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These notes provide a short introduction to common matrix norms. (This is a rough draft.
There are most likely mistakes.)

Terminology: PSD = Positive Semi-Definite matrices.

1 Vector `p norms

The `p vector norms are defined as

‖x‖p :=
( n∑
i=1

|xi|p
)1/p

for any x ∈ Rn and p ∈ [1,∞). The `∞ norm is defined as ‖x‖∞ = maxj |xj |.

Exercise 1.1. Show that ‖x‖∞ = limp→∞ ‖x‖p.

Exercise 1.2. Show that ‖ · ‖p is a (proper) norm for p ∈ [1,∞].

For p ∈ (0, 1), ‖ · ‖p defines a quasi-norm, i.e., it fails the triangle inequality, but x 7→ ‖x‖pp
is subadditive:

‖x+ y‖pp ≤ ‖x‖pp + ‖y‖pp.

It follows that x 7→ ‖x‖pp defines a so-called F -norm. We denote the unit ball of `p as

Bp := {x : ‖x‖p ≤ 1 }.

If we want to emphasize the dimension we write Bnp := {x ∈ Rn : ‖x‖p ≤ 1}. The space Rn
equipped with `p norm is usually written as `np = (Rn, ‖ · ‖p). This is a finite-dimensional
Banach space.

Exercise 1.3. Show that Bp is a convex set for p ∈ [1,∞].

1.1 Duality

Let p, p′ ∈ [1,∞] be dual exponents, i.e. 1/p+ 1/p′ = 1. Then, Hölder inequality gives

|〈x, y〉| ≤ ‖x‖p ‖y‖p′ , ∀x, y ∈ Rn.

Since for every x, the inequality is achieved by some y, it follows that ‖ · ‖p and ‖ · ‖p′ are dual
norms, e.g.:

‖x‖p′ = max
‖y‖p≤ 1

〈x, y〉 = max
y ∈Bp

〈x, y〉 = max
y ∈Bp

|〈x, y〉|. (1)
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1.2 Interpolation

Let p0, p1 ∈ (0,∞], and for θ ∈ (0, 1) let 1
pθ

= 1−θ
p0

+ θ
p1

. Then,

‖x‖pθ ≤ ‖x‖
1−θ
p0 ‖x‖

θ
p1 (log-convexity). (2)

This is saying that 1/p 7→ log ‖x‖p is convex over [0,∞] for every fixed x.

2 Matrix norms

2.1 Operator norms

Consider a matrix Rm×n. We can view the matrix as an operator A : (Rn, ‖ · ‖p)→ (Rm, ‖ · ‖q).
The corresponding operator norm is

|||A|||p,q := |||A|||p→q := max
‖x‖p ≤ 1

‖Ax‖q. (3)

It measures the radius of the smallest `q ball (centered at origin) that contains the image of `p
ball under A, that is:

Exercise 2.1. Show that |||A|||p→q = inf{t ≥ 0 : ABnp ⊂ tBmq }.

Exercise 2.2. Show the following alternative representations of the operator norm:

|||A|||p→q = max
‖x‖p = 1

‖Ax‖q = max
x 6=0

‖Ax‖q
‖x‖p

.

The definition of the operator norm has the following basic consequences:

Exercise 2.3. Show that ‖Ax‖q ≤ |||A|||p,q‖x‖p for all x ∈ Rn and all p, q ∈ (0,∞].

Exercise 2.4. Prove the multiplicative property for two conformal matrices A and B:

|||AB|||p,q ≤ |||A|||p,r|||B|||r,q. (4)

One usually writes |||A|||p = |||A|||p,p. The special case |||A|||2 = |||A|||2,2 is often called “the”
operator norm. Other notations for “the” operator norm are

|||A|||op = ‖A‖ = |||A|||2 := max
‖x‖2 =1

‖Ax‖2 = max
x,y: ‖x‖2 = ‖y‖2 =1

〈Ax, y〉

For a symmetric matrix A ∈ Rn×n, the operator norm has the following alternative char-
acterization:

|||A|||2 = max
‖x‖2=1

|〈Ax, x〉|. (5)

Exercise 2.5. Show (5), using the eigenvalue decomposition of A (Section 3).

Exercise 2.6. Argue that the absolute value in (5) cannot be dropped in general.

Exercise 2.7. Give a counterexample to show that (5) does not necessarily hold for nonsym-
metric matrices.
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Exercise 2.8. Show that `1 and `∞ operator norms are given by

|||A|||1 = |||A|||1→1 = max
j

m∑
i=1

|aij |, |||A|||∞ = |||A|||∞→∞ = max
i

n∑
j=1

|aij |

that is, |||A|||1 is the maximum absolute column sum, and |||A|||∞ is the maximum absolute row
sum.

Exercise 2.9. Show that for any p ∈ [1,∞],

|||A|||p→∞ = max
i
‖Ai∗‖p′

where p′ is the dual exponent to p and Ai∗ is the ith row of A.

2.1.1 Interpolation

The following theorem interpolates between operator norms:

Theorem 1 (Riesz–Thorin). For pi, qi ∈ [1,∞], i = 0, 1, and θ ∈ (0, 1),

|||A|||pθ, qθ ≤ |||A|||
1−θ
p0, q0 |||A|||

θ
p1, q1 .

where pθ = (1− θ)p0 + θp1 and qθ = (1− θ)q0 + θq1.

A special case of Riesz–Thorin is the following:

|||A|||2 ≤
√
|||A|||1|||A|||∞, and if A is symmetric |||A|||2 ≤ |||A|||1 = |||A|||∞.

This special case is very useful in bounding the operator norm by bounding row sums and
column sums of A. An alternative equivalent statement is this: Assume that all the row sums
of A are bounded by a and all the column sums by b. Then, |||A|||op ≤

√
ab.

2.1.2 Duality

Here A∗ is the adjoint of A, which for us is the same as AT . Recall that p′ is the Hölder
exponent dual to p. We have

|||A|||p,q = max
x∈Bp

‖Ax‖q = max
x∈Bp, y ∈Bq′

〈Ax, y〉

=

(a) max
x∈Bp, y ∈Bq′

〈x,A∗y〉 = max
y ∈Bq′

‖A∗y‖p′ = |||A∗|||q′,p′ .

Equality (a) uses the defining property of the adjoint A∗. In can be verified directly in our
case using A∗ = AT and 〈x, y〉 = xT y.
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2.2 Frobenius norm

The Frobenius norm a matrix A ∈ Rn×m is defined as

|||A|||F :=
(∑
i,j

A2
ij

)1/2
. (6)

Let us write vec(A) for the vector obtained by concatenating the columns of A. For A ∈ Rn×m
we have vec(A) ∈ Rmn. We note that |||A|||F = ‖ vec(A)‖2.

By viewing matrices as vectors, we can go further and extend the usual Euclidean inner
product to matrices, by defining

〈A,B〉 := 〈vec(A), vec(B)〉 = vec(A)T vec(B). (7)

Exercise 2.10. Show that 〈A,B〉 = tr(ATB).

Note that |||A|||F =
√
〈A,A〉. The space of n × m matrices equipped the above inner

product is a Hilbert space, with norm being the Frobenius norm, which is also referred to as
the Hilbert–Schmidt norm.

Exercise 2.11. Let A ∈ Rn×m and {ei} be any basis for Rm. Show that |||A|||2F =
∑

i ‖Aei‖22.

2.3 Unitarily-invariant norms

A matrix norm is unitarily invariant if |||A||| = |||UAW ||| for unitary (or orthogonal) matrices U
and W .

Let A = UΣV T be a SVD of A, where Σ = diag(σ1, . . . , σn) contains the singular values
of A, nonnegative by definition. We order them as σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. We also write
σi = σi(A) to emphasize that we are talking about the singular values of A. Let σ = (σi) and
σ(A) = (σi(A)) denote the vector of singular values.

1. The operator norm ||| · |||op = ||| · |||2 is unitarily invariant, a direct consequence of unitary
invariance of the `2 norm. Hence, |||A|||op = |||Σ|||op = max{

∑
i σix

2
i :
∑

i x
2
i = 1} = ‖σ‖∞.

That is, |||A|||op = σ1(A).

2. The Frobenius norm defined as |||A|||F = (
∑

ij A
2
ij)

1/2 is unitarily invariant. This can be

seen by writing |||A|||2F = 〈A,A〉 = tr(ATA) = tr(Σ2) = ‖σ‖22 using invariance of trace
under circular permutations. That is, |||A|||F = (

∑
i σ

2
i (A))1/2.

3. The nuclear norm, also known as the trace norm, defined by |||A|||∗ := ‖σ‖1 =
∑n

i=1 σi(A)
is clearly unitarily invariant.

Using the relation between `∞, `2 and `1 norm we have

|||A|||2 ≤ |||A|||F ≤ |||A|||∗

In general, one defines the Schatten-p matrix norms as |||A|||Sp := ‖σ(A)‖p. The cases p = 1, 2,∞
correspond to the nuclear, Frobenius and operator norms, respectively.
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2.4 Inequalities

Exercise 2.12. Show that for any two matrices A ∈ Rm×r and B ∈ Rr×n:

|||AB|||F ≤ |||A|||op|||B|||F (8)

From (8) deduce that Frobenious norm is multiplicative: |||AB|||F ≤ |||A|||F |||B|||F .

Exercise 2.13. Show that for two PSD matrices A and B,

tr(AB) ≤ tr(A)|||B|||op.

Give a counterexample to show that the PSD assumption for both A and B cannot be dropped.

3 Matrix decompositions

Every symmetric matrix has the following eigenvalue decomposition (EVD); it is also referred
to as the spectral decomposition.

Theorem 2 (EVD). Let A ∈ Rn×n be a symmetric matrix. Then, there is an orthogonal
matrix U = [u1 | u2 | · · · | un] ∈ Rn×n and a diagonal matrix Λ = diag(λ1, λ2, . . . , λn) such that

A = UΛUT =
n∑
i=1

λiuiu
T
i .
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4 Hints for exercises

• Exercise 1.2: For the triangle inequality use |xj + yj |p ≤ |xj ||xj + yj |p−1 + |yj ||xj +
yj |p−1 and the Hölder inequality. The triangle inequality for `p norms is also called the
Minkowski inequality.

• Exercise 1.3: It is a consequence of ‖ · ‖p being a norm.

• Exercise 2.6: Consider a negative definite matrix.

• Exercise 2.12: Let B = [b1 | b2 | · · · | bn] be the column decomposition of B.

• Exercise 2.13: Reduce to the case where B is diagonal.
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