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Abstract

We propose a general formalism of iterated random functions with semigroup
property, under which exact and approximate Bayesian posterior updates can be
viewed as specific instances. A convergence theory for iterated random functions
is presented. As an application of the general theory we analyze convergence
behaviors of exact and approximate message-passing algorithms that arise in a
sequential change point detection problem formulated via a latent variable directed
graphical model. The sequential inference algorithm and its supporting theory are
illustrated by simulated examples.

1 Introduction

The sequential posterior updates play a central role in many Bayesian inference procedures. As an
example, in Bayesian inference one is interested in the posterior probability of variables of interest
given the data observed sequentially up to a given time point. As a more specific example which
provides the motivation for this work, in a sequential change point detection problem [1], the key
quantity is the posterior probability that a change has occurred given the data observed up to present
time. When the underlying probability model is complex, e.g., a large-scale graphical model, the cal-
culation of such quantities in a fast and online manner is a formidable challenge. In such situations
approximate inference methods are required – for graphical models, message-passing variational
inference algorithms present a viable option [2, 3].

In this paper we propose to treat Bayesian inference in a complex model as a specific instance of an
abstract system of iterated random functions (IRF), a concept that originally arises in the study of
Markov chains and stochastic systems [4]. The key technical property of the proposed IRF formal-
ism that enables the connection to Bayesian inference under conditionally independent sampling is
the semigroup property, which shall be defined shortly in the sequel. It turns out that most exact and
approximate Bayesian inference algorithms may be viewed as specific instances of an IRF system.
The goal of this paper is to present a general convergence theory for the IRF with semigroup prop-
erty. The theory is then applied to the analysis of exact and approximate message-passing inference
algorithms, which arise in the context of distributed sequential change point problems using latent
variable and directed graphical model as the underlying modeling framework.

We wish to note a growing literature on message-passing and sequential inference based on graph-
ical modeling [5, 6, 7, 8]. On the other hand, convergence and error analysis of message-passing
algorithms in graphical models is quite rare and challenging, especially for approximate algorithms,
and they are typically confined to the specific form of belief propagation (sum-product) algorithm
[9, 10, 11]. To the best of our knowledge, there is no existing work on the analysis of message-
passing inference algorithms for calculating conditional (posterior) probabilities for latent random
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variables present in a graphical model. While such an analysis is a byproduct of this work, the view-
point we put forward here that equates Bayesian posterior updates to a system of iterated random
functions with semigroup property seems to be new and may be of general interest.

The paper is organized as follows. In Sections 2– 3, we introduce the general IRF system and
provide our main result on its convergence. The proof is deferred to Section 5. As an example of
the application of the result, we will provide a convergence analysis for an approximate sequential
inference algorithm for the problem of multiple change point detection using graphical models. The
problem setup and the results are discussed in Section 4.

2 Bayesian posterior updates as iterated random functions

In this paper we shall restrict ourselves to multivariate distributions of binary random variables.
To describe the general iteration, let Pd := P({0, 1}d) be the space of probability measures on
{0, 1}d. The iteration under consideration recursively produces a random sequence of elements of

Pd, starting from some initial value. We think of Pd as a subset of R2d equipped with the ℓ1 norm
(that is, the total variation norm for discrete probability measures). To simplify, let m := 2d, and
for x ∈ Pd, index its coordinates as x = (x0, . . . , xm−1). For θ ∈ R

m
+ , consider the function

qθ : Pd → Pd, defined by

qθ(x) :=
x⊙ θ

xTθ
(1)

where xTθ =
∑
i x

i
θ
i is the usual inner product on R

m and x ⊙ θ is pointwise multiplication

with coordinates [x ⊙ θ]i := xiθi, for i = 0, 1, . . . ,m − 1. This function models the prior-to-
posterior update according to the Bayes rule. One can think of θ as the likelihood and x as the prior
distribution (or the posterior in the previous stage) and qθ(x) as the (new) posterior based on the two.
The division by xTθ can be thought of as the division by the marginal to make a valid probability
vector. (See Example 1 below.)

We consider the following general iteration

Qn(x) = qθn
(T (Qn−1(x)), n ≥ 1,

Q0(x) = x,
(2)

for some deterministic operator T : Pd → Pd and an i.i.d. random sequence {θn}n≥1 ⊂ R
m
+ . By

changing operator T , one obtains different iterative algorithms.

Our goal is to find sufficient conditions on T and {θn} for the convergence of the iteration to an

extreme point of Pd, which without loss of generality is taken to be e(0) := (1, 0, 0, . . . , 0). Standard
techniques for proving the convergence of iterated random functions are usually based on showing
some averaged-sense contraction property for the iteration function [4, 12, 13, 14], which in our
case is qθn

(T (·)). See [15] for a recent survey. These techniques are not applicable to our problem
since qθn

is not in general Lipschitz, in any suitable sense, precluding qθn
(T (·)) from satisfying the

aforementioned conditions.

Instead, the functions {qθn
} have another property which can be exploited to prove convergence;

namely, they form a semi-group under pointwise multiplication,

qθ⊙ θ′ = qθ ◦ qθ′ , θ, θ′ ∈ R
m
+ , (3)

where ◦ denotes the composition of functions. If T is the identity, this property allows us to write
Qn(x) = q⊙ n

i=1θi
(x) — this is nothing but the Bayesian posterior update equation, under condi-

tionally independent sampling, while modifying T results in an approximate Bayesian inference
procedure. Since after suitable normalization, ⊙ n

i=1θi concentrates around a deterministic quantity,
by the i.i.d. assumption on {θi}, this representation helps in determining the limit of {Qn(x)}. The
main result of this paper, summarized in Theorem 1, is that the same conclusions can be extended
to general Lipschitz maps T having the desired fixed point.
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3 General convergence theory

Consider a sequence {θn}n≥1 ⊂ R
m
+ of i.i.d. random elements, where m = 2d. Let θn =

(θ0
n, θ

1
n, . . . , θ

m−1
n ) with θ

0
n = 1 for all n, and

θ
∗
n := max

i=1,2,...,m−1
θ
i
n. (4)

The normalization θ
0
n = 1 is convenient for showing convergence to e

(0). This is without loss of
generality, since qθ is invariant to scaling of θ, that is qθ = qβθ for any β > 0.

Assume the sequence {log θ∗
n} to be i.i.d. sub-Gaussian with mean ≤ −I∗ < 0 and sub-Gaussian

norm ≤ σ∗ ∈ (0,∞). The sub-Gaussian norm in can be taken to be the ψ2 Orlicz norm (cf. [16,
Section 2.2]), which we denote by ‖ · ‖ψ2 . By definition ‖Y ‖ψ2 := inf{C > 0 : Eψ2(|Y |/C) ≤ 1}

where ψ2(x) := ex
2

− 1.

Let ‖ · ‖ denote the ℓ1 norm on R
m. Consider the sequence {Qn(x)}n≥0 defined in (2) based on

{θn} as above, an initial point x = (x0, . . . , xm−1) ∈ Pd and a Lipschitz map T : Pd → Pd. Let
LipT denote the Lipschitz constant of T , that is LipT := supx 6=y ‖T (x)− T (y)‖/‖x− y‖.

Our main result regarding iteration (2) is the following.

Theorem 1. Assume that L := LipT ≤ 1 and that e(0) is a fixed point of T . Then, for all n ≥ 0,
and ε > 0,

‖Qn(x)− e
(0)‖ ≤ 2

1− x0

x0
(
Le−I∗+ε

)n
(5)

with probability at least 1− exp(−c nε2/σ2
∗), for some absolute constant c > 0.

The proof of Theorem 1 is outlined in Section 5. Our main application of the theorem will be to the
study of convergence of stopping rules for a distributed multiple change point problem endowed with
latent variable graphical models. Before stating that problem, let us consider the classical (single)
change point problem first, and show how the theorem can be applied to analyze the convergence of
the optimal Bayes rule.

Example 1. In the classical Bayesian change point problem [1], one observes a sequence
{X1, X2, X3 . . . } of independent data points whose distributions change at some random time
λ. More precisely, given λ = k, X1, X2, . . . , Xk−1 are distributed according to g, and
Xk+1, Xk+2, . . . according to f . Here, f and g are densities with respect to some underlying
measure. One also assumes a prior π on λ, usually taken to be geometric. The goal is to find a
stopping rule τ which can predict λ based on the data points observed so far. It is well-known
that a rule based on thresholding the posterior probability of λ is optimal (in a Neyman-Pearson
sense). To be more specific, let Xn := (X1, X2, . . . , Xn) collect the data up to time n and let
γn[n] := P(λ ≤ n|Xn) be the posterior probability of λ having occurred before (or at) time n.
Then, the Shiryayev rule

τ := inf{n ∈ N : γn[n] ≥ 1− α} (6)

is known to asymptotically have the least expected delay, among all stopping rules with false alarm
probability bounded by α.

Theorem 1 provides a way to quantify how fast the posterior γn[n] approaches 1, once the change
point has occurred, hence providing an estimate of the detection delay, even for finite number of
samples. We should note that our approach here is somewhat independent of the classical techniques
normally used for analyzing stopping rule (6). To cast the problem in the general framework of (2),
let us introduce the binary variable Zn := 1{λ ≤ n}, where 1{·} denotes the indicator of an event.
Let Qn be the (random) distribution of Zn given X

n, in other words,

Qn :=
(
P(Zn = 1|Xn), P(Zn = 0|Xn)).

Since γn[n] = P(Z = 1|Xn), convergence of γn[n] to 1 is equivalent to the convergence of Qn to

e
(0) = (1, 0). We have

P (Zn|Xn) ∝Zn P (Zn, Xn|Xn−1) = P (Xn|Zn)P (Zn|Xn−1). (7)
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Note that P (Xn|Zn = 1) = f(Xn) and P (Xn|Zn = 0) = g(Xn). Let θn :=
(
1, g(X

n)
f(Xn)

)
and

Rn−1 :=
(
P(Zn = 1|Xn−1), P(Zn = 0|Xn−1)).

Then, (7) implies that Qn can be obtained by pointwise multiplication of Rn−1 by f(Xn)θn and
normalization to make a probability vector. Alternatively, we can multiply by θn, since the proce-
dure is scale-invariant, that is, Qn = qθn

(Rn−1) using definition (1). It remains to express Rn−1 in
terms of Qn−1. This can be done by using the Bayes rule and the fact that P (Xn−1|λ = k) is the
same for k ∈ {n, n+ 1, . . . }. In particular, after some algebra (see [17]), one arrives at

γn−1[n] =
π(n)

π[n− 1]c
+

π[n]c

π[n− 1]c
γn−1[n− 1], (8)

where γk[n] := P(λ ≤ n|Xk), π(n) is the prior on λ evaluated at time n, and π[k]c :=∑∞
i=k+1 π(i). For the geometric prior with parameter ρ ∈ [0, 1], we have π(n) := (1− ρ)n−1ρ and

π[k]c = ρk. The above recursion then simplifies to γn−1[n] = ρ+ (1− ρ)γn−1[n− 1]. Expressing
in terms of Rn−1 and Qn−1, the recursion reads

Rn−1 = T (Qn−1), where T
((x1
x0

))
= ρ

(1
0

)
+ (1− ρ)

(x1
x0

)
.

In other words, T (x) = ρe(0) + (1− ρ)x for x ∈ P2.

Thus, we have shown that an iterative algorithm for computing γn[n] (hence determining rule (6)),
can be expressed in the form of (2) for appropriate choices of {θn} and operator T . Note that T in
this case is Lipschitz with constant 1− ρ which is always guaranteed to be ≤ 1.

We can now use Theorem 1 to analyze the convergence of γn[n]. Let us condition on λ = k + 1,
that is, we assume that the change point has occurred at time k+1. Then, the sequence {Xn}n≥k+1

is distributed according to f , and we have Eθ
∗
n =

∫
f log g

f
= −I , where I is the KL divergence

between densities f and g. Noting that ‖Qn − e
(0)‖ = 2(1 − γn[n]), we immediately obtain the

following corollary.

Corollary 1. Consider Example 1 and assume that log(g(X)/f(X)), where X ∼ f , is sub-

Gaussian with sub-Gaussian norm ≤ σ. Let I :=
∫
f log f

g
. Then, conditioned on λ = k + 1,

we have for n ≥ 1,

∣∣γn+k[n+ k]− 1
∣∣ ≤

[
(1− ρ)e−I+ε

]n( 1

γk[k]
− 1

)

with probability at least 1− exp(−c nε2/σ2).

4 Multiple change point problem via latent variable graphical models

We now turn to our main application for Theorem 1, in the context of a multiple change point
problem. In [18], graphical model formalism is used to extend the classical change point problem
(cf. Example 1) to cases where multiple distributed latent change points are present. Throughout
this section, we will use this setup which we now briefly sketch.

One starts with a networkG = (V,E) of d sensors or nodes, each associated with a change point λj .
Each node j observes a private sequence of measurements Xj = (X1

j , X
2
j , . . . ) which undergoes a

change in distribution at time λj , that is,

X1
j , X

2
j , . . . , X

k−1
j | λj = k

iid
∼ gj , Xk

j , X
k+1
j , · · · | λj = k

iid
∼ fj,

for densities gj and fj (w.r.t. some underlying measure). Each connected pair of nodes share
an additional sequence of measurements. For example, if nodes s1 and s2 are connected, that is,
e = (s1, s2) ∈ E, then they both observe Xe = (X1

e , X
2
e , . . . ). The shared sequence undergoes a

change in distribution at some point depending on λs1 and λs2 . More specifically, it is assumed that
the earlier of the two change points causes a change in the shared sequence, that is, the distribution
of Xe conditioned on (λs1 , λs2) only depends on λe := λs1 ∧ λs2 , the minimum of the two, i.e.,

X1
e , X

2
e , . . . , X

k
e | λe = k

iid
∼ ge, Xk+1

e , Xk+2
e , · · · | λe = k

iid
∼ fe.
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Letting λ∗ := {λj}j∈V and X
n
∗ = {Xn

j ,X
n
e }j∈V,e∈E , we can write the joint density of all random

variables as

P (λ∗,X
n
∗ ) =

∏

j∈V

πj(λj)
∏

j∈V

P (Xn
j |λj)

∏

e∈E

P (Xn
e |λs1 , λs2 ). (9)

where πj is the prior on λj , which we assume to be geometric with parameter ρj . Network G
induces a graphical model [2] which encodes the factorization (9) of the joint density. (cf. Fig. 1)

Suppose now that each node j wants to detect its change point λj , with minimum expected delay,
while maintaining a false alarm probability at most α. Inspired by the classical change point prob-
lem, one is interested in computing the posterior probability that the change point has occurred up
to now, that is,

γnj [n] := P(λj ≤ n | Xn
∗ ). (10)

The difference with the classical setting is the conditioning is done on all the data in the network (up
to time n). It is easy to verify that the natural stopping rule

τj = inf{n ∈ N : γnj [n] ≥ 1− α}

satisfy the false alarm constraint. It has also been shown that this rule is asymptotically optimal in
terms of expected detection delay. Moreover, an algorithm based on the well-known sum-product [2]
has been proposed, which allows the nodes to compute their posterior probabilities 10 by message-
passing. The algorithm is exact when G is a tree, and scales linearly in the number of nodes. More
precisely, at time n, the computational complexity is O(nd). The drawback is the linear dependence
on n, which makes the algorithm practically infeasible if the change points model rare events (where
n could grow large before detecting the change.)

In the next section, we propose an approximate message passing algorithm which has computational
complexity O(d), at each time step. This circumvents the drawback of the exact algorithm and
allows for indefinite run times. We then show how the theory developed in Section 3 can be used to
provide convergence guarantees for this approximate algorithm, as well as the exact one.

4.1 Fast approximate message-passing (MP)

We now turn to an approximate message-passing algorithm which, at each time step, has com-
putational complexity O(d). The derivation is similar to that used for the iterative algorithm in
Example 1. Let us define binary variables

Znj = 1{λj ≤ n}, Zn∗ = (Zn1 , . . . , Z
n
d ). (11)

The idea is to computeP (Zn∗ |X
n
∗ ) recursively based onP (Zn−1

∗ |Xn−1
∗ ). By Bayes rule,P (Zn∗ |X

n
∗ )

is proportional in Zn∗ to P (Zn∗ , X
n
∗ |X

n−1
∗ ) = P (Xn

∗ |Z
n
∗ )P (Z

n
∗ |X

n−1
∗ ), hence

P (Zn∗ |X
n
∗ ) ∝Zn

∗

[ ∏

j∈V

P (Xn
j |Z

n
j )

∏

{i,j}∈E

P (Xn
ij |Z

n
i , Z

n
j )
]
P (Zn∗ |X

n−1
∗ ), (12)

where we have used the fact that given Zn∗ , Xn
∗ is independent of Xn−1

∗ . To simplify notation, let us

extend the edge set to Ẽ := E∪{{j} : j ∈ V }. This allows us to treat the private data of node j, i.e.,

Xj , as shared data of a self-loop in the extended graph (V, Ẽ). Let ue(z; ξ) := [ge(ξ)]
1−z [fe(ξ])

z

for e ∈ Ẽ, z ∈ {0, 1}. Then, for i 6= j,

P (Xn
j |Z

n
j ) = uj(Z

n
j ;X

n
j ), P (Xn

ij |Z
n
i , Z

n
j ) = uij(Z

n
i ∨ Znj ;X

n
ij). (13)

It remains to express P (Zn∗ |X
n−1
∗ ) in terms of P (Zn−1

∗ |Xn−1
∗ ). It is possible to do this, exactly, at

a cost of O(2|V |). For brevity, we omit the exact expression. (See Lemma 1 for some details.) We
term the algorithm that employs the exact relationship, the “exact algorithm”.

In practice, however, the exponential complexity makes the exact recursion of little use for large
networks. To obtain a fast algorithm (i.e., O(poly(d)), we instead take a mean-field type approxi-
mation:

P (Zn∗ |X
n−1
∗ ) ≈

∏

j∈V

P (Znj |X
n−1
∗ ) =

∏

j∈V

ν(Znj ; γ
n−1
j [n]), (14)
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where ν(z;β) := βz(1− β)1−z . That is, we approximate a multivariate distribution by the product
of its marginals. By an argument similar to that used to derive (8), we can obtain a recursion for the
marginals,

γn−1
j [n] =

πj(n)

πj [n− 1]c
+

πj [n]
c

πj [n− 1]c
γn−1
j [n− 1], (15)

where we have used the notation introduced earlier in (8). Thus, at time n, the RHS of (14) is known
based on values computed at time n − 1 (with initial value γ0j [0] = 0, j ∈ V ). Inserting this RHS

into (12) in place of P (Zn∗ |X
n−1
∗ ), we obtain a graphical model in variables Zn∗ (instead of λ∗)

which has the same form as (9) with ν(Znj ; γ
n−1
j [n]) playing the role of the prior π(λj).

In order to obtain the marginals γnj [n] = P (Znj = 1|Xn
∗ ) and γnij [n] with respect to the approximate

version of the joint distribution P (Zn∗ , X
n
∗ |X

n−1
∗ ), we need to marginalize out the latent variables

Znj ’s, for which a standard sum-product algorithm can be applied (see [2, 3, 18]). The message
update equations are similar to those in [18]; the difference is that the messages are now binary and
do not grow in size with n.

4.2 Convergence of MP algorithms

We now turn to the analysis of the approximate algorithm introduced in Section 4.1. In particular, we

will look at the evolution of {P̃ (Zn∗ |X
n
∗ )}n∈N as a sequence of probability distribution on {0, 1}d.

Here, P̃ signifies that this sequence is an approximation. In order to make a meaningful comparison,
we also look at the algorithm which computes the exact sequence {P (Zn∗ |X

n
∗ )}n∈N, recursively. As

mentioned before, this we will call the “exact algorithm”, the details of which are not of concern to
us at this point (cf. Prop. 1 for these details.)

Recall that we take P̃ (Zn∗ |X
n
∗ ) and P (Zn∗ |X

n
∗ ), as distributions for Zn∗ , to be elements of Pd ⊂ R

m.
To make this correspondence formal and the notation simplified, we use the symbol :≡ as follows

ỹn :≡ P̃ (Zn∗ |X
n
∗ ), yn :≡ P (Zn∗ |X

n
∗ ) (16)

where now ỹn, yn ∈ Pd. Note that ỹn and yn are random elements of Pd, due the randomness of
X
n
∗ . We have the following description.

Proposition 1. The exact and approximate sequences, {yn} and {ỹn}, follow general iteration (2)
with the same random sequence {θn}, but with different deterministic operators T , denoted respec-
tively with Tex and Tap. Tex is linear and given by a Markov transition kernel. Tap is a polynomial
map of degree d. Both maps are Lipschitz and we have

LipTex
≤ Lρ :=

(
1−

d∏

j=1

ρj

)
, LipTap

≤ Kρ :=

d∑

j=1

(1 − ρj). (17)

Detailed descriptions of the sequence {θn} and the operators Tex and Tap are given in [17]. As
suggested by Theorem 1, a key assumption for the convergence of the approximate algorithm will
be Kρ ≤ 1. In contrast, we always have Lρ ≤ 1.

Recall that {λj} are the change points and their priors are geometric with parameters {ρj}. We
analyze the algorithms, once all the change points have happened. More precisely, we condition
on Mn0 := {maxj λj ≤ n0} for some n0 ∈ N. Then, one expects the (joint) posterior of Zn∗ to
contract to the point Z∞

j = 1, for all j ∈ V . In the vectorial notation, we expect both {ỹn} and

{yn} to converge to e
(0). Theorem 2 below quantifies this convergence in ℓ1 norm (equivalently,

total variation for measures).

Recall pre-change and post-change densities ge and fe, and let Ie denote their KL divergence, that
is, Ie :=

∫
fe log(fe/ge). We will assume that

Ye := log(ge(X)/fe(X)) with X ∼ fe (18)

is sub-Gaussian, for all e ∈ Ẽ, where Ẽ is extended edge notation introduced in Section 4.1. The
choice X ∼ fe is in accordance with conditioning on Mn0 . Note that EYe = −Ie < 0. We define

σmax := max
e∈Ẽ

‖Ye‖ψ2 , Imin := min
e∈Ẽ

Ie, I∗(κ) := Imin − κσmax

√
logD..

where D := |V |+ |E|. Theorem 1 and Lemma 1 give us the following. (See [17] for the proof.)
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Figure 1: Top row illustrates a network (left), which induces a graphical model (middle). Right panel
illustrates one stage of message-passing to compute posterior probabilities γn

j [n]. Bottom row illustrates typical
examples of posterior paths, n 7→ γ

n
j [n], obtained by EXACT and approximate (APPROX) message passing,

for the subgraph on nodes {1, 2, 3, 4}. The change points are designated with vertical dashed lines.

Theorem 2. There exists an absolute constant κ > 0, such that if I∗(κ) > 0, the exact algorithm
converges at least geometrically w.h.p., that is, for all n ≥ 1,

‖yn+n0 − e
(0)‖ ≤ 2

1− yn0

yn0

(
Lρe

−I∗(κ)+ε
)n

(19)

with probability at least 1 − exp
[
−c nε2/(σ2

maxD
2 logD)

]
, conditioned on Mn0 . If in addition,

Kρ ≤ 1, the approximate algorithm also converges at least geometrically w.h.p., i.e., for all n ≥ 1,

‖ỹn+n0 − e
(0)‖ ≤ 2

1− ỹn0

ỹn0

(
Kρe

−I∗(κ)+ε
)n

(20)

with the same (conditional) probability as the exact algorithm.

4.3 Simulation results

We present some simulation results to verify the effectiveness of the proposed approximation al-
gorithm in estimating the posterior probabilities γnj [n]. We consider a star graph on d = 4 nodes.

This is the subgraph on nodes {1, 2, 3, 4} in Fig. 1. Conditioned on the change points λ∗, all data
sequences X∗ are assumed Gaussian with variance 1, pre-change mean 1 and post-change mean
zero. All priors are geometric with ρj = 0.1. We note that higher values of ρj yield even faster
convergence in the simulations, but we omit these figures due to space constraints. Fig. 1 illustrates
typical examples of posterior paths n 7→ γnj [n], for both the exact and approximate MP algorithms.
One can observe that the approximate path often closely follows the exact one. In some cases, they
might deviate for a while, but as suggested by Theorem 2, they approach one another quickly, once
the change points have occurred.

From the theorem and triangle inequality, it follows that under I∗(κ) > 0 and Kρ ≤ 1, ‖yn − ỹn‖
converges to zero, at least geometrically w.h.p. This gives some theoretical explanation for the good
tracking behavior of approximate algorithm as observed in Fig. 1.

5 Proof of Theorem 1

For x ∈ R
m (including Pd), we write x = (x0, x̃) where x̃ = (x1, . . . , xm−1). Recall that e(0) =

(1, 0, . . . , 0) and ‖x‖ =
∑m−1

i=0 |xi|. For x ∈ Pd, we have 1− x0 = ‖x̃‖, and

‖x− e
(0)‖ = ‖(x0 − 1, x̃)‖ = 1− x0 + ‖x̃‖ = 2(1− x0). (21)

For θ = (θ0, θ̃) ∈ R
m
+ , let

θ
∗ := ‖θ̃‖∞ = max

i=1,...,m−1
θ
i, θ

† :=
(
θ
0, (θ∗L)1m−1

)
∈ R

m
+ (22)
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where 1m−1 is a vector in R
m−1 whose coordinates are all ones. We start by investigating how

‖qθ(x) − e
(0)‖ varies as a function of ‖x− e

(0)‖.

Lemma 1. For L ≤ 1, θ∗ > 0, and θ
0 = 1,

N := sup
x,y∈Pd,

‖x−e
(0)‖≤L‖y−e

(0)‖

‖qθ(x)− e
(0)‖

‖qθ†(y)− e(0)‖
= 1; (23)

Lemma 1 is proved in [17]. We now proceed to the proof of the theorem. Recall that T : Pd → Pd

is an L-Lipschitz map, and that e(0) is a fixed point of T , that is, T (e(0)) = e
(0). It follows that for

any x ∈ Pd, ‖T (x)− e
(0)‖ ≤ L‖x− e

(0)‖. Applying Lemma 1, we get

‖qθ(T (x))− e
(0)‖ ≤ ‖qθ†(x)− e

(0)‖ (24)

for θ ∈ R
m
+ with θ

0 = 1, and x ∈ Pd. (This holds even if θ∗ = 0 where both sides are zero.)

Recall the sequence {θn}n≥1 used in defining functions {Qn} accroding to (2), and the assumption
that θ0

n = 1, for all n ≥ 1. Inequality (24) is key in allowing us to peel operator T , and bring
successive elements of {qθn

} together. Then, we can exploit the semi-group property (3) on adjacent
elements of {qθn

}.

To see this, for each θn, let θ∗
n and θ

†
n be defined as in (22). Applying (24) with x replaced with

Qn−1(x), and θ with θn, we can write

‖Qn(x) − e
(0)‖ ≤ ‖q

θ
†
n

(Qn−1(x)) − e
(0)‖ (by (24))

= ‖q
θ
†
n

(qθn−1(T (Qn−2(x)))) − e
(0)‖

= ‖q
θ
†
n⊙ θn−1

(T (Qn−2(x)))) − e
(0)‖ (by semi-group property (3))

We note that (θ†
n ⊙ θn−1)

∗ = Lθ∗
nθ

∗
n−1 and

(θ†
n ⊙ θn−1)

†
=

(
1, L(θ†

n ⊙ θn−1)
∗
1m−1

)
=

(
1, L2

θ
∗
nθ

∗
n−11m−1

)
.

Here, ∗ and † act on a general vector in the sense of (22). Applying (24) once more, we get

‖Qn(x) − e
(0)‖ ≤ ‖q(1,L2θ∗

n
θ∗
n−11m−1)(Qn−2(x)) − e

(0)‖.

The pattern is clear. Letting ηn := Ln
∏n

k=1 θ
∗
k, we obtain by induction

‖Qn(x) − e
(0)‖ ≤ ‖q(1,ηn1m−1)(Q0(x))− e

(0)‖. (25)

Recall that Q0(x) := x. Moreover,

‖q(1,ηn1m−1)(x)− e
(0)‖ = 2

(
1− [q(1,ηn1m−1)(x)]

0
)
= 2

(
1− gηn(x

0)
)

(26)

where the first inequality is by (21), and the second is easily verified by noting that all the elements
of (1, ηn1m−1), except the first, are equal. Putting (25) and (26) together with the bound 1−gθ(r) =
θ(1−r)
r+θ(1−r) ≤ θ 1−r

r
, which holds for θ > 0 and r ∈ (0, 1], we obtain ‖Qn(x) − e

(0)‖ ≤ 2ηn
1−x0

x0 .

By sub-Gaussianity assumption on {log θ∗
k}, we have

P

( 1

n

n∑

k=1

log θ∗
k − E log θ∗

1 > ε
)
≤ exp(−c nε2/σ2

∗), (27)

for some absolute constant c > 0. (Recall that σ∗ is an upper bound on the sub-Gaussian norm

‖ logθ∗
1‖ψ2 .) On the complement of the event in 27, we have

∏n

k=1 θ
∗
k ≤ en(−I∗+ε), which com-

pletes the proof.
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[15] Ö. Stenflo. A survey of average contractive iterated function systems. J. Diff. Equa. and Appl.,
18(8):1355–1380, 2012.

[16] A. van der Vaart and J. Wellner. Weak Convergence and Empirical Processes: With Applica-
tions to Statistics. Springer, 1996.

[17] A. A. Amini and X. Nguyen. Bayesian inference as iterated random functions with applications
to sequential inference in graphical models. arXiv preprint.

[18] A. A. Amini and X. Nguyen. Sequential detection of multiple change points in networks:
a graphical model approach. IEEE Transactions on Information Theory, 59(9):5824–5841,
2013.

9


