Primer on matrix norms

Arash A. Amini

April 13, 2021

These notes provide a short introduction to common matrix norms. (This is a rough draft. There are most likely mistakes.)

Terminology: PSD = Positive Semi-Definite matrices.

1 Vector ℓ_p norms

The ℓ_p vector norms are defined as

$$||x||_p := \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

for any $x \in \mathbb{R}^n$ and $p \in [1, \infty)$. The ℓ_{∞} norm is defined as $||x||_{\infty} = \max_j |x_j|$.

Exercise 1.1. Show that $||x||_{\infty} = \lim_{p \to \infty} ||x||_p$.

Exercise 1.2. Show that $\|\cdot\|_p$ is a (proper) norm for $p \in [1, \infty]$.

For $p \in (0,1)$, $\|\cdot\|_p$ defines a quasi-norm, i.e., it fails the triangle inequality, but $x \mapsto \|x\|_p^p$ is subadditive:

$$||x+y||_p^p \le ||x||_p^p + ||y||_p^p$$

It follows that $x \mapsto ||x||_p^p$ defines a so-called *F*-norm. We denote the unit ball of ℓ_p as

$$\mathbb{B}_p := \{ x : \|x\|_p \le 1 \}.$$

If we want to emphasize the dimension we write $\mathbb{B}_p^n := \{x \in \mathbb{R}^n : ||x||_p \leq 1\}$. The space \mathbb{R}^n equipped with ℓ_p norm is usually written as $\ell_p^n = (\mathbb{R}^n, ||\cdot||_p)$. This is a finite-dimensional Banach space.

Exercise 1.3. Show that \mathbb{B}_p is a convex set for $p \in [1, \infty]$.

1.1 Duality

Let $p, p' \in [1, \infty]$ be dual exponents, i.e. 1/p + 1/p' = 1. Then, Hölder inequality gives

$$|\langle x, y \rangle| \le ||x||_p ||y||_{p'}, \quad \forall x, y \in \mathbb{R}^n.$$

Since for every x, the inequality is achieved by some y, it follows that $\|\cdot\|_p$ and $\|\cdot\|_{p'}$ are dual norms, e.g.:

$$\|x\|_{p'} = \max_{\|y\|_p \le 1} \langle x, y \rangle = \max_{y \in \mathbb{B}_p} \langle x, y \rangle = \max_{y \in \mathbb{B}_p} |\langle x, y \rangle|.$$
(1)

1.2 Interpolation

Let $p_0, p_1 \in (0, \infty]$, and for $\theta \in (0, 1)$ let $\frac{1}{p_{\theta}} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}$. Then,

$$\|x\|_{p_{\theta}} \le \|x\|_{p_0}^{1-\theta} \|x\|_{p_1}^{\theta} \quad \text{(log-convexity)}.$$

$$\tag{2}$$

This is saying that $1/p \mapsto \log ||x||_p$ is convex over $[0, \infty]$ for every fixed x.

2 Matrix norms

2.1 Operator norms

Consider a matrix $\mathbb{R}^{m \times n}$. We can view the matrix as an operator $A : (\mathbb{R}^n, \|\cdot\|_p) \to (\mathbb{R}^m, \|\cdot\|_q)$. The corresponding operator norm is

$$||A||_{p,q} := ||A||_{p \to q} := \max_{||x||_p \le 1} ||Ax||_q.$$
(3)

It measures the radius of the smallest ℓ_q ball (centered at origin) that contains the image of ℓ_p ball under A, that is:

Exercise 2.1. Show that $|||A|||_{p \to q} = \inf\{t \ge 0 : A \mathbb{B}_p^n \subset t \mathbb{B}_q^m\}.$

Exercise 2.2. Show the following alternative representations of the operator norm:

$$|\!|\!| A |\!|\!|_{p \to q} = \max_{\|x\|_p = 1} \|Ax\|_q = \max_{x \neq 0} \frac{\|Ax\|_q}{\|x\|_p}.$$

The definition of the operator norm has the following basic consequences:

Exercise 2.3. Show that $||Ax||_q \leq |||A|||_{p,q} ||x||_p$ for all $x \in \mathbb{R}^n$ and all $p, q \in (0, \infty]$.

Exercise 2.4. Prove the multiplicative property for two conformal matrices A and B:

$$||AB||_{p,q} \le ||A||_{p,r} ||B||_{r,q}.$$
(4)

One usually writes $|||A|||_p = |||A|||_{p,p}$. The special case $|||A|||_2 = |||A|||_{2,2}$ is often called "the" operator norm. Other notations for "the" operator norm are

$$|||A|||_{\text{op}} = ||A|| = |||A|||_2 := \max_{||x||_2 = 1} ||Ax||_2 = \max_{x,y: \ ||x||_2 = ||y||_2 = 1} \langle Ax, y \rangle$$

For a symmetric matrix $A \in \mathbb{R}^{n \times n}$, the operator norm has the following alternative characterization:

$$|||A|||_{2} = \max_{||x||_{2}=1} |\langle Ax, x \rangle|.$$
(5)

Exercise 2.5. Show (5), using the eigenvalue decomposition of A (Section 3).

Exercise 2.6. Argue that the absolute value in (5) cannot be dropped in general.

Exercise 2.7. Give a counterexample to show that (5) does not necessarily hold for nonsymmetric matrices.

Exercise 2.8. Show that ℓ_1 and ℓ_∞ operator norms are given by

$$|\!|\!|A|\!|\!|_1 = |\!|\!|A|\!|\!|_{1\to 1} = \max_j \sum_{i=1}^m |a_{ij}|, \qquad |\!|\!|A|\!|\!|_\infty = |\!|\!|A|\!|\!|_{\infty\to\infty} = \max_i \sum_{j=1}^n |a_{ij}|$$

that is, $||A||_1$ is the maximum absolute column sum, and $||A||_{\infty}$ is the maximum absolute row sum.

Exercise 2.9. Show that for any $p \in [1, \infty]$,

$$|||A|||_{p\to\infty} = \max_{i} ||A_{i*}||_{p'}$$

where p' is the dual exponent to p and A_{i*} is the *i*th row of A.

2.1.1 Interpolation

The following theorem interpolates between operator norms:

Theorem 1 (Riesz-Thorin). For $p_i, q_i \in [1, \infty]$, i = 0, 1, and $\theta \in (0, 1)$,

$$|||A|||_{p_{\theta}, q_{\theta}} \leq |||A|||_{p_{0}, q_{0}}^{1-\theta} |||A|||_{p_{1}, q_{1}}^{\theta}.$$

where $p_{\theta} = (1 - \theta)p_0 + \theta p_1$ and $q_{\theta} = (1 - \theta)q_0 + \theta q_1$.

A special case of Riesz–Thorin is the following:

$$|\hspace{-0.15cm}|\hspace{-0.15cm}| A| |\hspace{-0.15cm}| _2 \leq \sqrt{|\hspace{-0.15cm}| A| |\hspace{-0.15cm}| _1 |\hspace{-0.15cm}| A| |\hspace{-0.15cm}| _\infty}, \quad \text{and if A is symmetric } |\hspace{-0.15cm}| A| |\hspace{-0.15cm}| _2 \leq |\hspace{-0.15cm}| A| |\hspace{-0.15cm}| _1 = |\hspace{-0.15cm}| A| |\hspace{-0.15cm}| _\infty.$$

This special case is very useful in bounding the operator norm by bounding row sums and column sums of A. An alternative equivalent statement is this: Assume that all the row sums of A are bounded by a and all the column sums by b. Then, $||A||_{op} \leq \sqrt{ab}$.

2.1.2 Duality

Here A^* is the adjoint of A, which for us is the same as A^T . Recall that p' is the Hölder exponent dual to p. We have

$$\begin{split} \|A\|_{p,q} &= \max_{x \in \mathbb{B}_p} \|Ax\|_q = \max_{x \in \mathbb{B}_p, \ y \in \mathbb{B}_{q'}} \langle Ax, y \rangle \\ &\stackrel{=}{\underset{(a)}{=}} \max_{x \in \mathbb{B}_p, \ y \in \mathbb{B}_{q'}} \langle x, A^*y \rangle = \max_{y \in \mathbb{B}_{q'}} \|A^*y\|_{p'} = \|A^*\|_{q',p'}. \end{split}$$

Equality (a) uses the defining property of the adjoint A^* . In can be verified directly in our case using $A^* = A^T$ and $\langle x, y \rangle = x^T y$.

2.2 Frobenius norm

The Frobenius norm a matrix $A \in \mathbb{R}^{n \times m}$ is defined as

$$|||A|||_F := \left(\sum_{i,j} A_{ij}^2\right)^{1/2}.$$
(6)

Let us write $\operatorname{vec}(A)$ for the vector obtained by concatenating the columns of A. For $A \in \mathbb{R}^{n \times m}$ we have $\operatorname{vec}(A) \in \mathbb{R}^{mn}$. We note that $||A|||_F = ||\operatorname{vec}(A)||_2$.

By viewing matrices as vectors, we can go further and extend the usual Euclidean inner product to matrices, by defining

$$\langle A, B \rangle := \langle \operatorname{vec}(A), \operatorname{vec}(B) \rangle = \operatorname{vec}(A)^T \operatorname{vec}(B).$$
 (7)

Exercise 2.10. Show that $\langle A, B \rangle = \operatorname{tr}(A^T B)$.

Note that $|||A|||_F = \sqrt{\langle A, A \rangle}$. The space of $n \times m$ matrices equipped the above inner product is a Hilbert space, with norm being the Frobenius norm, which is also referred to as the Hilbert–Schmidt norm.

Exercise 2.11. Let $A \in \mathbb{R}^{n \times m}$ and $\{e_i\}$ be any basis for \mathbb{R}^m . Show that $||A||_F^2 = \sum_i ||Ae_i||_2^2$.

2.3 Unitarily-invariant norms

A matrix norm is unitarily invariant if ||A|| = ||UAW|| for unitary (or orthogonal) matrices U and W.

Let $A = U\Sigma V^T$ be a SVD of A, where $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_n)$ contains the singular values of A, nonnegative by definition. We order them as $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$. We also write $\sigma_i = \sigma_i(A)$ to emphasize that we are talking about the singular values of A. Let $\sigma = (\sigma_i)$ and $\sigma(A) = (\sigma_i(A))$ denote the vector of singular values.

- 1. The operator norm $\| \cdot \|_{\text{op}} = \| \cdot \|_2$ is unitarily invariant, a direct consequence of unitary invariance of the ℓ_2 norm. Hence, $\| A \|_{\text{op}} = \| \Sigma \|_{\text{op}} = \max\{\sum_i \sigma_i x_i^2 : \sum_i x_i^2 = 1\} = \| \sigma \|_{\infty}$. That is, $\| A \|_{\text{op}} = \sigma_1(A)$.
- 2. The Frobenius norm defined as $||A|||_F = (\sum_{ij} A_{ij}^2)^{1/2}$ is unitarily invariant. This can be seen by writing $||A|||_F^2 = \langle A, A \rangle = \operatorname{tr}(A^T A) = \operatorname{tr}(\Sigma^2) = ||\sigma||_2^2$ using invariance of trace under circular permutations. That is, $||A|||_F = (\sum_i \sigma_i^2(A))^{1/2}$.
- 3. The nuclear norm, also known as the trace norm, defined by $||A||_* := ||\sigma||_1 = \sum_{i=1}^n \sigma_i(A)$ is clearly unitarily invariant.

Using the relation between ℓ_{∞} , ℓ_2 and ℓ_1 norm we have

$$|||A|||_2 \le |||A|||_F \le |||A|||_*$$

In general, one defines the Schatten-*p* matrix norms as $||A|||_{S_p} := ||\sigma(A)||_p$. The cases $p = 1, 2, \infty$ correspond to the nuclear, Frobenius and operator norms, respectively.

2.4 Inequalities

Exercise 2.12. Show that for any two matrices $A \in \mathbb{R}^{m \times r}$ and $B \in \mathbb{R}^{r \times n}$:

$$||AB||_{F} \le ||A||_{op} ||B||_{F} \tag{8}$$

From (8) deduce that Frobenious norm is multiplicative: $||AB||_F \leq ||A||_F ||B||_F$.

Exercise 2.13. Show that for two PSD matrices A and B,

$$\operatorname{tr}(AB) \le \operatorname{tr}(A) |\!|\!| B |\!|\!|_{op}.$$

Give a counterexample to show that the PSD assumption for both A and B cannot be dropped.

3 Matrix decompositions

Every symmetric matrix has the following eigenvalue decomposition (EVD); it is also referred to as the spectral decomposition.

Theorem 2 (EVD). Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then, there is an orthogonal matrix $U = [u_1 | u_2 | \cdots | u_n] \in \mathbb{R}^{n \times n}$ and a diagonal matrix $\Lambda = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_n)$ such that

$$A = U\Lambda U^T = \sum_{i=1}^n \lambda_i u_i u_i^T.$$

4 Hints for exercises

- Exercise 1.2: For the triangle inequality use $|x_j + y_j|^p \leq |x_j| |x_j + y_j|^{p-1} + |y_j| |x_j + y_j|^{p-1}$ and the Hölder inequality. The triangle inequality for ℓ_p norms is also called the Minkowski inequality.
- Exercise 1.3: It is a consequence of $\|\cdot\|_p$ being a norm.
- $\bullet\,$ Exercise 2.6: Consider a negative definite matrix.
- Exercise 2.12: Let $B = [b_1 | b_2 | \cdots | b_n]$ be the column decomposition of B.
- Exercise 2.13: Reduce to the case where B is diagonal.