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Abstract

We prove that ⌦(s log p) samples suffice to learn a sparse Gaussian directed acyclic
graph (DAG) from data, where s is the maximum Markov blanket size. This
improves upon recent results that require ⌦(s4 log p) samples in the equal variance
case. To prove this, we analyze a popular score-based estimator that has been
the subject of extensive empirical inquiry in recent years and is known to achieve
state-of-the-art results. Furthermore, the approach we study does not require strong
assumptions such as faithfulness that existing theory for score-based learning
crucially relies on. The resulting estimator is based around a difficult nonconvex
optimization problem, and its analysis may be of independent interest given recent
interest in nonconvex optimization in machine learning. Our analysis overcomes
the drawbacks of existing theoretical analyses, which either fail to guarantee
structure consistency in high-dimensions (i.e. learning the correct graph with
high probability), or rely on restrictive assumptions. In contrast, we give explicit
finite-sample bounds that are valid in the important p � n regime.

1 Introduction

With the growing importance of explainability and interpretability in modern machine learning
[11, 64, 65], graphical models continue to play an important role in applications including genomics
[72], health care [41], and finance [50] owing to their natural interpretability and simplicity. For this
reason, rigorous theoretical understanding of graphical models is an important challenge in modern
machine learning. Although estimating undirected graphical models can be formulated as a convex
program, DAG models cannot be [15], which has limited our understanding of their finite-sample
properties. Despite impressive progress in our understanding of nonconvex models across a spectrum
of problems including dictionary learning [58], tensor decomposition [16, 18], deep neural networks
[13, 14], and regression [36, 37], learning DAGs remains an important problem with many open
questions, particularly in the high-dimensional (p � n) setting.

Among the many strategies for learning DAGs from data, score-based learning is a classical approach
that is popular in practice. While much is known about greedy search algorithms [6, 40], much
less is known regarding the statistical properties of methods that find a global minimizer of a score
function. One of the advantages of the latter approach is a potential relaxation of assumptions such
as faithfulness [61]. In this paper, we prove that a score-based method requires only O(s log p)
samples, where s is the maximum Markov blanket size, at the cost of being difficult to compute since
it requires solving a nonconvex, NP-hard optimization problem. This is a well-known drawback
of score-based methods, although recent work has demonstrated that approximate methods can
outperform state-of-the-art methods [1, 25, 70], and even come close to finding the global minimum
in practice [77].

More specifically, we characterize the finite-sample, high-dimensional behaviour of the following
score-based DAG estimator, formulated as the solution of a constrained, nonsmooth, nonconvex
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optimization problem:

bB 2 argmin
B 2D

Q(B), Q(B) =
1

2n
kX�XBk2F + ⇢�(B), (1)

where D is the set of p⇥p matrices representing the weighted adjacency matrix of a DAG, X 2 Rn⇥p

is the data, and ⇢� is a suitably chosen regularizer (Section 2.3). In the literature on learning DAGs,
Q is called a score function. This estimator has been the subject of extensive empirical inquiry [e.g.
1, 26, 51, 54, 68, 77], and outperforms classical approaches such as the PC algorithm [57] and greedy
equivalence search [GES, 6] on high-dimensional data. Moreover, although computation of bB is
NP-hard [7], it can be computed exactly using dynamic programming [43, 44, 55, 56] and mixed
integer programs [9, 10], and approximate algorithms for computing this estimator scale to modern
problem sizes with tens of thousands of variables [1, 3].

Contributions In this paper we provide a comprehensive portrait of the behaviour of bB, provid-
ing much needed justification—and caution—for its use in applications. Specifically, our main
contributions are as follows:

1. We provide explicit, finite-sample structure recovery guarantees for the score-based estimator (1)
that are valid when p � n. This is in contrast to recent work on score-based methods that either
studies asymptotic properties of specific algorithms under faithfulness [40], or does not prove exact
structure recovery [35, 62].
2. We develop a new proof technique in order to simplify the analysis of score-based estimators,
based on a novel lattice construction and a reduction to neighbourhood regression. This construction
allows us to provide uniform control over the superexponential family of neighbourhood regression
problems that define (1), a result that is potentially interesting in its own right.
3. We use this construction to prove an ⌦(s log p) sample complexity under which bB recovers the
true DAG with high probability, which improves upon existing results. We also generalize existing
results on estimating identifiable DAGs with equal error variances to what we call minimum-trace
DAGs.
4. We discuss the more general, nonidentifiable case. In this setting, there is no “truth” to approxi-
mate, however, we show that bB still estimates a sufficiently sparse representative of the underlying
distribution.

We anticipate these results will be of interest not only to the graphical modeling community, but also
to the broader machine learning community in the way it analyzes a difficult nonconvex optimization
problem head on.

Previous work It was recently shown that it is possible to learn DAGs in high-dimensions [21–
23, 67]. These papers prove a lower bound of ⌦(k log p) on the sample complexity where k is the
maximum number of parents in the true DAG, and provide a polynomial-time algorithm that requires
O(s4 log p) samples to recover this DAG. These papers are based on a new approach—distinct from
traditional score-based or constraint-based learning—that uses second-order information to find a
node ordering. Once this ordering is found, estimation is straightforward. Earlier work on the linear
non-Gaussian case uses independent component analysis to identify the true DAG model [52, 53] but
requires n > p and as such is not high-dimensional.

Perhaps surprisingly, despite score-based methods being very popular in practice, none of these
papers consider score-based methods. Asymptotically, consistency of the score-based GES algorithm
is well-known [6, 40], however, to the best of our knowledge finite-sample complexity results are
not available for GES. Furthermore, these results assume strong faithfulness, which—as the name
suggests—is an even stronger version of faithfulness that is known to be very stringent and may
not hold in practice [34, 61]. By assuming faithfulness, the Markov equivalence class—and hence
CPDAG—of a distribution becomes identified, which greatly simplifies the theoretical analysis. Only
a few recent papers have studied finite-sample properties of score-based estimators: van de Geer and
Bühlmann [62] establish `2-consistency of a restricted `0-regularized MLE, Loh and Bühlmann [35]
analyze the empirical score of DAGs that are consistent with an estimated moral graph, and Yuan
et al. [71] analyze a constrained MLE. Unfortunately, the practical implications of these interesting
theoretical results have been limited by certain aspects of their analysis. Although van de Geer and
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Bühlmann [62] and Yuan et al. [71] avoid the faithfulness assumption, their structure consistency
results require p  n and thus do not provide a direct theory for the high-dimensional structure
learning problem. Loh and Bühlmann [35] do not consider the problem of structure recovery, and one
of our contributions is to show that by properly regularizing the score in high-dimensions, structure
recovery is possible when p � n.

Perhaps surprisingly, proving consistency for the global minimizer of (1) turns out to be a unique
challenge: Despite a growing literature on theory for nonconvex problems [5, 8, 13, 14, 16, 18, 19, 28–
30, 33, 38, 58, 60], existing techniques from the graphical modeling literature fail to capture the
essence of the program (1). Classical arguments such as the basic inequality can be used to prove `2-
rates of convergence as in [63], but translating these rates into structure learning (e.g. by thresholding)
requires n = ⌦(p). By assuming strong faithfulness, one can simplify the problem substantially
by reducing it to a constraint-based method as in [40]. The latter work in particular sidesteps all
of the difficulties in analyzing the nonconvex program (1), which constitute arguably some of the
most interesting theoretical aspects of this problem. More discussion on these points can be found in
Section 6.

2 Background

Our approach is based on the structural equation model (SEM) interpretation of Gaussian DAGs.
Suppose X = (X1, . . . , Xp) is a random vector satisfying

X = eBTX + e", e" ⇠ Np(0, e⌦), (2)

where eB 2 D and e⌦ is a p ⇥ p positive diagonal matrix of variances. One can interpret eB as the
weighted adjacency matrix of a graph. Given an n⇥ p random matrix X whose rows are i.i.d. drawn
according to the model (2), we define a penalized least-squares (PLS) score function by (1). It follows
from (2) that X ⇠ Np(0,⌃( eB, e⌦)), where

⌃( eB, e⌦) := (I � eB)�T e⌦(I � eB)�1. (3)

We will assume that ⌃ � 0, and moreover that rmin(⌃) ⇣ rmax(⌃) ⇣ 1, i.e. the eigenvalues of ⌃ are
bounded away from 0 and 1. This is purely to simplify the theorem statements; explicit constants
depending on ⌃ and its eigenvalues can be found in the supplement.

Notation We write a & b (resp. a . b) to mean that a � C · b (resp. a  C · b) for some constant
C > 0. In all cases, exact values for these constants can be found in the supplement.

2.1 Identifiability

The map ( eB, e⌦) 7! ⌃( eB, e⌦) is not one-to-one, i.e. without further assumptions the model (2) is
nonidentifiable. Recent work [12, 21, 62] assumes equivariance, i.e. ⌃ = ⌃( eB, e!2I) for some
e!2 > 0, which ensures that eB is identifiable [47]. We generalize this condition as follows: Let Rp

+
denote the space of p⇥ p positive diagonal matrices and define the equivalence class of ⌃ by

D(⌃) =
�
( eB, e⌦) 2 D⇥ Rp

+ : ⌃ = ⌃( eB, e⌦)
 
, (4)

and call eBmin a minimum-trace DAG if ( eBmin, e⌦min) 2 argmin{tr e⌦ : ( eB, e⌦) 2 D(⌃)}. In other
words, eBmin minimizes the total conditional variance amongst all of the DAGs that represent ⌃. We
will sometimes abuse notation by writing eB 2 D(⌃) or e⌦ 2 D(⌃) for short. The following lemma
connects equivariant DAGs to minimum-trace DAGs:

Lemma 2.1. Suppose ⌃ is given and ⌃ = ⌃( eB, e!2I) for some e!2 > 0. Then eB is the unique
minimum-trace DAG in D(⌃).

In general, minimum-trace DAGs are not unique, so this lemma shows that the concept of minimum-
trace provides a convenient generalization of known identifiability results for equivariant DAGs.

Beyond their connection with equivariance DAGs, it is important to address why minimum-trace
DAGs should be of interest in the sequel. As discussed previously, despite a lack of theoretical
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justification, the estimator bB is popular in practice [e.g. 1, 26, 51, 54, 68, 77]. Our motivation is to
answer fundamental questions such as does bB converge, and if so, to what? We note that even the
former question is surprisingly tricky; see Section 4. The results presented in this paper will show
that not only does bB converge, we can pinpoint what it converges to, namely a minimum-trace DAG.
The importance of this result lies not in the fact that we might be interested in minimum-trace DAGs,
but perhaps that we might not be: Whether or not one would be interested in a minimum-trace (or
equivariance) DAG depends on the application.

2.2 Superstructures

In addition to (1), we will also study a restricted version of bB defined as follows: Given an undirected
graph G = (V,E), define DG = {B 2 D : B ⇢ G}, i.e. the subset of D that are subgraphs of G, and

bB(G) 2 argmin
B 2DG

Q(B), (5)

where Q(B) is defined as in (1). The graph G is called a superstructure, and reduces both the
computational and statistical complexity of score-based methods [42, 46]. We recall here also the
moral graph m(B) of a DAG B, defined as the undirected graph that results from ignoring edge
orientation in B and adding an undirected edge between the parents of each node in B. Clearly, m(B)
is a superstructure of B.

2.3 Regularizer

Traditionally, score functions use `0-regularization, i.e. ⇢�(B) = �2
P

i,j 1(�ij 6= 0) [6, 20, 62].
This penalty leads to good theoretical properties but is difficult to optimize due to its combinatorial
nature. For this reason, we consider the `1-regularizer, ⇢�(B) = �

P
i,j |�ij |, which is a convex

surrogate of the `0-regularizer that is easier to optimize [77], as well as the minimax concave
penalty (MCP) [73], which is a continuous, nonconvex interpolant between `0 and `1 regularization.
Although easier to compute with, `1 regularization is known to require strong incoherence conditions
for consistent variable selection [39, 66, 76], whereas the MCP does not require these conditions.
More details can be found in Appendix A.2 of the supplement.

The following condition formalizes the assumptions we place on ⇢�. Let Nj(G) denote the neigh-
bourhood of Xj in G, i.e. the set of all vertices adjacent to Xj .
Condition 2.1 (Regularizer). The regularizer ⇢� is either `1 or the MCP. If `1 regularization is used,
then additionally assume that ⇣(G) < 1, where

⇣(G) := sup
1jp

sup
S⇢Nj(G)

k⌃ScS(⌃SS)
�1k1,1. (6)

Here, kAk1,1 = maxi
P

j |aij |. Crucially, if ⇢� is the MCP, then we are left with a continuous
optimization problem without requiring any incoherence conditions.

3 The identifiable case: Recovery of minimum-trace DAGs

We begin with the identifiable case, i.e. eBmin is unique.

3.1 Assumptions

Given a minimum-trace DAG eBmin, define for ⌘ > 0

�(⌘) := inf
e⌦ 6=e⌦min
e⌦2D(⌃)

h
(1� ⌘) tr e⌦� (1 + ⌘) tr e⌦min � ⇢�( eBmin)

i
. (7)

Given a superstructure G, let s = s(G) denote the maximum degree of G, and define

�1 = �1(G) := 4

r
s log[3ep/s] + log p

n
, (8)

�2 = �2(G) :=
⇣
1 + 3

p
2

r
s log(ep/s)

n

⌘2
. (9)
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Condition 3.1 (Identifiability). ⌃ � 0, and

(a) There exists a unique minimum-trace DAG eBmin 2 D(⌃);

(b) �1(G)  1 and �(⌘) > 0, where ⌘ := �1[1+6(⌃; s)�2] and (⌃; s) is a constant that depends
on ⌃ and s.

See (47) in the supplement for an exact expression of (⌃; s), which is roughly the maximum
condition number of the principal submatrices of ⌃ of size O(s). Condition 3.1(a) is an identifia-
bility condition on eBmin, and Condition 3.1(b) is needed to recover eBmin from finite samples. By
Lemma 2.1, Condition 3.1(a) is strictly weaker than equivariance. Under this condition, we can speak
of “the” minimum-trace DAG, which will be denoted in the sequel by ( eBmin, e⌦min). Condition 3.1(b)
is closely related to gap conditions that have appeared previously [35, 62], and is discussed in detail
in Section 3.2.

3.2 First main result: Identifiable DAGs

For any A 2 Rp⇥p, let ⌧⇤(A) := min{|aij | : aij 6= 0}. The quantity ⌧⇤( eBmin) measures the smallest
nonzero weight in eBmin, which is a measure of the signal strength in the problem.

Theorem 3.1. Suppose that Conditions 2.1 and 3.1 hold and that eBmin ⇢ G. If n & s log p,
� &

p
log p/n, and ⌧⇤( eBmin) & �, then

supp( bB(G)) = supp( eBmin)

with probability 1�O(e�k log p), where k is the maximum in-degree of eBmin.

In fact, even if Condition 3.1(a) fails—i.e. eBmin is not identifiable—the conclusions of Theorem 3.1
continue to hold for some minimum-trace DAG. In the next section, we consider the nonidentifiable
case in even greater detail (see Theorem 4.1).

The previous theorem assumes that a consistent superstructure G is known, i.e. that eBmin ⇢ G.
A standard approach is to define G by the support of a consistent estimate of the precision matrix
� = ⌃�1. The following assumption encodes the minimal requirement we need on ⌃ and eBmin:

Condition 3.2 (Superstructure). If (i, j) is an edge in m( eBmin), then �ij 6= 0.

The results in Loh and Bühlmann [35] show that as long as the entries of eBmin are drawn from a
continuous distribution, Condition 3.2 is satisfied except on a set of measure zero. For details, see
Theorem 2 and Assumption 1 therein. Under Condition 3.2, it suffices to use a consistent estimate of
the support of �, which can be estimated using known results [39]. Let b� denote such an estimate
and with some abuse of notation, denote the resulting DAG estimator by bB(b�).
Corollary 3.1. Suppose that Conditions 2.1, 3.1, and 3.2 hold. If n & s log p, � &

p
log p/n,

⌧⇤(�) & �, and ⌧⇤( eBmin) & �, then

supp( bB(b�)) = supp( eBmin)

with probability 1�O(e�k log p).

Corollary 3.1 implies that there is a score-based estimator with sample complexity ⌦(s log p). In
contrast to Ghoshal and Honorio [21], who require an element-wise consistent estimate of � (i.e.
in `1-norm), our result only requires the support of �. The former approach leads to a ⌦(s4 log p)
sample complexity, whereas our approach requires only ⌦(s log p) samples. Both of these results are
a significant improvement over existing results on score-based methods, e.g. Theorem 5.1 in [62],
which requires p . n/ log n and hence n & p.

Faithfulness and the beta-min condition Theorem 3.1 does not require the faithfulness assump-
tion, which is a standard assumption in the literature on learning DAGs for both score-based [6, 40]
and constraint-based methods [31], and is known to be very strong in practice [34, 61]. Assuming

5



faithfulness, the Markov equivalence class becomes identified, which simplifies the problem by
restricting the number of equivalent DAGs that must be controlled. Recent work has also relaxed this
assumption [21, 23, 45, 62], however, to the best of our knowledge, our result is the first such result
for score-based estimators in high-dimensions. Instead, we require a beta-min condition on the true
DAG eBmin, which is typical in the statistical literature on model selection.

Gap condition Condition 3.1(b) imposes an implicit assumption on the degree of G through the
requirement �1(G)  1 which roughly translates to s log(p/s)+ log p . n. The assumption on �(⌘),
on the other hand, is a type of identifiability condition on eBmin. Whereas Condition 3.1(a) requires
eBmin to be identifiable in the infinite sample limit, Condition 3.1(b) requires that there is a “gap” on
the order

p
s log p/n between the expected loss of eBmin and the expected loss of any other DAG in

D(⌃). To see this, note that EkX�X eBk2F /n = tr e⌦ for any ( eB, e⌦) 2 D(⌃) and define

gap(⌃) := inf
�
tr e⌦� tr e⌦min : e⌦ 6= e⌦min, e⌦ 2 D(⌃)

 
. (10)

When ⇢� is the MCP and � & ⌘, a straightforward calculation shows that the following two conditions
are sufficient to guarantee Condition 3.1(b), in addition to �1  1: There exists a � 0 such that

gap(⌃) &
hs log(p/s) + log p

n

ia
p, (11)

k eBmink0 .
h n

s log(p/s) + log p

i1�a
2
p. (12)

Thus, Condition 3.1(b) allows one to trade off the size of the “gap” in (11) with a sparsity condition
(12) on eBmin. For example, taking a 2 (0, 2) and s log(p/s) + log p ⌧ n allows gap(⌃) = o(p)
while simultaneously tolerating an average degree k eBmink0/p that grows without bound (cf. (12)).
Since the problem considered here is at least as hard as p separate regression problems, this scaling
in terms of p is expected. Similar conditions with a similar scaling have appeared in previous work
[35, 62].

4 The general case: Recovery of sparse representations

In the previous section, we leveraged strong prior information—namely identifiability and a consistent
superstructure—in order to analyze the sample complexity of learning a minimum-trace DAG. In
practice, such prior information may not be available, and in general it is well-known that Gaussian
DAGs are not identifiable [2, 62]. The estimator (1), of course, is well-defined whether or not
Condition 3.1 holds, and in practice, one typically computes bB and “hopes for the best”. Is it possible
to say more in the general setting? Surprisingly, even if there is no DAG eB 2 D(⌃) that is identifiable,
we can still provide guarantees. The idea is to first show that bB converges to some DAG eB 2 D(⌃),
and then show that eB is well-behaved compared to other representative DAGs in D(⌃). Specifically,
we will show that eB is roughly as sparse as a minimum-trace DAG.

4.1 Assumptions

Definition 4.1. Let e�j denote the jth column of eB 2 D. For any ⌃, let

d(D(⌃)) := sup
eB2D(⌃)

k eBk0, ⌧⇤(D(⌃)) := inf
eB2D(⌃)

⌧⇤( eB). (13)

We will write d = d(D(⌃)) to simplify the notation in the sequel.

Condition 4.1 (Minimum-trace DAG). ⌃ � 0, and there is a minimum-trace DAG eBmin such that

⇢�( eBmin)

tr e⌦min

� a2

r
(d+ 1) log p

n
for some a2 > 0.

Condition 4.1 can be interpreted as putting a soft lower bound on the weights in eBmin, as measured
by the regularizer ⇢� and e⌦min. For comparison, recall that the usual beta-min condition in regression
is minj |�j | & �

p
log p/n.
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4.2 Second main result: The nonidentifiable case

Our second result shows that even in the absence of identifiability assumptions, we can still guarantee
that bB recovers the support of a DAG eB 2 D(⌃), and that eB must also be sparse. In fact, we note
that even without the sparsity conclusion, it is not obvious (and indeed nontrivial to show) that bB
approaches any particular member of D(⌃).
Theorem 4.1. Suppose that Conditions 2.1 (with G the complete graph in the case of `1) and 4.1
hold. If n & d log p, � &

p
(d+ 1) log p/n, and ⌧⇤(D(⌃)) & � then there exists eB 2 D(⌃) and a

minimum-trace DAG eBmin 2 D(⌃) such that

supp( bB) = supp( eB) and ⇢�( eB) . ⇢�( bB) . ⇢�( eBmin)

with probability at least 1�O(e�d log p).

This is similar to the approach taken in van de Geer and Bühlmann [62] with some key differences:
1) Their Theorem 3.1 does not establish structure consistency, and 2) Their `0-regularized MLE
involves a thresholded parameter space that is much more difficult to compute in practice, whereas
our estimator (1) is defined over the full parameter space and involves continuous optimization.

In contrast to Theorem 3.1, Theorem 4.1 no longer requires the identifiability condition (Condi-
tion 3.1), which is replaced by Condition 4.1 on eBmin. The tradeoffs are 1) The estimator bB is no
longer guaranteed to recover an exact minimum-trace DAG, and 2) The beta-min condition and
sample complexity now depend on the sparsity parameter d, which may be larger than s and can
be large for general covariance matrices. This result also emphasizes the advantages of noncon-
vex regularization: When `1-regularization is used, the incoherence condition (6) is imposed over
every neighbourhood, which is a very severe restriction. With the MCP, there are no incoherence
assumptions whatsoever.

Sparsity A key conclusion in Theorem 4.1 is that ⇢�( eB) . ⇢�( bB) . ⇢�( eBmin): This says that bB
is consistent with a parsimonious DAG. It is easy to show that this implies k eBk0 . k bBk0 . k eBmink0
for the MCP regularizer. For the `1 penalty, we have k eBk1 . k bBk1 . k eBmink1, which can be
interpreted as a “soft” notion of sparsity.

Strong faithfulness and the beta-min condition In contrast to Theorem 3.1, which only requires
a beta-min condition on the true DAG eBmin, Theorem 4.1 requires a much stronger condition on the
smallest weight of any DAG in the equivalence class D(⌃) (cf. (13)). This is reminiscent of—but
not the same as—the strong faithfulness condition, which roughly asserts that the minimum partial
correlation between any pair of d-separated variables in the true DAG is bounded away from zero. We
leave it to future work to study this connection more carefully, however, we note here that previous
work on this problem [61] has noted the difficulty of establishing such an explicit relationship, and to
the best of our knowledge this remains an open problem. Nonetheless, the novelty of Theorem 4.1 is
in establishing finite-sample structure recovery without imposing any identifiability requirement, so
it is natural to expect that stronger assumptions will be needed.

5 Proof outline

Our basic strategy is to reduce the analysis of bB to a family of neighbourhood regression problems,
using a similar approach as in our preprint [2]. This is similar to undirected models, for which the
analysis can be reduced to p different regression problems, namely the regression of Xj onto X�j

[39, 69]. Unfortunately, for DAGs, there are p2p possible regression problems (the regression of Xj

onto any subset S ⇢ [p]j), which quickly become intractable to control uniformly. The manner in
which these problems are controlled highlights the main technical difference between the proofs of
Theorems 3.1 and 4.1.

To prove Theorem 3.1, we first prove a uniform concentration result for the score Q(B). Specifically,
letting `(B) = kX � XBk2F /(2n), we show that the following upper bound holds with high
probability over DG (Proposition B.7):

|`(B)� E`(B)|  �1
⇥
1 + 6(⌃; s)�2

⇤
E`(B) for all B 2 DG. (14)
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Based on this result, we show that bB has the same topological sort as eBmin. This topological sort
identifies candidate parent sets for each node Xj , and reduces the problem to p regression problems.
The main technical device here is uniform score concentration via (14), which is an interesting result
in its own right due to its uniform control of an unbounded, subexponential empirical process. We
note here that the requirement that �1(G)  1 in Condition 3.1(b) is precisely the condition needed
to ensure uniform concentration is possible over the restricted space DG.

The proof of Theorem 4.1 is more subtle and involved. Since we no longer assume we can restrict to
a superstructure, uniform score concentration (i.e. over the full space D) is no longer readily viable.
As a result, we must obtain uniform control over all p2p neighbourhood regression problems. Let
�j(S) = ⌃�1

SS⌃Sj denote the population regression coefficients of Xj onto XS , where S ⇢ [p]j . It
is not hard to show that bB reduces to estimating �j(S) for p random sets S that depend on X with
the penalized least-squares estimator

b�j(S) 2 argmin
✓2Rm, supp(✓)⇢S

1

2n
kxj �X✓k22 + ⇢�(✓).

It turns out that these estimators have a great deal of redundancy, and in order to control all p2p such
estimators, it suffices to control at most O(pd) of them. In order to prove this, we show that the
following set system has a largest element Mj(S) (Lemma B.2):

Tj(S) = {T ⇢ [p]j : �j(T ) = �j(S)}.

Let Mj(S) be this largest element, i.e. T 2 Tj(S) =) T ⇢ Mj(S). Then there are at most O(pd)
such sets, and we show that in order to control �j(S) for all S, it suffices to control each �j(Mj(S))

(Corollary B.4). The final piece of the proof is to establish control over ⇢�( bB); this follows from a
somewhat lengthy but straightforward Gaussian concentration argument.

6 Discussion

We have established that a score-based estimator achieves ⌦(s log p) sample complexity for learning
a sparse, minimum-trace DAG, and extended these results to the nonidentifiable setting. The proof
technique is novel, leveraging the lattice structure of Gaussian conditional independence. Compared
to recent theoretical work on DAG learning that sidesteps optimization altogether, our approach
directly attacks a difficult nonconvex optimization problem. To conclude this paper, we discuss some
limitations, extensions, and directions for future research.

Computation Since (1) is a nonconvex program, computation of bB is challenging and in fact
NP-hard [7]. Fortunately, there are fast algorithms via dynamic programming for finding globally
optimal Bayesian networks [43, 55, 56]. For example, by combining dynamic programming with A*
search, Xiang and Kim [68] propose an exact algorithm to compute the `1-regularized version of bB
that is tractable on problems with hundreds of nodes. More recently, a mixed-integer formulation
has also been proposed [9, 10]. Recent work [77] has also shown that the program (1) can be solved
approximately with second-order methods, and the resulting solutions are often very close to the
true global minimum in practice. Given the NP-hardness of computing bB, an important direction
for future work is to determine whether or not there exists a polynomial-time estimator that can
achieve s log p sample complexity or better. As such, the current work provides important theoretical
justification for this inquiry.

Comparison to existing methods Despite the long history of score-based methods for learning
DAGs, very little is known about the explicit, finite-sample behaviour of these methods. We have
already acknowledged that the estimator (1) has appeared previously in the literature without a
rigourous theoretical analysis [e.g. 26, 51, 54, 68, 77]. The well-known GES algorithm, on the other
hand, has asymptotic consistency guarantees in both the low- [6] and high-dimensional [40] settings.
We do not pursue a detailed experimental comparison of these two popular approaches here for the
simple reason that this has already been done, see e.g. [1, 68, 70, 77]. These papers indicate that even
approximate algorithms for bB outperform GES (along with other algorithms such as PC and MMHC)
on a wide variety of settings and graphs.
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Comparison to nonconvex models in ML Much of the interest in the current work stems not
only from providing explicit finite-sample guarantees for the DAG learning problem, but also from
its analysis of a highly nonconvex optimization problem. For this reason, it is worth comparing
our results with recent work on nonconvex models in the ML literature [5, 8, 13, 14, 16, 18, 19,
28–30, 33, 38, 58, 60]. In particular, we note the spate of recent papers on so-called “benign
nonconvexity”, which is the idea that although a problem may be nonconvex, its geometry is such that
the nonconvexity is not a practical issue. Conditions ensuring this include the Polyak-Lojasiewicz
condition [32], restricted strong convexity [36], and “strict” or “rideable” saddle points [17, 59].
Unfortunately, this approach of benign nonconvexity does not apply to optimizing (1) since this
problem is easily shown to violate these properties, and in particular, there exist local minima that
are not global. While this may seem discouraging, we note that recent work [77] has shown that
second-order algorithms often find the global minimum in practice. We leave it to future work to
study this behaviour in more detail.

Acknowledgments

We thank the anonymous reviewers for their feedback. The authors acknowledge the support of the
NSF via IIS-1546098.

References

[1] B. Aragam and Q. Zhou. Concave penalized estimation of sparse Gaussian Bayesian networks.
Journal of Machine Learning Research, 16:2273–2328, 2015.

[2] B. Aragam, A. A. Amini, and Q. Zhou. Learning directed acyclic graphs with penalized
neighbourhood regression. arXiv:1511.08963, 2015. URL https://arxiv.org/abs/1511.
08963.

[3] B. Aragam, J. Gu, and Q. Zhou. Learning large-scale bayesian networks with the sparsebn
package. To appear, Journal of Statistical Software, arXiv:1703.04025, 2017.

[4] P. J. Bickel, Y. Ritov, and A. B. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector.
Annals of Statistics, 37(4):1705–1732, 2009.

[5] A. Brutzkus and A. Globerson. Globally optimal gradient descent for a convnet with gaussian
inputs. arXiv preprint arXiv:1702.07966, 2017.

[6] D. M. Chickering. Optimal structure identification with greedy search. Journal of Machine
Learning Research, 3:507–554, 2003.

[7] D. M. Chickering, D. Heckerman, and C. Meek. Large-sample learning of Bayesian networks
is NP-hard. Journal of Machine Learning Research, 5:1287–1330, 2004.

[8] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun. The loss surfaces of
multilayer networks. In Artificial Intelligence and Statistics, pages 192–204, 2015.

[9] J. Cussens. Bayesian network learning with cutting planes. arXiv preprint arXiv:1202.3713,
2012.
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