of the connectivity
matrix B emerges in the underfitted case, and ρ is mixed in the same way. Due to this averag-
ing, the pairwise distances among the rows of ρ will be smaller compared to when L = K0,
leading to smaller ω2, hence lower power for SNAC compared to SNAC+.

The ρ-mixtures in the case of SNAC still lead to an ω2 that is bounded away from zero—
and hence preserve consistency—provided that the mixture weights do not converge to spe-
cific values that make some rows of ρ identical. This implausible situation, however, can
occur in some corner cases. Consider the extreme case of the SBM with a planted partition
pattern for B (with entries equal to p on the diagonal and q off the diagonal) and equal
community sizes. If the community detection algorithm recovers a superset of the true com-
munities when underfiting, as shown, for example, for the spectral clustering in [29], ρ will
have identical rows in the limit, and thus ω2 → 0 as n → ∞, making SNAC powerless. More
details on this example are included in Appendix B.7.

In sequential testing, one may want to know the growth rate of the test statistic T̂n in
the overfitted case where K > K0. The same argument as in Theorem 2 shows that under
K > K0, if the community detection algorithm is refinement consistent—that is, recovers a
refinement of the true clusters—then T̂n has asymptotically a standard normal distribution,
hence T̂n ∼ 1 as n → ∞. More precisely, we have the following result.

PROPOSITION 1. Suppose the community detection algorithm is refinement consistent,
that is, there exists label vector z∗ with K > K0 communities, such that z∗ is a refinement of
the true labels, and (29) holds with z replaced with z∗. Then Theorem 2 holds with K0 and z

replaced with K and z∗.
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Some algorithms, such as spectral clustering, exhibit refinement consistency in practice;
for an example, see Appendix B.7. Recent theoretical discussions of the phenomenon appear
in [29, 44].

5.2. Consistency against DCLVM. We define a K-community DCLVM, with degree
parameter θ , label vector z∗ ∈ [K∗]n, mixture components {Q∗

k}Kk=1 and latent variables
{xi}ni=1 ⊂ X , as follows: Given {xi}, each (i, j) is drawn independently (of other edges)
from a Poisson distribution with mean

pij := E[Aij |xi, xj ] = νn

n
θiθjg(xi, xj )(32)

and xi ∼ Q∗
z∗
i

independently across i. The mixture components {Q∗
k} are distributions on

the space X , and when they are different, they impose some latent community structure.
An example, with specific forms for g(·, ·) and {Q∗

k} is given in Appendix A.2.2. Here, we
consider the general case, with minimal assumptions on g(·, ·) and {Q∗

k}. We use similar
assumptions on θ as in the DCSBM, namely

max
i

θi = 1, θi ≥ τθ , ∀i ∈ [n].(33)

By rescaling νn if need be, we assume that g has range [0,1].
Without strong assumptions on {Q∗

k}, the distribution of xi is a nonparametric mixture
model which, in general, is not identifiable. One can shift mass from one of {Q∗

k} to the other
ones or create a new component, and redefine the label vector to get the same distribution. For
example, suppose that we start with a two-community model with components Q∗

1 and Q∗
2.

We relabel each xi by assigning it the new label zi ∈ [K] (rather than z∗
i ). The same model

for xi can be stated as xi ∼ Qzi
for new mixture components Qk = πk1Q

∗
1 + πk2Q

∗
2, which

are convex combinations of the original ones. We refer to {Qk} as the mixture components
induced by z. The result that we present here applies to any of these parameterizations.

Assume that we perform the SNAC(+) with K row communities and L column commu-
nities. Let ẑ ∈ [K]n be the estimated label vector based on the entire adjacency matrix A and
ŷ ∈ [L]|S1| the label vector estimated based on AS1S1 . We assume that there are deterministic
vectors z ∈ [K]n and y ∈ [L]n, and sequences {αn} and {κn} such that the event

Mn := {
Mis(̂z, z) ≤ αn and Mis(ŷ, yS1) ≤ κn

}
,(34)

has probability converging to 1, as n → ∞. Here, yS1 = (yi : i ∈ S1) is the subvector of y on
S1. Note that we do not require z (or y) to be the original z∗. Letting nk = |{i : zi = k}|, we
assume

nk ≥ τCn, ∀k ∈ [K].(35)

Let {Qk, k ∈ [K]} be the mixture components induced by label vector z that appears
in (34). Define

hk(x) := E
[
g(x, ξ)

]
, ξ ∼ Qk, k ∈ [K].

We assume that there is an almost sure event � with the following property: There exists a
constant τh > 0 and r1, r2 . . . , rK ∈ [K] such that on �,

∀k ∈ [K],∀i ∈ Ck, hrk (xi) ≥ τh,(36)

where Ck = {i : zi = k}. Note that (36) can be equivalently stated as hrzi
(xi) ≥ τh for all i.

Condition (36) is mild and is satisfied if for any k ∈ [K], one of hr(·), r ∈ [K] is uniformly
bounded below over the support of Qk . We also define

H�(x) :=
∑

k hk(x)Rk�∑
�′

∑
k hk(x)Rk�′

, Rk� := 1

2

n∑
j=1

θj 1{zj = k, yj = �}.(37)
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Note that there exists a sequence {�k}Kk=1 such that

Rk�k
≥ 1

L

L∑
�=1

Rk�, ∀k ∈ [K].(38)

Fix one such sequence and consider the following quantities:

ϑk� := var
(
H�(x)

)
, where x ∼ Qk,

ϑ := min
k

ϑk�k
.

(39)

Let ζn = max{1, L
√

νn/n, L/
√

νn logn} and c2 = τCτhτ
2
θ /100 and τρ = τCτhτθ/(2L). We

need the following assumptions:√
logn

n
≤ 2

9

τ 2
ρ

K
, n ≥ 2,(40)

αn ≤
√

logn

νn

≤ 21τ 2
C τhc

2
2

L2 ,
nκn

νn

≤ 4c2τρ,(41)

ϑ ≥ L3

c3
2τ

3
ρ

max
{

2ζn

τρτC

√
logn

νn

,
1

5c2

nκn

νn

}
.(42)

THEOREM 4. Let A be an n × n adjacency matrix generated from a K-community Pois-
son DCLVM (32) satisfying (33) and (35). Let T̂n be the SNAC(+) statistic (19) formed as
detailed in Algorithm 1. Moreover, assume (36) and (40)–(42). Then, with probability at least
1 − 12KLn−1 − Kn−c − P(Mc

n),

T̂n ≥ 49 c3
2√

L
ϑ

√
nνn,

where c > 0 is a universal constant.

The theorem roughly states the following: As long as the community detection algorithm
produces row and columns labels that converge to some deterministic labels z and y at the
rates αn ∼ √

(logn)/νn and κn ∼ νn/n, respectively, and the resulting induced mixture com-
ponents {Qk} lead to a positive minimum variance ϑ , as defined in (39), then SNAC(+)
are consistent in rejecting the underlying DCLVM model, with T̂n �

√
nνn → ∞. Note that

ϑ > 0, unless there exists a sequence of constants a1, . . . , aK such that
∑

r arhr(x) = 0 for
Qk-almost all x. That is, unless {hr}Kr=1 satisfy a nontrivial linear constraint under Qk , the
condition ϑ > 0 is guaranteed. An example where the condition ϑ > 0 is violated is when
all hr(·) are constant functions, as is the case for a DCSBM, consistent with the fact that we
should not be able to reject a DCSBM. See Appendix B.8 for further remarks.

6. Goodness-of-fit to FB-100 data. The main utility of a goodness-of-fit test is to assess
how well real data fits the model. Let us investigate how well a DCSBM fits real networks
from the Facebook-100 data set [35, 36], hereafter referred to as FB-100. This data set is a
collection of 100 social networks, each the entire Facebook network within one university
from a date in 2005. The networks vary considerably in size and degree characteristics; some
statistics are provided in Table 1.

Figure 1 shows the violin plots of the SNAC+ statistic, with degree-filtering threshold
σ = 0.2, versus the number of communities, for the entire FB-100 data. The variation at
each K is due to the variability of SNAC+ over the 100 networks in the data set. For each
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TABLE 1
Statistics on the FB-100 data set. Qu. is a shorthand for quartile

Min. 1st Qu. Median Mean 3rd Qu. Max.

n 769 4444 9950 12,083 17,033 41,554
Mean deg. 39 65 77 77 88 116
3rd Qu. deg. 54 91 110 108 124 166
Max. deg. 248 673 1202 1787 2123 8246

FB network, we sample a twin network from a synthetic 3-cluster DCSBM that matches the
original network in degree distribution. Violin plots are also shown for these twin networks
for comparison.

Each synthetic DCSBM has its own θ parameter proportional to the corresponding FB
network degree vector, but they all share the same connectivity matrix B , which is set to the
corresponding MLE based on all the FB networks. To get the shared B , we first apply spectral
clustering with K = 3 to each FB network A(s), s = 1, . . . ,100 to get estimated labels ẑ(s).
Then, for each ẑ(s), we compute the corresponding block sum and block size matrices, N(s)

and M(s); see Appendix A.1 for details. Finally, we set B = ∑
s N(s)/

∑
s M(s), where the

summation and division are elementwise. The community sizes for the synthetic networks
are taken to be balanced. Kolmogorov– Smirnov tests were performed between the degree
distributions of each FB network and its twin, and 84 out of 100 such pairs resulted in p-
values greater than 0.05, indicating close matches.

The results in Figure 1 show a marked deviation of FB-100 networks from a DCSBM. If
the networks were generated from a DCSBM, one would expect the distribution of SNAC+ to
drop to within a narrow band around zero once K surpasses the true number of communities.
Only at K = 25 a small fraction of FB-100 networks have SNAC+ values within, say, the
interval [−5,5], showing that a DCSBM with K < 25 is not a good model for any of these
networks. Even at K = 25, the majority of FB-100 networks are still ill-fitted. On the other
hand, we observe that for simulated DCSBM twins, SNAC+ is nearly normally distributed
for K = 3, while remaining large for K = 1 and K = 2. This corroborates the results of both
Theorem 2 and Theorem 3 that predict exactly this behavior. Note that this conclusion holds
despite the variation in the sizes and average degrees of the simulated networks, showing

FIG. 1. Comparing the goodness-of-fit of DCSBM to the FB-100 data set versus a data set simulated from twin
DCSBMs with K = 3 communities, and having the same sizes and degree distributions as those of FB-100. The
right plot is the zoomed-in version of the left.
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the insensitivity of the null distribution of SNAC+ to those parameters, as predicted by the
theory.

We further explore the FB-100 data in Appendix A.3, where we show that removing high-
degree nodes can result in a better overall DCSBM fit, though still far from ideal. Despite the
lack of fit, in Appendix A.4, we propose a smoothed SNAC+ curve and show how it can be
used to build community profiles of real networks, turning the statistic into an effective tool for
exploring community structure. In addition to FB-100 data, the results of extensive simulation
studies, comparing to competing methods, are reported in Appendix A. The R package nett
implementing our proposed tests and the competing methods is available at [3]. The code for
reproducing the experiments can be found at [45].
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