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Abstract We consider the problem of identifying the source of a network epidemic
from a complete snapshot of the infected nodes. We take a fully statistical approach
and derive novel recursions to compute the Bayes optimal solution, under a
heterogeneous susceptible-infected (SI) epidemic model. Our analysis is time and
rate independent, and holds for general network topologies. We then provide two
highly scalable algorithms for solving these recursions, a mean-field approximation
and a greedy approach, and evaluate their performance on real and synthetic
networks. Previous work on the problem has mostly focused on tree-like network
topologies. Real networks are far from tree-like and an emphasis will be given to
networks with high transitivity, such as social networks and those with communities.
We show that on such networks, our approaches significantly outperform popular
geometric and spectral centrality measures, most of which perform no better than
random guessing.

1 Introduction

Modern transportation networks have had profound effects on geographical spread
of infectious diseases [1, 2] giving rise to complicated epidemic evolutions [3].
These evolutions can be modeled as dynamic processes on transportation net-
works. The epidemic spread on networks can take other forms, such as outbreaks
of foodborne diseases [4], intercontinental cascade of failures among financial
institutions [5, 6], computer malware propagation on the internet and mobile
networks [7, 8] spread of targeted fake news [9, 10] and rumors [11] on social media,
especially during presidential elections [12–14]. In response to an adverse diffusion
on a network, it is critical to trace back sources to enable appropriate prevention and
containment of the spread [15]. Inferential methods have been developed to locate
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the source of foodborne diseases [16, 17] and influenza pandemics [18, 19]. In the
context of online social networks, the spread of misinformation can be limited by
the identification of influential users [20, 21]. Source recovery can also be used to
assess the power of diffusions in generating anonymity in network protocols [22].

The epidemic source identification problem has received considerable attention
in the past decade. Given a snapshot of the infected nodes in a network, the task
is to discover who has originated the epidemic. Since the seminal work of Shah
and Zaman [23], numerous attempts have been made to address the question and
its extensions [24–29]. By now, there are multiple methods that show satisfactory
results in limited experimental setups or have proven guarantees in restricted
network topologies [30]. However, identifying the source under general conditions
still remains a difficult task. The problem of optimal recovery appears to be NP-
hard in infection size [28, 31]. The theoretical guarantees for optimal and consistent
recovery are restricted to regular infinite trees [23, 26], and as we show in this
paper, the popular and well-cited methods are quite unreliable in a wide range of
real networks.

Source identification has remained largely unsolved and poorly understood for
real complex networks [30]. As we will show through experiments in Sect. 5, in
real networks, even the optimal Bayes estimator applied to small infected sets has
difficulty narrowing down to the true source. It is thus important to recover as much
information from the likelihood of the model as possible. We develop techniques
for computing the full likelihood of the infection, as opposed to identifying the
most likely sample-path [26]. Moreover, we fully exploit the information from
the boundary of the infection set, in addition to the structure inside the infected
subgraph. We develop all these ideas without restricting the structure of the network
to trees. Our framework also easily extends to the case where there are multiple
infecting sources (Appendix 1).

In this paper, we develop statistical algorithms that outperform the state-of-the-
art in a wide range of network topologies. Our contributions are distinct in several
ways:

1. Our methods are parameter-free, meaning that they do not require knowing the
duration of the epidemic or how fast it grows [25, 32].

2. We show that the exact maximum likelihood estimator (MLE) of the source—or
equivalently the Bayes optimal solution under uniform prior—can be written as
a dynamic programming (DP), with easily computable coefficients based on the
adjacency matrix of the network.

3. We develop two schemes to approximate the DP: an efficient greedy elimination
(GE), and a novel mean-field approximation (MFA) of the likelihood, computed
by solving a linear system. MFA and GE both perform well in naturally
occurring networks, extend directly to heterogeneous infection probabilities, and
are scalable, while competing methods fail to succeed in general topology.

4. Our approximations are more disciplined than existing approaches. They do not
impose restrictions on the topology of the network. Nor do they appeal to the
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partial likelihood of the candidate infecting sets. This is in contrast to the use
of spanning trees to deal with general topologies [23, 33] or the path-based
approaches that rely on the likelihood of individual paths from potential sources
to the infected set [26].

We will show that when applied to real networks, both approximation schemes
(MFA and GE) outperform various geometric and spectral approaches, most of
which perform no better than random guessing. We also show that even for basic
models of real networks, e.g., models with community structure, most existing
methods dramatically fail. The improvement in performance is most significant
for the networks with many cycles, including social networks that are known
to have high transitivity. In terms of computational efficiency, both the greedy
and mean-field approximations are superior to the state-of-the-art likelihood-based
and spectral approaches and comparable to centrality-based methods. In addition,
the mean-field algorithm is easily parallelizable through standard linear algebraic
routines and can be used to tackle very large-scale epidemics on real networks.

Related Work Most of the existing literature on the source identification problem
are based on a SIR dynamic where the infection spreads with an exponential rate
proportional to the number of infected neighbors. All nodes are susceptible to
the infection and once infected may recover with a fixed exponential rate [34].
Moreover, the spread of infection through edges are mutually independent. Different
variations of SIR may assume that no recovery is possible (SI) or the recovered is
not immune to iterated infections (SIS).

Shah and Zaman [23] considered the SI dynamics and proposed the Rumor
Centrality (RC), which counts the permitted permutations, a.k.a. infection paths,
inside the infected subgraph. Their linear time algorithm is an optimal estimator in
regular trees and enjoys strong theoretical properties in such idealized settings [35].
Zhou and Ying [26] consider SIR dynamics on a tree and show that the most likely
infection path is rooted at a Jordan center (JC) of the infected set O, that is, a node
with minimal eccentricity (i.e., minimal maximum distance to other nodes). It has
been shown [26, 35] that in regular trees, eccentricity ranking generates, with high
probability, a confidence set containing the true source, whose size does not grow
with the infection size.

The Dynamic Message Passing (DMP) was proposed in [25] as an approximation
of the maximum likelihood estimator in discrete SIR epidemics, by approximating
the probability of an infected set, as the product of the marginal probabilities of
infection for each node (i.e., a form of pseudo-likelihood). Despite compelling
performance, DMP is computationally intensive and impractical for large networks
with moderately dense structures, even for small infection sets. A spectral algorithm,
called Dynamical Age (DA) was introduced in [24], based on how sensitive the
maximum eigenvalue of the Laplacian matrix is to the elimination of each node in
the infection set. The algorithm was mainly developed to discover the initial node in
a growing preferential attachment model. Another spectral method for the discrete
SI model is proposed in [29].
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2 Source Detection in SI Epidemics

We consider a continuous-time heterogeneous susceptible-infected (SI) epi-
demic [34] with rate of infection β, on a static weighted (directed) network G(V,E)

with known edge set E and V = [n]. At time zero, all nodes but the source are in
the susceptible state. Infection is a terminal state and susceptible nodes are exposed
to the infection at an exponential rate proportional to the number of their infected
neighbors. More precisely, given that nodes I are infected at some time t , we run
exponential clocks Tj ∼ Exp(β vol(I, j)) for all j ∈ I c and the first to expire
determines the next infected node: If j∗ = argminj Tj , then the dynamics move to
the infected set I ∪{j∗} at time t +Tj∗. It is clear that the contagion will eventually
spread through the entire graph.

The infection source or patient zero, denoted as i∗, is unknown. What we observe
is a snapshot of the contagion at some time t , meaning the entire set of infected
nodes at that time, which we denote by O. The objective is to find i∗ ∈ O or form a
confidence set for i∗ with desired false exclusion probability. Our focus here will be
on the single source setting, but the analysis is extensible to the multi-source setting
(cf. Sect. 5).

Notation We write A ∈ [0, 1]n×n for the weighted (asymmetric) adjacency matrix
of the network and vol(I, J ) := ∑

i∈I,j∈J Aij for the volume of a cut in the network
between subsets I, J ⊂ [n] of nodes. For singleton subsets, we often drop the
braces, e.g., vol(I, j) := vol(I, {j}) and O \ j = O \ {j}.

2.1 Time and Rate Invariant Analysis

We start by examining the probability of observing a particular set of infected nodes
given a starting source. Let us introduce a parameter-free formulation of the problem
(i.e. not dependent on rate β and time t) that will be the foundation for our analysis
of the continuous SI dynamics.

Suppose that, at some point in time, the infection reaches I ⊂ [n]. Let O ⊂ [n]
be some superset of I . We are interested in computing ρI→O , the chance that all the
nodes in O are infected before any node outside. More precisely, let

ρI→O := P
(
O is infected before Oc | I is infected

)
. (1)

We refer to ρI→O as the transition probabilities. Note that these transition prob-
abilities are independent of the infection source. Given that in a snapshot of the
contagion, nodes I are infected, ρI→O determines how likely it is that in some future
snapshot, O is the set of infected nodes. The Markov property of (continuous-time)
SI dynamics allows us to define ρI→O without reference to the source, or the time
of the first snapshot. We will also show that these probabilities do not require the
knowledge of the infection rate or the time of the second snapshot.
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2.2 Statistical Inference

Given the observed (random) infected set O, the function I �→ ρI→O is the
likelihood of the model. Writing LO(I) := ρI→O for this likelihood, we observe
that LO(I) = 0 for all I not contained in O. So, we can restrict L(·) to all
subsets of O. When dealing with the single-source setup, we restrict the parameter
space to I = {i} and with some abuse of notation write ρi→O for ρ{i}→O , and
LO(i) = ρi→O, i ∈ [n] for the likelihood.

We can further consider a Bayesian setup by putting a uniform prior on the source
(i.e., uniform over [n]). The Bayesian setup allows us to consider various notions of
optimality by changing the loss function. Letting i∗ be the random initial source, we
have a joint distribution on (i∗,O). Then the posterior probability that the source is
i, given that we observed infected nodes O is

pi := P(i∗ = i | O) = ρi→O
∑

j∈O ρj→O

1{i ∈ O}.

Therefore, the maximum a posteriori (MAP) estimate of the source is i∗
MAP =

argmaxi ρi→O which minimizes the probability of error. That is, i∗MAP minimizes

P(î 	= i∗) for any estimator î = î(O). In some applications, the graph geodesic
distance (dG) to the source determines the error of estimation. In that case, the
Bayes optimal estimator is i∗

dist = argmini

∑
j∈O distG(i, j) ρj→O. It is not hard

to see that i∗
dist minimizes E[dG(î, i∗)] among all possible estimators î.

A third choice is to output a ranking instead of a single source. In this case, an
estimator is formally a permutation σ̂ = σ̂O on [n], suppressing the dependence
on O for simplicity. We can then consider the rank loss �(σ̂ , i∗) = σ̂ (i∗), and we
call the associated risk the expected (source) rank = Eσ̂ (i∗). The corresponding
optimal Bayes estimator is obtained by minimizing the posterior risk:

σ̂
∗ := argmin

σ :[n]→[n]
E[σ(i∗) | O].

Noting that E[σ(i∗) | O] = ∑
i σ (i) pi , the optimal estimator in this case is the

ranking that sorts pi into descending order, i.e., σ̂
∗
(ji) = i where pj1 ≥ pj2 ≥

· · · ≥ pjn .

Remark 1 The distance loss might be suitable in some applications, but in general it
is a poor measure if the goal is to reveal the actual source. This is especially true in
small world networks, including most social networks, where the expected distance
between any pair of nodes is small. On the other extreme, in terms of the precision
in recovering the source, is the zero-one loss which is too stringent. The rank loss
can be considered a more robust version of the zero-one loss, and it will be our main
evaluation measure.
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3 Exact Likelihood Computation

The Bayesian estimators introduced in Sect. 2.2 require us to evaluate the posterior
probabilities (pi), or equivalently the likelihood values ρj→O for all j ∈ O. The
main difficulty of the source identification problem is that computing the likelihood
is itself challenging. We now develop exact equations that allow us to recursively
compute the likelihood values LO(I) for all subsets I ⊂ O.

Dynamic Programming To begin, note that ρO→O = 1 for any O ⊂ [n]. In
addition, ρI→O = 1 whenever O corresponds to a connected component of G.
We develop two dynamic programming expressions for ρI→O for general I ⊂ O:

Proposition 1 For I ⊂ O ⊂ [n], the probabilities ρI→J defined in (1) satisfy the
forward program

ρI→O =
∑

j∈O\I

vol(I, j)

vol(I, I c)
ρI∪j→O (2)

and the backward program

ρI→O =
∑

j∈O\I
ρI→O\j

vol(O \ j, j)

vol(O \ j, (O \ j)c)
. (3)

In the forward programming (2), j effectively iterates over the boundary of I in
O, as vol(I, j) = 0 if j is outside that boundary. Therefore, the running time of the
forward programming benefits from the sparsity of the network. Unlike the forward
programming, the iteration over j in (3) cannot be restricted to a smaller set. A
corollary of Proposition 1 is that the transition probabilities ρI→J are not affected
by the rate and the duration of the infection.

Let us now observe some connection with the path-based analysis. A permitted
permutation or an infection path starting at a node i∗, refers to a permutation σ

of nodes with σ1 = i∗, and such that σk+1 is connected to at least one node in
{σ1, . . . , σk}, for all k ∈ [|σ | − 1]. Notice that the probability of observing a given
infection path is

P
(
path σ observed | σ1 = i∗

) =
|σ |−1∏

k=1

vol(σ[k], σk+1)

vol(σ[k], σ
c
[k])

(4)

where σI := (σi | i ∈ I ). One can obtain the transition probability ρ{i∗}→O by
summing (4) over all infection paths σ such that σ1 = i∗ and {σ1, . . . , σk} = O.
Our recursive representation is novel, avoids these explicit summations, and will be
key in deriving approximation schemes for ρI→O in Sect. 4.

Path-based approaches such as Jordan center [26] forgo computing the complete
likelihood (i.e., avoid summing the odds of all infection paths) and instead find the
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most probable path, that is, one that maximizes (4) in a spanning tree. In contrast,
Eqs. (2) and (3) compute the complete likelihood of the infection set, which has the
following advantages over the path-based likelihood: It fully exploits the structure of
the graph inside the infection set, not just a spanning tree or a permitted permutation
of nodes in the infected subgraph. Moreover, it takes into account the boundary of
the infected subgraph via vol(I, I c).

Remark 2 Some previous papers, such as [25, 32], considered the discrete-time
susceptible-infected dynamic. In that setup, the rate and time parameters are
intertwined with the transition probabilities in a way that it is hard or infeasible
to disentangle them. Therefore, the authors proposed to take β and t as inputs
or estimate the probabilities for multiple candidates for the infection time. In this
sense, our approach studies a more realistic model with less adverse consequences
for estimation.

4 Approximations

We now provide two approximations to the likelihood function LO(I) based on the
exact dynamic programming developed in Proposition 1.

Greedy Elimination (GE) We can obtain a singleton source set I = {i} that
maximizes ρI→O with greedy elimination of elements in O. The algorithm we
propose is based on the backward recursion (3) and is detailed in Algorithm 1. We
start with O0 := O and consider all maximal proper subsets of O0 that induce
a connected subgraph of G. Among those, we choose the one that maximizes the
transition probability to O0, i.e. ρO0\j→O0 = vol(O0 \ j, j)/ vol(O0 \ j, (O0 \ j)c).
Suppose that O1 := O0 \ j∗ is the maximizer. Next, we iterate the same procedure
for O1 and so forth, until we reach a singleton set I := O|O|−1. The procedure has
an O(k2m) runtime where k = |O|and m is the number of edges in the infected
subgraph, GO .

GE has a Bayesian justification. Let Õk be the random infected set after k steps.
Suppose that we want to find the MAP for Õk−1 given Õk . The Bayesian posterior
probability is

P(Õk−1 = O\j | Õk = O) ∝ ρO\j→O · P(Õk−1 = O\j).

Whenever GO\j is connected, the prior is positive. GE finds a proxy for MAP
through maximizing the evidence and ensuring the prior is positive.

Algorithm 1 has similarities with finding the most likely path from a source to
the observed snapshot. Chang et al. [36] propose a similar path-based search called
GSBA. They start from each node in O and approximate the most likely path and
use it as a proxy to the most likely source. Algorithm 1, however, does this greedy
search in a backward fashion.
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Algorithm 1 Greedy elimination
Input: Graph G([n], E) and O ⊂ [n].
Output: i∗

GE ∈ O.
1: O0 := O

2: for i := 0 to |O| − 2 do
3: O ′

i := {j ∈ Oi : GOi\j remains connected}
4: j∗ := argmaxj∈O ′

i

vol(Oi \ j, j)

vol(Oi \ j, (Oi \ j)c)
.

5: Oi+1 := Oi \ j∗.
6: end for
7: i∗

GE := the single element in O|O|−1.

Algorithm 2 Mean-field approximation
Input: Graph G([n], E) and O ⊂ [n].
Output: i∗

MFA ∈ O.
1: Compute S, z as defined in (7).
2: b̂ := S−1z.
3: i∗

MFA := argmaxj∈O b̂j .

Mean-Field Approximation (MFA) We now approximate ρI→O by the mean-field
technique. The idea is to treat the set function I �→ ρI→O as if it was a distribution
(or measure) on O and approximate it by the product of its marginals. Fix a subset
O ⊂ [n]. For any I ⊂ O, let xI = (xI

j )j∈O be the binary representation of I , i.e.

xI
j = 1{j ∈ I } for any j ∈ O. We find α0 and (bj )j∈O such that

ρ̂I→O = α0

∏

j∈O

b
xI
j −1

j (5)

is a good approximation to ρI→O for all I ⊂ O, in the sense of minimizing the
quadratic deviation from the solution of the recursion (2). First note that α0 = 1
since ρO→O = 1. Next, we plug-in ρ̂I→O into the forward recursion, to get

vol(I, I c) ρ̂I→O −
∑

j∈O\I
vol(I, j) ρ̂I∪{j}→O = 0.

Dividing both sides by
∏

j∈O\I bj gives vol(I, I c) − ∑
j∈O\I vol(I, j) bj = 0.

These equations in general cannot be satisfied exactly for all I ⊂ O. Instead, letting
b = (bj )j∈O , we solve the following least-squares problem:

b̂ ∈ argmin
b

∑

I : I⊂O

(
vol(I, I c) −

∑

j∈O\I
vol(I, j) bj

)2 = argmin
b

‖Qb − r‖2
2

(6)
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where Q ∈ R
(2|O|−1)×|O| and r ∈ R

(2|O|−1)×1 are defined as follows:

QI,j = 1{j 	∈ I } vol(I, j), ∀ I ⊂ O, j ∈ O, rI = vol(I, I c), ∀ I ⊂ O.

The solution of (6) satisfies the normal equations QT Qb̂ = QT r . The following
proposition shows that QT Q and QT r can be computed efficiently. Let A be the
adjacency matrix of the network.

Proposition 2 The solution b̂ of (6) satisfies the linear system Sb̂ = z with S and
z given by

S = Ξ
(
AOO � AT

OO + AT
OOAOO − AOO � (u1T )

− AT
OO � (1uT ) + uuT

) ∈ R
|O|×|O|,

z = (1T u + 21T v)u − 2v � u + 2AOO v + (u − uout ) � u

+ (
(AOO + AT

OO) � AT
OO

)
1 + AT

OO(uout − u) (7)

where u := AT
OO1, uout := AOO1, and v = AOOc 1. Here � is the element-wise

matrix product, Ξ(·) is a matrix operator that returns the same matrix with double
the diagonal entries, and 1 is the vector of all ones.

See Appendix 2 for the proof. Proposition 2 shows that the mean-field approach
reduces to solving a linear system of equations in |O| variables, a task with much
better computational complexity than solving the original recursion. Both S and z

can be computed in at most O(k2) time, where k = |O|. In the cases where A is
sparse (which often the case for real networks), S will be a rank-one perturbation
of a sparse matrix (both AOO and AT

OOAOO will be sparse), hence solving the
resulting system is often much faster than the worst-case, i.e., faster than O(k3).

Remark 3 MFA and GE utilize the forward and backward programs ((2), (3)),
respectively. We have tried to apply linearization to the backward program and
greedy inclusion to the forward program. However, the former does not go through
as smoothly and the latter leads to a sub-par method. Whether one can utilize both
recursions simultaneously to achieve a better performance is open.

5 Simulations

The methods proposed in this paper, the Greedy Elimination (GE) and the Mean
Field Approximation (MFA), show superior performance in source identification,
compared to popular procedures, while having comparable runtimes. In this section,
we make a comparison based on these two measures (source identification ability
and runtime) on real and synthetic networks. As discussed in Sect. 2.2, we consider
ranking estimators (i.e., those that output a permutation of the nodes according
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Table 1 Network statistics

Network Internet Power Wiki vote UCSC68 UC64 DC-SBM

n 10670 4941 7066 8979 6810 1962

Mean degree 4 3 29 50 46 66

Max. degree 2312 19 1065 454 660 897

Clust. coeff. 0.01 0.10 0.13 0.17 0.19 0.30

to their likelihood of being the source) and focus on the rank loss. If the method
does not return a ranking, we tweak it to do so. We evaluate the methods based on
the expected rank, E[R], where R is the rank of the true source among the list of
candidates (cf. Sect. 2.2). The expectation is taken with respect to the variation in
choosing the true source, which is drawn at random from the entire network. We
normalize the expected rank to get a number in [0, 1], with zero corresponding to
perfect recovery, i.e., we use (E[R] − 1)/n.

We consider a variety of real and simulated networks. Our selection includes
an Internet Autonomous System [37, 38], US west-coast power grid [39], two
Facebook-100 networks [40, 41], called UC64 and UCSC68, and a Wikipedia voting
network [42]. In addition, we present our results on a number of synthetic networks
that are well studied in the literature, including regular trees, random trees, and
degree-corrected stochastic block models (DC-SBM) [43].

Table 1 summarizes the statistics on the largest connected component of these
networks. The regular tree is of degree 3 and depth 10. The random tree has 500
nodes. For the DC-SBM network, we generate from a 3-community planted partition
version, i.e., E[Aij ] = θiθjPij where Pij = 0.5 if nodes i and j are in the
same community and Pij = 0.02 if they are in different communities. The degree
parameters θi are generated from a rescaled Pareto distribution with α = 2 and
threshold = 1.

The results are illustrated in Figs. 1 and 2. The methods we consider besides the
optimal Bayes solution (BO), the MFA, and the GE are the Rumor Centrality (RC),
the Degree Centrality (DC), the Jordan Center (JC) and the Dynamical Age (DA).
Our selection of the methods loosely follows the methods surveyed in [30]. Each
curve shows the performance of one method for different values of the infection
size, 2 ≤ |O| ≤ 300. Each point is an average over 500 infection paths rooted at
random sources. To avoid an unreasonable computation time, we skip the BO for
the infected sets of size greater than 10. The BO curve serves as the benchmark for
the best achievable performance. Note that even the optimal solution needs to output
a large set to catch the source, signifying the inherent difficulty of the problem.

Rumor and Jordan centralities perform optimally on regular trees in Fig. 1a, as
predicted by the theory [23, 26], although the network here is not exactly an infinite
tree. Notice that RC, JC, and BO overlap for infection sizes not exceeding the depth
of the tree. Degree centrality also turns out to be a close competitor in this figure.
Moving to other networks, however, these popular methods do not perform better
than random guessing. For all the three, the expected relative rank is close to 0.5,
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Fig. 1 Plots of the expected relative rank versus the infection size for low-transitivity networks.
(a) Regular tree. (b) Random tree. (c) Internet AS. (d) US west power grid

even in a random tree. The plots in this section show that, despite their popularity,
the RC and JC are quite unreliable for source recovery.

DA tends to perform well only when the infection size is sufficiently large. In
some of the networks, i.e., in Fig. 2b–d, it is a close competitor to GE and MFA,
while still behind them with a margin. DA also performs close to GE in the “Internet
AS” network (Fig. 1c).

Among our proposed methods, MFA outperforms RC, JC, DC, and DA in
Fig. 2a–d. MFA ranks the true source, on average, in the top 30%. The networks
with superior MFA performance have the highest transitivity (a.k.a. clustering
coefficient) in Table 1, that is, many triangles among triples of nodes. Transitivity
has been studied extensively and distinguishes human social networks from random
trees and less cyclical networks, such as the water distribution systems and traffic
networks. In this sense, MFA is suitable for rumor source detection in social
networks.

GE is the global winner, except in regular trees (Fig. 1a). We were surprised that
a greedy algorithm had such a widespread success. GE not only performs well in
highly transitive networks, but also outperforms RC, JC, DC, and DA on random
trees (Fig. 1b) and less transitive networks (Fig. 1c, d).

Figure 3 illustrates the runtimes (on the log scale) for a single run on the UC64
network. Degree centrality is the fastest, followed by RC, MFA, GE, JC, and DA.
The first three have comparable speed and scale quite well. In contrast, although the
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Fig. 2 Plots of the expected relative rank versus the infection size for high-transitivity networks.
(a) UCSC68. (b) UC64. (c) Wiki vote. (d) DC-SBM

Fig. 3 Runtime in seconds

runtime for JC starts as low as that of RC, it accelerates past GE as the infection size
grows. DA and JC do not scale well and GE follows them by a margin. It is worth
noting that [44] gives a linear-time implementation of JC on trees that we have not
tested here. BO is removed from this plot since its runtime grows exponentially with
the infection size.

Based on these results, we advocate for the use of GE as the main tool for
identifying sources of epidemics, regardless of the network topology or the nature of
the epidemics (rumor propagation, disease contagion, etc.). MFA should be applied
with caution. It is superior in social (transitive) networks, and attractive for its
simplicity, scalability, and the potential for parallelism.
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Appendix 1: Multi-Source Extension

The inference problem discussed in Sect. 2.2 immediately extends to the multi-
source situations. Consider the case were more than one independent source,
denoted by I ∗, initiate the infection dynamics. Due to the Markovian nature of the
dynamics, the infection path that leads to some set I does not influence the value of
ρI→O . Hence, Proposition 1 also describes the likelihood of the transition from the
source set I ∗ to a snapshot O.

If we know that there are s original sources, e.g. |I ∗| = s, with a uniform prior on
the patient zeros, the Bayesian solution would be characterized by the optimization

I ∗
MAP = argmax

I⊂O, |I |=s

ρI→O (8)

To compute this MAP estimate, we can still use the DP solution in Proposition 1,
but we do not need to compute ρI→O for |I | < s. Thus, the multi-source problem is
in a sense “easier”, especially when s ≈ |O|, since one can terminate the recursion
earlier (i.e., the case s = 1 is the hardest).

Appendix 2: Proofs

Proof of Proposition 1

Let us first recall a known fact about the exponential distribution:

Lemma 1 Let Ti ∼ Exp(βi) be a collection of independent exponential variables.
Then,

P

(
Ti < min

j 	=i
Tj

)
= βi

∑
j βj

.

For a proof of Lemma 1, see [45]. The forward programming (2) is an application
of the law of total probability in the following sense: The event that nodes in O \ I

are infected before any other node in I c splits into sub-events that each node in O \I

is infected before those in Oc and we have

ρI→O =
∑

j∈O\I
ρI→I∪j · ρI∪j→O
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where we have also used the Markov property of SI dynamics to split the
probabilities on the RHS into the products. The ratio in (2) corresponds to the
transition probability from I to I ∪j , that is ρI→I∪j . Indeed, given that I is infected,
we run exponential clocks Tj ∼ Exp(β vol(I, j)) and the first to expire determines
the next infected node. By Fact 1, this happens for any node j ∈ I c with probability
∝j β vol(I, j). Thus,

ρI→I∪j = β vol(I, j)
∑

j ′ β vol(I, j ′)
= vol(I, j)

vol(I, I c)
.

This proves the forward programming. The backward programming, on the other
hand, connects ρI→O to ρI→O\j and is proved similarly. Basically, the event of
visiting O can be divided into sub-events based on the last node in O that is infected.

Proof of Proposition 2

We prove the following alternative expressions for S = (Sjj ′)|O|×|O| and z =
(zj )

|O|,

Sjj ′ :=
{

din
O\j ′(j)din

O\j (j ′) + ∑
i∈O AijAij ′ j 	= j ′

2
[
din
O (j)2 + ∑

i∈O A2
ij

]
j = j ′

zj :=
[

vol(O\j ) + 2 vol(O\ j, (O\ j)c)
]
din
O (j)

+
∑

i∈O

(dout
O\j (i) − din

O\j (i))Aij + 2
∑

i∈O

dout
(O\ j)c (i) Aij .

Here, dout
O (i) := ∑

j∈O Aij is the out-degree of node i in O, din
O (i) := ∑

j∈O Aji

is the in-degree of node i in O, and vol(2)(i, j) := ∑
r∈O AirArj is the number of

paths of length 2 between nodes i and j that pass through O. It is not hard to verify
that these expressions are equivalent to the matrix form presented in (2).

Recall that vol(I, I c) = ∑
i,k Aik1{i ∈ I, k /∈ I } and similarity vol(I, j) =∑

r Arj 1{r ∈ I }. Here, the indices, i, k and r run over all nodes in the network, i.e.
i, k, r ∈ [n]. We have

(QT r)j =
∑

I⊂O

1{j 	∈ I } vol(I, j) · vol(I, I c)

=
∑

I⊂O\{j}
vol(I, I c) · vol(I, j)
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=
∑

I⊂O\{j}

∑

i,k,r

AikArj 1{i ∈ I, k /∈ I, r ∈ I }

=
∑

i,k,r

AikArj γikr

where the last equality follows by interchanging the order of summations and
defining

γikr :=
∑

I⊂O\{j}
1{i ∈ I, k /∈ I, r ∈ I }

If i or r do not belong to O \ {j}, or k ∈ {i, r}, then γikr = 0. Thus, it what follows
assume that i, r ∈ O\ j := O \ {j} and k /∈ {i, r}. Then,

γikr = 0

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2|O|−4 i 	= r, k ∈ O\ j

2|O|−3 i = r, k ∈ O\ j

2|O|−3 i 	= r, k /∈ O\ j

2|O|−2 i = r, k /∈ O\ j

To see the second equality, note that we are counting subsets of the set O \ {j}
(of cardinality |O|−1) that contain or exclude certain elements. For example, when
k, i, r are pairwise distinct, and k ∈ O \ {j}, looking at the binary representation of
I , we have two ones in the positions i and r and a zero in position k, and the rest of
|O| − 1 − 3 positions are free to be zero or one.

In what follows, i and r range over O \ {j} (otherwise γikr = 0). Also, condition
k /∈ {i, r} can be replaced with k 	= r , since the k 	= i is implicitly enforced by
Aik = 0 if k = i (no self-loops). We have

(QT r)j =
∑

i,r

∑

k 	=r

AikArj

[
2|O|−4(1 + 1{i = r})1{k ∈ O\ j }

+ 2|O|−3(1 + 1{i = r})1{k /∈ O\ j }
]

= 2|O|−4
∑

i,r

dout
O\{j,r}(i)Arj (1 + 1{i = r})

+ 2|O|−3
∑

i,r

dout
(O\ j)c (i)Arj (1 + 1{i = r})

where in the second term, we used the fact that if k /∈ O\ j then we automatically
have k 	= r since r ranges over O\ j . We have
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∑

r

dout
O\{j,r}(i)Arj =

∑

r

(dout
O\j (i) − Air)Arj

= dout
O\j (i)d

in
O\j (j) − vol(2)

O\j (i, j)

where vol(2)
O\j (i, j) := ∑

r∈O\j AirArj is the number of paths of length two between

i and j in O\j . Note that vol(2)
O\j (i, j) = vol(2)

O (i, j) and similarly dO\j (j) = dO(j)

since Ajj = 0. Thus,

∑

i,r

dout
O\{j,r}(i) Arj

(
1 + 1{i = r}) =

∑

i

[
dout
O\j (i)d

in
O (j) − vol(2)

O (i, j) + dout
O\j (i)Aij

]

=
∑

i

dout
O\j (i)d

in
O (j) + (dout

O\j (i) − din
O\j (i))Aij

= vol(O\j )din
O (j) +

∑

i

(dout
O\j (i) − din

O\j (i))Aij

where vol(O\j ) = vol(O\j ,O\j ) and the third equality follows since we have

∑

i∈A

vol(2)
A (i, j) =

∑

i∈A

∑

r∈A

AirArj =
∑

r∈A

din
A (r)Arj

which was used with A = O\j . Similarly, we have

∑

i,r

dout
(O\ j)c (i)Arj (1 + 1{i = r}) =

∑

i

dout
(O\ j)c (i)

(
din
O\j (j) + Aij

)

= vol(O\ j, (O\ j)c) din
O (j)

+
∑

i

dout
(O\ j)c (i) Aij

It follows that

(QT r)j = 2|O|−4
[

vol(O\j )din
O (j) +

∑

i

(dout
O\j (i) − din

O\j (i))Aij

+ 2 vol(O\ j, (O\ j)c) din
O (j) + 2

∑

i

dout
(O\ j)c (i) Aij

]
.

Calculating QT Q Let us first take j 	= j ′. Then, similar to the previous argument,

(QT Q)jj ′ =
∑

I⊂O\{j,j ′}
vol(I, j) vol(I, j ′)
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=
∑

I⊂O\{j,j ′}

∑

i,r

Aij Arj ′1{i ∈ I, r ∈ I }

=
∑

i,r

Aij Arj ′βir

where we have defined

βir :=
∑

I⊂O\{j,j ′}
1{i ∈ I, r ∈ I }

= 2|O|−41{i 	= r} + 2|O|−31{i = r}
= 2|O|−4(1 + 1{i = r})

assuming i, r ∈ O \ {j, j ′}, otherwise βir = 0. Thus, restricting summations over
indices i, r ∈ O \ {j, j ′}

(QT Q)jj ′ = 2|O|−4
[∑

i,r

Aij Arj ′ +
∑

i

AijAij ′
]

= 2|O|−4
[
din
O\j ′(j)din

O\j (j
′) +

∑

i

AijAij ′
]
.

Now consider the case j = j ′. Then,

(QT Q)jj =
∑

I⊂O\{j}
vol(I, j)2

=
∑

I⊂O\{j}

∑

i,r

Aij Arj 1{i ∈ I, r ∈ I }

=
∑

i,r

Aij Arj 2|O|−3(1 + 1{i = r}),

assuming i, r ∈ O \ j . It follows that

(QT Q)jj = 2|O|−3
[ ∑

i,r

Aij Arj +
∑

i

A2
ij

]

= 2|O|−3[din
O (j)2 +

∑

i

A2
ij

]
.
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