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A B S T R A C T 

Strongly lensed quadruply imaged quasars (quads) are extraordinary objects. They are very rare in the sky and yet they provide 
unique information about a wide range of topics, including the expansion history and the composition of the Universe, the 
distribution of stars and dark matter in galaxies, the host galaxies of quasars, and the stellar initial mass function. Finding them 

in astronomical images is a classic ‘needle in a haystack’ problem, as they are outnumbered by other (contaminant) sources by 

many orders of magnitude. To solve this problem, we develop state-of-the-art deep learning methods and train them on realistic 
simulated quads based on real images of galaxies taken from the Dark Energy Surv e y, with realistic source and deflector models, 
including the chromatic effects of microlensing. The performance of the best methods on a mixture of simulated and real objects 
is excellent, yielding area under the receiver operating curve in the range of 0.86–0.89. Recall is close to 100 per cent down 

to total magnitude i ∼ 21 indicating high completeness, while precision declines from 85 per cent to 70 per cent in the range 
i ∼ 17–21. The methods are extremely fast: training on 2 million samples takes 20 h on a GPU machine, and 10 

8 multiband 

cut-outs can be e v aluated per GPU-hour. The speed and performance of the method pave the way to apply it to large samples of 
astronomical sources, bypassing the need for photometric pre-selection that is likely to be a major cause of incompleteness in 

current samples of known quads. 

Key words: gravitational lensing: strong – methods: statistical – astronomical data bases: surv e ys. 
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 I N T RO D U C T I O N  

trong gravitational lenses are extremely valuable sources of infor- 
ation about the Univ erse. The y pro vide unique information about

he expansion rate of the Universe, the properties of distant sources
hat would be too faint (compact) to be detected (resolved), and about
he distribution of mass in the Universe (Treu 2010 , and references
herein). Unfortunately, the y are v ery rare on the sk y, because the
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henomenon requires the almost perfect alignment of a background 
ource with a foreground deflector. 

Quadruply imaged quasars are a very special case of strong 
ensing. They are especially valuable because of the wealth of 
nformation the y pro vide, including, for e xample, three independent 
ime delays and flux ratios. At the same time, they are especially
are because they require an intrinsically rare source (quasar) to be
ithin the inner caustic of a fore ground massiv e galaxy. Based on

he model by Oguri & Marshall ( 2010 ), the density of quads in the
k y is e xpected to be of order 10 −2 de g −2 with total flux brighter than
 ∼ 20 (i.e. ∼400 in the full sky), but only a fraction of those will
e resolved and identifiable in ground based wide-field imaging of 
he kind obtained by the Dark Energy Surv e y (DES; e.g. Treu et al.
018 ). Even though the numbers have improved considerably in the
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Figure 1. An example of a feed-forward neural network comprised of the 
input layer, two hidden layers, and the output layer. The information flows 
in one direction from each layer to the next, and the connections are called 
dense since every neuron in one layer is connected to every neuron in the next 
one. 
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ast few years, only ∼60 quads are known across the entire sky at
he time of this writing. 

There are two main challenges in identifying quads from ground
ased optical imaging data. The first challenge is the sheer volume
f data one has to inspect, considering that there are about ∼10 8 

tars and galaxies in the sky brighter than i ∼ 20 (Annis et al. 2014 ).
he second challenge is that many of the quads are only partially

esolved in ground based images and thus difficult to identify and
eparate from astronomical contaminants. In order to o v ercome the
rst challenge, many search teams rely on colour pre-selection to
educe the number of astronomical sources. The second challenge
hen becomes more manageable with a combination of algorithms
pplied to the image pixels and visual inspection. In the end, even in
he most successful cases, confirmation via spectroscopy or higher
esolution imaging (from space or from the ground with adaptive
ptics) is needed. Considering the cost of spectroscopy and high
esolution imaging, most searches so far have focused on obtaining
igh purity candidate lists with high confirmation rates (e.g. Lemon
t al. 2020 ). The dra wback of this process is that man y lenses are lost
long the way, as evidenced by the low completeness of searches so
ar. 

We present a new machine-learning–based approach to finding
uadruply imaged quasars. Machine learning techniques have been
pplied with success to lens searches before (Agnello et al. 2015 ;
illiams, Agnello & Treu 2017a ; Hezaveh, Le v asseur & Marshall

017 ; Petrillo et al. 2017 , 2018 ; Lanusse et al. 2017 ; Pourrahmani,
ayyeri & Cooray 2018 ; Schaefer et al. 2018 ; Avestruz et al. 2019 ;

acobs et al. 2019 ; Madireddy et al. 2019 ; Cheng et al. 2020 ). While
uilding on the work in this area, our effort differs in two main ways.
irst, we focus e xclusiv ely on quadruply imaged quasars, dev eloping
 realistic training set using real astronomical images from the
ark Energy Surv e y coupled with macro and millilensing models.
econdly, we a v oid any need for image pre-selection with the goal
f running our algorithm on complete flux-limited samples, which in
urns requires our method to be extremely fast. This may allow us to
eco v er quads that would have otherwise been lost in pre-selection
teps, while retaining sufficient purity to be cost-effective for follow-
p. To achieve these goals, we apply several new techniques and
ethodological impro v ements o v er previous astrophysical work,

uch as polar convolutions, the use of multiple networks, and
ttention masking. In addition to focusing e xclusiv ely on quads,
ests on validation data sets suggest our method outperforms machine
earners used for previous searches for lensed quasars (Agnello et al.
015 ; Williams et al. 2017a ). 
In this first paper of a series, we describe the method, the training

et, and the results on validating data sets. A follow-up paper will
resent the results on a search on actual Dark Energy Surv e y data. The
aper is organized as follows. Section 2 provides some background
n the machine learning methods. Section 3 describes the training
et. Section 4 describes the machine learning methods used. Section 5
escribes the application of our machine learning algorithms to the
roblem and e v aluates the performance on v alidating data sets. A
ummary is given in Section 6 . 

 E LEMENTS  O F  DEEP  L E A R N I N G  

n recent decades, machine learning and particularly deep learning
av e demonstrated e xtraordinary success in tackling a wide range
f tasks related to computer vision and natural language processing,
enefiting fields ranging from healthcare to the development of self-
riving cars, among many others (LeCun, Bengio & Hinton 2015 ;
ang 2016 ). In this section, we briefly re vie w elements of deep
NRAS 513, 2407–2421 (2022) 
earning that are rele v ant to detecting rare objects and that form
he building blocks of the models employed here. A more thorough
ntroduction to deep learning can be found in Goodfellow, Bengio &
ourville ( 2016 ). 
Deep learning builds on simple artificial neural network (ANN)
odels dating back to the perceptron algorithm (Rosenblatt 1958 ).
oosely inspired by biological neural networks, ANNs employ
omputational units referred to as neurons. A single neuron receives
 set of inputs, represented by vector X , either directly from the
timulus (data), or from the outputs of a preceding set of neurons.
ach neuron takes a weighted sum of its inputs, 〈 w, X 〉 , adds a offset

aka ‘intercept’ or ‘bias’) term b , then passes this weighted sum
hrough a function g to arrive at that neuron’s acti v ation le vel, g ( 〈 w,
 〉 + b ). The term b is often absorbed into the weight vector by
imply appending a constant 1 to the dimensions of X and letting
 be the corresponding weight, allowing the acti v ation le vel to be
ritten more simply as g ( 〈 w, X 〉 ). When g ( ·) is chosen to be non-

inear, this allows for more complicated models to be built than those
epresented by conventional (linear) models, particularly as layers
re added to the neural network. 

The arrangement of neurons in layers is specified by an architec-
ure that, for each group of neurons (called layers), determines from
hich other groups the y receiv e their inputs and to which groups

hey send their outputs. Layers in which every neuron is connected
o every neuron of the next layer are called ‘dense’ (see Fig. 1 ).
he first layer of neurons is acti v ated directly by the data. The final

ayer is the output layer that generates the quantity of interest, for
xample, the predicted class of the input in a classification task. An
NN with more than a few layers is often called deep , in contrast

o early-generation ANNs that typically employed only one or two
idden layers located between the input and output layers. Adding
ayers increases the learning capacity of the network, but exacerbates
he difficulties of fitting or ‘training’ the model. 

.1 Training the model 

eural networks are trained by adjusting the weights so that they
ptimally convert input data X (e.g. an astronomical image) into the
esired output Y (e.g. a prediction of whether the image contains a
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Figure 2. A convolutional neural network consisting of two convolutional 
layers and three dense layers. The first convolutional layer produces a feature 
map by sliding a convolution window o v er the input image. Within each 
window, the layer takes a weighted sum of the corresponding pixels to produce 
a single output pixel. The output feature map of the second convolutional layer 
is flattened into a one-dimensional vector, used as an input the following fully 
connected ANN. 
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ensed quasar). During the training, the ANN takes input data X and
enerates an output, ˆ Y , for each training example, by propagating 
omputations forward through the network: each neuron computes 
 ( 〈 w, X 〉 ) using the inputs ( X ) given to it and the current value
f the weights (inclusive of the bias term), w. The difference 
etween the generated output, ˆ Y , and the correct answer, Y , is
ssessed using a loss function, L ( Y , ˆ Y ), chosen according to the
ature of the problem. Various algorithms are available to determine 
ow the weights of the network should be adjusted in light of
ach error. Typically, these approaches assess how each weight 
ontributes to the error in a process that w orks backw ards through
he model computing the gradient of the loss using the chain rule.
he weights can then be updated by some fraction of the value
eeded to correct the response, a procedure generally referred to as
ackpropagation as it propagates the error signal backwards through 
he network. Numerous optimization methods have been proposed 
ith varying performance. One popular choice, used here, is the 

daptive momentum (Adam) algorithm (Kingma & Ba 2015 ), which 
omputes indi vidual, adapti ve learning rates for the model parameters 
onsidering the first and second moments of the gradients. 

Training is usually iterative, with each step using a portion of
he training data (called a ‘mini-batch’) and adjusting the weights 
ccording to learning rates that control the speed of convergence. 
he end goal of the optimization is to reach a global minimum, a
et of values of the parameters where the loss function is minimized.
o we ver, as the number of parameters is typically very large (in

he millions for all models here), we generally expect multiple 
ocal minima. Stochastic gradient descent a v oids getting ‘stuck’ in 
uboptimal local minima by randomly selecting mini-batches. 

Because these models are so fle xible, the y can lead to ‘o v erfitting’,
here the model learns specific characteristics of the training data 

et associated with particular outcomes, but which do not generalize 
ell to unseen data. This results in large errors when the model is

pplied to new data. Numerous methods help to prevent this. One 
mportant approach is to add terms to the loss function that ef fecti vely
enalizes models with more extreme weights. This constrains the 
odel and a v oids results that depend hea vily on very specific features

ut that might have turned out very differently in different samples. 
uch a penalization scheme is known as regularization and can be 
epresented as seeking to minimize 

L 

∗( Y , ˆ Y ) = L ( Y , ˆ Y ) + λ�( W ) , (1) 

here the scalar λ controls the strength of regularization and �
efines a regularizing functional. In the past, the first and second 
orms were frequently chosen as � and referred as L 1 and L 2 

e gularization, respectiv ely. Later, orthogonality of the weights 
as argued to be a desirable property since multiplication by an 
rthogonal matrix leaves the norm of the input unchanged. This led 
o orthogonal regularization, �( W ) = ‖〈 W , W 

T 〉 − I ‖ 1 , where I is
he identity matrix. 

.2 Choice of the acti v ation function 

n many practical problems, the model must be made to fit a
on-linear function between the inputs and outputs, calling for a 
on-linear choice of acti v ation function. Until recent years, the 
ogistic (or sigmoid) function g ( x ) = e x /(1 + e x ), hyperbolic tan-
ent tanh ( x ) = 

e x −e −x 

e x + e −x , softmax [ s ( x )] i = 

e x i ∑ 

k e 
x k 

, and linear rectifier
eLU( x ) = max (0, x ) were among the most popular acti v ation

unctions. Ho we ver, deeper models require a choice of acti v ation
unction that protects against the risk of having an error gradient equal
o zero for many weights. To this end, functions such as parametric
eLU (PReLU) (He et al. 2015 ), exponential linear unit (ELU;
levert, Unterthiner & Hochreiter 2016 ), scaled exponential linear 
nit SELU; Klambauer et al. 2017 ), and Swish (Ramachandran, Zoph 
 Le 2018 ) have become widely used. These are defined as 

PReLU ( x) = 

{
x, if x ≥ 0 , 
ax, if x < 0 , 

( a < 1) , 

ELU ( x) = 

{
x, if x ≥ 0 , 
a(e x − 1) , if x < 0 , 

SELU ( x) = β · ELU ( x) , β > 1 , 

Swish ( x) = x · sigmoid ( x) = 

x 

1 + e −x 
. 

(2) 

.3 Convolutional neural networks 

hile dense ANNs with at least one hidden layer and an appropriate
cti v ation function can approximate any function, in practice ANNs
an be made far more powerful, with less training data and fewer
arameters to tune when they can be designed to extract the more
ele v ant and informati ve features from the data. To this end, convo-
utional neural networks (CNNs; see Fig. 2 ) have proven extremely
owerful in image processing applications. 
These networks have one or more layers that, like layers of visual

ortex, contain neurons whose acti v ation’s summarize key features in
esignated patches of the input image. Specifically, neurons in a given 
ayer are receptive to a particular area of the input/image, known as
heir ‘receptive fields’. The convolution or weighted average they 
erform o v er their receptiv e fields summarizes the information in
t. The weights used in this convolution, which constitute a kernel
r filter, can be preset or learned during training. In CNNs with
ultiple convolutional layers, each layer takes the previous layer’s 

cti v ation as its input, with wider kernels in subsequent layers, so
hat the receptive field corresponding to a neuron grows to co v er
arger receptive fields over the image. 

Stacking these convolutional layers, therefore, enables learning 
epresentations of the data at different levels of abstraction. This 
rchitecture has made deep CNNs very ef fecti ve in computer vision,
ometimes achieving superhuman performance in classification and 
iscrimination tasks. Units within a given layer typically share the 
ame kernels (weights) to reduce the number of learned parameters. 
on-trainable convolutional layers are often referred as pooling 

ayers and can be used to apply basic operations such as max ( ·) or
ean( ·) that corresponds to ‘MaxPooling’ and ‘AvgPooling’ layers, 

espectively. 
MNRAS 513, 2407–2421 (2022) 
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Figure 3. Common computer vision building blocks: (a) inception block, (b) residual block, and (c) dense block. The inception block applies multiple 
convolutional operations of different window size (shown in orange) and a pooling operation (shown in green) in parallel, instead of being restricted to a single 
window size, and then concatenates the extracted features together. As concatenation leads to a quickly growing size of the output tensor, 1-by-1 convolutional 
layers (shown in blue) are used to reduce the dimensionality. The residual block employs a skip-connection that adds the input tensor to the output tensor, which 
mitigates the ‘vanishing gradient’ problem. The dense block similarly uses skip-connections, but concatenates the tensors instead of adding them. 
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.4 Blocks 

locks of neurons can be designed and connected together to develop
owerful network architectures. Here, we discuss three types of
locks that hav e pro v en valuable in related computer vision problems
nd that we consider in our own architecture. 

The ‘inception’ block, is best known from InceptionNet (also
nown as GoogLeNet) (Szegedy et al. 2015 ), and later ResNet
Szegedy et al. 2017 ). This block is described in Fig. 3 (a). It con-
atenates four versions of the processed input data, each processed
n parallel: the original image, two convolutional layers that use
 sequence of increasingly large receptive fields, and one simpler
ocal-av eraged/smoothed v ersion of the image. 

The next block type is the residual block. A key problem with
eeper networks – and part of the reason they did not emerge in
arlier decades of ANNs – is the ‘vanishing gradient’ problem: the
pdates to the weights computed by backpropagation factor in the
radient at each step, and a long sequence of such factors produces
pdate values close to zero. One way to address this, employed
n the ResNet architecture (He et al. 2016 ) is an ‘identity shortcut
onnection’, also known as a residual or skip connection. In this
onfiguration, the input of each learning block is added to the output
efore propagating to the next one (see Fig. 3 b). This makes it easier
o propagate information forwards and backwards without significant
lterations and simplifies training of deep models. 

The third block type we consider is the dense block in the convo-
utional setting, as in the DenseNet architecture (Huang et al. 2017 ).

hile ResNet and its residual block use element-wise addition, dense
onvolutional blocks combine processed inputs of one layer (here, a
onvolutional layer) with lower level data by concatenation instead
f addition. Each layer thus receives feature maps from all preceding
onvolutions, within the same block (see Fig. 3 c). Later blocks
ay then use pooling or other approaches to reduce dimensionality.
enseNet has become widely used in various computer vision
roblem such as image classification, object detection, and image
NRAS 513, 2407–2421 (2022) 

p  
egmentation due to superior computational efficiency and quality of
he learned features. 

.5 Generati v e modelling and data r epr esentation 

ome tasks in computer vision are ‘image-to-image’ problems,
n which we have one input image and desire to create another
elated image of the same size. These including denoising (removing
rtefacts from an input image), segmentation (estimating a set of
inary masks that encode different regions on the input image), and
etection (locating objects on the input image) tasks. The U-Net
s one important architecture for such problems. The model was
rst popularized in biomedical image segmentation (Ronneberger,
ischer & Brox 2015 ). In this context, it takes input images (e.g.
T scans) and outputs segmentation masks that show regions of

nterest (e.g. malignant tumors), based on information from a labelled
ata set. The U-net architecture is so named because it contains
ontracting and then e xpansiv e paths (see Fig. 4 a). The contracting
ath employs a series of feature extraction blocks followed by
ne or more ‘scaling down’ layers, such as a pooling layer. The
 xpansiv e path concatenates the features of the same resolution,
uses the extracted features, and up-scales the image representation.
he up-scaling method could be anything from a non-trainable
earest-neighbour interpolation to a trainable deep CNN. Additional
kip connections between individual blocks of the contracting and
 xpansiv e pathways enable easier gradient propagation. Importantly,
he symmetry between two paths and the U-shaped architectures
ets the network propagate context information to higher resolution
ayers. 

Another valuable class of image-to-image architectures is the
utoencoder (AE), which operate on unlabelled data and provide
fficient, latent space representations. The architecture has two major
arts connected sequentially: encoder and decoder (see Fig. 4 b). The
earning objective is to reconstruct the original image as ef fecti vely as
ossible, as judged by a loss function, while forcing the information

art/stac925_f3.eps
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Figure 4. Data representation and generative modelling: (a) U-Net and (b) autoencoder. The U-Net model contains a contracting path and an e xpansiv e path 
that down-scales and up-scales the input image to allow simultaneous feature extraction at higher and lower image resolutions. The autoencoder model has two 
major parts: an encoder that maps the input image to the latent features, and a decoder that maps the latent features to a reconstruction of the input image. As 
the dimensionality of the latent features is often smaller than the dimensionality of the input image, the model learns a compressed representation of the data 
and remo v es noisy components. 
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o pass through a lower-dimensional middle block, labelled ‘latent 
eatures’ abo v e. The acti v ations of neurons in this layer thus offer
 lower dimensional representation of the input image, sufficient to 
eco v er the best reconstructed image possible. It is thus valuable as
n unsupervised means of learning the important features of images. 

One limitation of the lower dimensional representations learned by 
E is that they can follow an arbitrary distribution, which may lead to

ituations where samples of the same class have drastically different 
atent features. Variational AE (VAE) is often used to alleviate this
eficiency (Doersch 2016 ). VAE differs from AE in two ways: its
atent features are selected pseudo-randomly and its loss function is 
xtended by a penalty term. During training, each latent feature is
ndependently drawn from a Gaussian distribution N ( μ, σ ), where 
he parameters μ and σ are taken from the output vector of the 
ncoder { μ, log ( σ ) } . This exposes the decoder to a range of
ncoding vectors (as opposed to a single vector in AE) forcing it
o map neighbouring feature vectors to the same image. The loss
unction is penalized by a K ullback–Leibler div ergence of the latent
eatures for a given input sample and the standard normal distribution. 
he penalty term ensures that the encoder refrains from producing 
xtreme values and encourages it to evenly distribute around the 
entre of the latent space. This leads to a continuous and orthogonal
atent space, a highly desired property for data representation. 

 M E T H O D O L O G Y:  G E N E R AT I O N  O F  

R A I N I N G  DATA  SETS  

e generate a training sample of lensed quasars and known sets
f contaminants for training of the network. Since only a few 

ens of true lensed quasars have been confirmed, we cannot use 
hem alone to construct a training set, and must generate simulated 
ensed quasars based on their well understood physics. Ensuring the 
ealism of these simulated observations is essential to the ultimate 
eneralization of our model to real data. We use a version of SIMCT

More et al. 2016 ) modified for this purpose. Leaving the details to
ore et al. ( 2016 ), we begin by using the redMaGiC galaxy catalogue

Rozo et al. 2016 ) as our parent galaxy sample. All galaxies from
his sample are considered potential lenses. By using the measured 
edshift and magnitudes and known scaling relations, we estimate the 
ens mass assuming that the mass-density profile follows a singular 
sothermal ellipsoid. We assume mass follows light to determine 
he centroid, ellipticity, and position angle of the lens. We also
nclude external shear to account for effects due to objects in the
mmediate environments of the lens galaxy. We draw sources from 

nown luminosity functions with a certain i -band magnitude and 
edshift. Colours are then extracted from the quasar catalogue of 
ie et al. ( 2017 ) by cross-matching the source i -band magnitude
nd redshift. Given the lens parameters and source parameters, we 
alculate the lensing cross-section and determine if a source would be
ensed by the potential lensing galaxy such that the multiple images
an be well resolved and above the limiting magnitude. 

We further implemented the microlensing magnification effect 
y stars within the lensing galaxy which can affect the fluxes of the
ensed quasars. For a given lens and source, we calculate the positions
nd fluxes of the lensed quasar images. The microlensing effect 
ncreases or decreases the flux of the lensed images as determined by
he local convergence ( κ), shear ( γ ), and smooth matter fraction
 s = 1 − κ∗/ κ tot ) as described, e.g., by Vernardos ( 2019 ). In
rder to optimize computing resources, we compute microlensing 
agnification maps for a large number of fixed values of κ , γ , and s ,

nd interpolate from this grid to real cases. Stars are assumed to have
asses 1 M � and the stellar density profile is assumed to follow

he de Vaucouleurs profile (de Vaucouleurs 1948 ). We determine 
he convergence due to compact (stellar) population κ∗ in the image 
lane following Vernardos ( 2019 ). The resulting sample consists of
bout 28 500 simulated lensed images of background quasar which 
re then added on top of the redmagic galaxies from the DES-Y3
ata (Sevilla-Noarbe et al. 2021 ). We show a few simulated lenses in
he top row of Fig. 5 with fainter systems on the left end and brighter
n the right. There are two examples for each of the faint ( i > 19.0),
ntermediate (18.5 < i < 18.0), and bright ( i < 17.5) magnitude bins.
he image cut-outs are 6.75 arcsec on the side where each pixel is
.27 arcsec wide matching the DES pixel resolution. 
For the training set of non-lenses, we use the spectroscopically 

onfirmed stars from the Sloan Digital Sk y Surv e y data and photo-
etrically selected quasars (Tie et al. 2017 ) and blue cloud galaxies

Williams, Agnello & Treu 2017b ). As we are interested in quads,
e randomly draw objects from these catalogues and place them 

andomly around a massive galaxy which could mimic a lensed 
uad. About 2000 such systems are generated and this sample size is
MNRAS 513, 2407–2421 (2022) 
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M

Figure 5. Training sample comprising of lenses (top) and non-lenses (bottom). The left-most two columns show objects selected from the fainter sample ( i 
> 19.0), middle two columns show objects from the intermediate sample (18.5 < i < 18), and the right-most two columns show the objects from the brighter 
sample ( i < 17.5). The images are 6.75 arcsec on the side. 
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ncreased by a factor of 5 by applying rotations. We show examples
f these non-lenses in the bottom row of Fig. 5 . As before, fainter
ystems are on the left end and brighter on the right. These examples
orrespond to the same magnitude bins as the simulated lenses in the
op row. As part of the non-lens sample, we also include the same
edMaGiC galaxies that were used to generate simulated lenses but
ithout any lensing features around them. This resulted in 28 500 of

imulated positive examples (lenses) and 28 500 of negative examples
contaminant galaxies). 

 M E T H O D O L O G Y:  M O D E L  A R C H I T E C T U R E  

N D  T R A I N I N G  

ur modelling methodology involves several steps. First, we pre-
rocess, augment, and split the data for purposes of model training
nd tuning. Then, we employ unsupervised learning methods to
xplore the data and aid in feature extraction. Next, we train a series
f supervised learning models with a variety of architectures. Finally,
e develop an ensemble over the resulting models. In this section, we
escribe each of these steps in turn. 

.1 Data pr e-pr ocessing and splitting 

e first standardize each image so that the pixels in each image
pooled together across all four griz -bands) have zero mean and unit
tandard deviation. More specifically, let I ipg denote the intensity in
riz -band g ∈ { 1, 2, 3, 4 } of pixel p in image i . Let μi and σ i be the
ample mean and standard deviation of { I ipg } p , g , respectively. We
ormalize each pixel by computing 

 I igp − μi ) / ( σi + ε) (3) 

cross all i , g , and p , where ε > 0 is a small perturbation introduced
or numerical stability. We refer to this procedure as instance
ormalization . 
The resulting images are augmented with random rotations to

nsure a rotation invariant result. We then split the data into training,
alidation, and testing subsets. This produces roughly 10 6 images in
ach of the training and validation sets and 5 × 10 5 in the test set. 

The models described below are trained on the training set, with
yperparameters optimized by minimizing the prediction loss on the
alidation data set. After training and choosing hyperparameters, the
raining and validation data are combined to be re-used for training.
NRAS 513, 2407–2421 (2022) 

s  
he resulting model is then e v aluated for its performance on the
esting set. 

.2 Unsupervised learning 

o aid in constructing features that would facilitate the supervised
earning process, we begin with an unsupervised exploratory process
n a subset of 100 000 images sampled from augmented data. We first
ecompose the data set using a Gaussian kernel principal components
nalysis (kPCA). Explaining 95 per cent of the variance in the data
et requires eight components. Plotting just the first two principal
omponents (Fig. 6 a) shows little evidence of the separability of
hese two classes. Fortunately, ho we ver, the higher-dimensional
nformation does suggest the classes are reasonably separable.
his is visualized using the two-dimensional t-distributed stochastic
eighbour embedding (tSNE) of the images in Fig. 6 (b), which uses
he relative similarity of lens images with each other as compared to
on-lens images to infer the possibility of successfully distinguishing
hese objects in a sufficiently rich non-linear feature space. 

Next, Fig. 7 (a) depicts the architecture of VAE which we use to
enerate an orthogonal, lower-dimensional latent space characteri-
ation. The encoding CNN (the left side of the VAE) contains two
locks, each with two convolutional layers followed by normalization
nd dropout layers. The purpose of the first convolutional block
s to extract lo w-le vel features using 5 × 5 kernels. The second
onvolutional block further expands the ef fecti ve recepti ve field
sing 9 × 9 kernels to extract higher order features. Note that
his configuration makes the ef fecti ve recepti ve field of the last
onvolutional layer of 25 × 25, co v ering the entire input image. The
rop-out layer is used to reduce o v erfitting by dropping a portion of
he randomly selected inputs. 

The subsequent block consists of two parallel dense layers that
rocess the input tensor and map it to the latent space of dimension p .
he upper layer applies the sigmoid acti v ation to its output to estimate
 feature-selecting vector sigmoid 

(
W upper z 

)
for each training sample.

y multiplying it with the latent space representation of an image
 produced by the output of the lower layer, W lower z, we locally
uppress irrele v ant latent features of each sample: 

 W lower z) � sigmoid 
(
W upper z 

)
, 

here W lower and W upper are p × q matrices and z is a flattened image
f size q × 1. The output dense layer, shown in pink in Fig. 7 (a),
inearly combines the remaining features to estimate the means and
tandard deviations. Finally, as shown on the right half, the process
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Figure 6. Visualization of a subset of the data consisting of galaxies (blue) and lensed quasars (red) after dimensionality reduction: (a) the first two components of 
the Gaussian Principal Component Analysis (PCA) and (b) two-dimensional t -distributed stochastic neighbour embedding (tSNE). PCA shows little evidence of 
the separability of lenses from non-lenses. The two-dimensional tSNE, ho we ver, suggests that the classes are reasonably separable in a higher dimensional space. 

Figure 7. Unsupervised exploration of the latent space of the data set: (a) a VAE model used for learning the mapping from images to the means and standard 
deviations of the latent variables; (b) empirical distributions of selected latent variables showing that despite nearly identical statistical properties in galaxies 
and lensed quasars across the majority of learned latent variables, some of them describe features that can be used to distinguish between these two classes; (c) 
a visualization of a few learned features of the lower dense layer of the VAE model generated by putting the learned weights into square shapes of the same 
size as the output of the previous convolutional layer; (d) empirical relationship between the explained variance and the number of principal components of the 
latent variables of 1024-dimensional VAE suggests that a 128-dimensional latent space can be sufficient to describe the data set. 
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s repeated in reverse to reconstruct an image from the compressed 
eatures. 

To explore the result, Fig. 7 (b) shows how the two classes are
istributed along four selected latent features. As VAE gives a 
ean ( μ) and a standard deviation ( σ ) for each latent feature, the

forementioned figure depicts empirical distribution of the means 
f the latent features. We observed that although many features 
uch as feature 1 do not discriminate contaminant galaxies from 

ensed quasars, some of the features such as feature 4 do separate
he two classes well. To better understand the meaning of the latent
eatures, we plot some of the weights of the lower dense layer in
ig. 7 (c). The plots depict the underlying modes that naturally span

he data set including those that pre v ail among lensed quasars. To
ee how dimensionality of the latent space impacts the explained 
ariance along individual bands ( g , r , i , z ) or their combination
 griz ), we apply linear PCA on the features of 1024-dimensional
AE models that were trained to reconstruct a single band or the
MNRAS 513, 2407–2421 (2022) 
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ntire image. The results in Fig. 7 (d) suggest that 16-dimensional
pace co v ers 95 per cent of the variance in griz bands (around 12
atent variables for R), while 128 features correspond to 99 per cent
f the variance (around 64 latent features in R ). This shows that
AE models can learn meaningful features and describe the data set
ith a 128 latent variables. We later employ an encoding portion
f the VAE models for feature extraction and subsequent image 
lassification. 

.3 Supervised learning 

his section provides details for the construction and fitting of
everal neural network architectures, before describing how they
re combined in an ensemble. 

The unsupervised learning explored in Section 4.2 indicates that
ensed quasars have distinctive geometric features that could be
tilized in their detection. We frame lens detection as a binary
lassification problem in which ‘one’ corresponds to a sample
ith a lensed quasar and ‘zero’ corresponds to anything else.
 classifier takes an image as an input and outputs a binary

abel. In practice, the output layer has two units, whose acti-
ations we can refer to as z 0 and z 1 . To these we apply the
oftmax function to obtain quantities, we interpret as probabilities,
.e. ˆ y 1 = P ( Y = “lens”) = exp ( z 1 ) / ( exp ( z 0 ) + exp ( z 1 )), with ˆ y 0 =
 ( Y = “not lens”) = 1 − P ( Y = “lens”). We found empirically that

raining with the softmax acti v ation results in a better generalization
ompared to training with the sigmoid acti v ation. 

For the loss function, we employ the binary cross-entropy, also
nown as the ne gativ e log-likelihood, between a class label y ∈ Y
nd the predicted probabilities ( ̂  y 1 , ˆ y 0 ), 

 ( y, ˆ y 1 , ˆ y 0 ) = −y · log ( ̂  y 1 ) − (1 − y) · log ( ̂  y 0 ) . 

oreo v er, binary cross-entropy leads to a more consistent gradient
ropagation as the log-terms mitigate exponential behaviour due to
radient saturation for extreme values. 
Instead of the conventional batch normalization, we use instance

ormalization introduced in equation ( 3 ). While instance normaliza-
ion makes the samples of both classes statistically indistinguishable
n terms of the pixelwise mean and variance, it has several important
dvantages. First, it limits the range of the values that tensors can
ake, preventing saturation of hyperbolic acti v ation functions, and
mproving gradient propagation. Secondly, it improves generaliza-
ion by a v oiding o v erfitting on synthetic data, as the gap between
he simulated and the real objects is often the major issue in
roblems that rely on statistical models trained on synthetically
enerated data. In particular, it reduces the effect of the outliers
hat could cause significant covariate shift in hidden layers of 
he ANN. 

To penalize o v erfitting, we e xtensiv ely use drop-out layers. The
xact order of the hidden layers, acti v ation functions, normalization
ayer, and drop-out layers is typically optimized for every problem.

e empirically found that the combination of acti v ation layers
ollowed by normalization and drop-out layers achieve a better bias–
 ariance trade-of f. To additionally limit o v erfitting, we introduce
ero-mean Gaussian noise at the input of each model, which adds
andom noise to the input images at every training step. We set the
oise covariance matrix to σ 2 I , where I is the identity matrix and σ 2 

 0.062, with the value determined by hyperparameter optimization.
ote that this is equi v alent to additional data augmentation performed

imultaneously with training. 
Models are trained using the Adam algorithm (Kingma & Ba

015 ). Adam uses adaptive learning rates for every model parameter,
NRAS 513, 2407–2421 (2022) 
nabling faster convergence. We also employ the scheduled (staircase
xponential) and triggered decrease of the learning rate. The latter
hanges the step size when the loss rate of decay is below a certain
hreshold. 

To further combat o v erfitting, we employ early stopping based
n the validation loss. More specifically, after every iteration on the
raining set, we e v aluate the loss function on the validation set which
ncludes data not used for optimizing model parameters. We stop
nce the validation, rather than the training, loss has converged. 
Besides trainable parameters, each model has hyperparameters,

 small set of values that define model architecture and training
ynamics. These include model depth (number of hidden layers),
odel width (number of convolutional filters and dense units), model

esolution (size of convolutional kernels), and the choice of the
cti v ation function, regularization strength, and learning rate. We
se the recently proposed Hyperband algorithm (Li et al. 2018 ),
n efficient bandit-based method for hyperparameter optimization.
t allocates computational resources to as many configurations as
ossible and throws out those that show poor performance o v er
ime until a single configuration remains. This method maximizes
he number of tested configurations and results in a more efficient
esource utilization compared to the grid search, random search, or
ayesian optimization. 

.3.1 Prior methods 

umerous prior works proposed using the traditional computer
ision models such as InceptionNet, ResNet, and DenseNet for
ens searches. These architectures have demonstrated exceptional
erformance on traditional computer vision problems, but the vast
umber of trainable parameters they require can result in either poor
eneralization (o v erfitting) or weak conv ergence (underfitting). Pre-
raining these models on the ImageNet, a large data set of ordinary
mages collected for object recognition, degrades the performance
urther. We hypothesize that this is due to drastic differences
n visual features between the lensed quasars and ImageNet 
amples. 

F ortunately, sev eral earlier projects have sought to detect lenses
sing various deep CNN architectures. We describe these here
efore proposing two no v el architectures. Previously proposed CNN
odels include CMU DeepLens (Lanusse et al. 2017 ), LensFlow

Pourrahmani et al. 2018 ), CNNS (Jacobs et al. 2019 ), and several
thers (Hezaveh et al. 2017 ; Schaefer et al. 2018 ; Avestruz et al.
019 ). We reproduce and retrain LensFlow and CNNS on our data for
omparison. LensFlow is based on a classical architecture comprised
f three convolutional layers, maximum pooling layer and four
ense layers all connected in series. Drop-out layers in-between
he dense layers mitigate o v er-fitting. Unusually, LensFlow applies
yperbolic tangent to the outputs of the convolutional layers and
eLu acti v ation function to the output of the dense layers. CNNS
ombines four convolutional layers into blocks of two layers each
ith three subsequent dense layers. Each convolutional block is

ollowed by pooling operations, halving the dimensionality of the
eature maps the output. The acti v ation function is ReLu, and drop-
uts are again used to mitigate o v er-fitting. 

.3.2 NaiveNet 

nspired by these early examples, we first propose a CNN involving
everal convolutional layers followed by dense layers, which we refer
o as NaiveNet, illustrated in Fig. 8 . The number of layers, number of
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Figure 8. Optimized instances of generalized CNN architectures: (a) 
NaiveNet based on three convolutional blocks and two dense layers and 
(b) NaiveNetV2 that uses residual connections and adds an additional dense 
layer to impro v e the performance. 
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Figure 9. Visualization of the proposed polar convolution operation: each 
feature map gets converted to higher resolution polar coordinates where 
a regular rectangular convolution is applied and then translated back to 
Cartesian coordinates. Ef fecti vely, the operation has a convolutional windo w 

of an angular sector of annuli of different radius (shown in red) with smaller 
window size at the centre of the image. 

Figure 10. An example of the proposed attention masking for feature 
extraction: (a) a sample of the original input image; (b) the corresponding 
lensed quasar blended in the original image; (c) a binary mask used as a label 
for training the attention CNN model. The mask is produced by setting a 
threshold on intensity of the lensed quasar image. (d) The proposed AttnNet 
architecture is comprised of three models: the AttnCNN trained to segment 
regions containing lensed quasars, the FeatureCNN that extracts features from 

the original image and then applies the estimated binary mask to remo v e noisy 
components, and a binary classifier trained to identify lensed quasars. 
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ense units (or convolutional kernels) within each layer, and size of
he convolutional kernels respectively, are optimized together with 
ther hyperparameters. We intentionally a v oid specific constraints 
n the architecture and, instead, optimize performance through a 
yperparameter search. Next, we introduce NaiveNetV2, replacing 
onvolutional and dense blocks with their residual alternatives. Each 
esidual path has two consecutive layers: the first one with a chosen
on-linearity and the second one with a linear acti v ation function. 

.3.3 Polar convolution 

ext, we propose an alternative approach to feature extraction. Since 
e can ensure positioning of the objects at the centre of the griz

mages and given that the gravitational field originates from the 
entre of mass of the objects, a polar coordinate system is a natural
hoice. We define the corresponding 2D polar convolution similarly 
o its rectangular counterpart: 

W ∗ T ( z) 
)

ρ,θ
= 

∑ 

i 

∑ 

j 

W i,j · T ( z) ρ+ i ,θ+ j , (4) 

here T ( ·) translates an input tensor from Cartesian to a po-
ar coordinate system. It first transforms a fixed size rectangular 
ensor z into a scatter field of points z ∗ with polar coordinates
 ρ, θ} = { 

√ 

( x 2 + y 2 ) , arctan ( y /x ) } . To a v oid loss of information
ue to image cropping at the corners and blurring between pixels, 
t estimates a smooth rectangular tensor s using biharmonic spline 
nterpolation: 
{

s i = 

∑ 

j αj g( i, j ) 
g( i, j ) = ‖ p i − p j ‖ 2 ( log ‖ p i − p j ‖ − 1) 

, (5) 

here g is Green’s function, p i = [ x i , y i ] is a vector pointing
t the corresponding scatter point with value z ∗i , and the weight
ector α can be found by solving g · α = z ∗. An illustration
f the proposed operation is shown in Fig. 9 . Beyond fitting the
nderlying geometrical structure on the images, polar convolution 
ields a heterogeneous receptive field size and a particularly sparse 
onnectivity matrix by focusing at the central part of the image, 
hich is useful as the corners of the images are expected to be less

nformative, with more noise. Similar ideas were previously proposed 
n several works including Polar Transformer Network (Esteves et al. 
018 ), Polar Coordinate CNN (Jiang & Mei 2019 ), and Cylindrical
NN (Kim et al. 2020 ). Our approach, ho we ver, was de veloped for

earning features suitable for finding lensed quasars. 
.3.4 Visual attention masking 

e train an additional U-Net-like model that produces a binary 
ask representing regions of lensed quasars (named as AttnCNN 

n Fig. 10 d). Similarly to U-Net, AttnCNN is a fully convolutional
etwork with contracting and up-sampling branches, but it does not 
utput a segmentation mask. Instead, it learns the mapping from 

ultichannel input image ( griz ) to an attention mask of a smaller
ize, with a single channel, and values between 0 and 1. The goal
f this auxiliary masking network is to guide feature extraction by
ringing attention to regions likely to have important features. We 
ound empirically that thresholding image pixels with 22.5 per cent 
f their maximum intensity creates meaningful binary masks as the 
rightest regions are the most informative. We tried several loss 
unctions for training the AttnCNN and found that mean absolute 
rror leads to the most stable results. It was beneficial to train the
ntire assembly simultaneously in an end-to-end fashion. At each 
ptimization step i (batch size of n ), we update the parameters of
MNRAS 513, 2407–2421 (2022) 
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he AttnCNN model ( ·) to minimize the discrepancy between its
utputs ( X i ) and the binary masks M i : 

 

AttnCNN 
i = 

1 

n 

n ∑ 

k= 1 

| ( X i ) k − M ik | . 

t the same time, we independently update parameters of the feature
xtracting model � ( ·) (named as FeatureCNN in the figure) and the
inary classification model � ( ·) by backpropagating the gradient

f the cross-entropy loss L i 

(
� 

[
( X i ) � � ( X i ) 

]
, Y i 

)
. This w ay

ttnCNN directly affects the performance of the feature extracting
NN and the classifier, which forces FeatureCNN to adjust its learned
arameters. 

.4 Argus: ensemble of models 

ne of the challenges we encountered was o v erfitting stemming
rom the gap between the simulated and real data. Particularly, we
bserved a significantly lower performance during testing on real
amples generated from the DES, despite the imposed regularization
nd optimal synthetic testing results. Given the limited size of the real
ata set, we found it impractical to directly bridge the gap by finding
 projection between real and synthetic samples. Moreo v er, since
he confirmed objects do not represent the entire range of possible
enses, additional training on them would further amplify the bias. 

Instead, a more practical and efficient method to impro v e gen-
ralization is model stacking (sometimes called blending), which
ombines the outputs of pre-trained models. We employ this tech-
ique by blending classifier models and VAEs (see Fig. 11 ). The
pper branch maps the hidden feature spaces of the AttnNet and
aiveNetV2 based on rectangular and polar convolutions to another
28-dimensional space. It employs two dense layers with ReLu non-
inearity to fuse a 512-dimensional vector from the AttnNet with
 pair of 128-dimensional vectors from the rectangular and polar
ai veNetV2: � s : R 

512 + 128 + 128 
→ R 

128 . The lo wer branch mixes the
atent spaces of VAE models that were pre-trained to reconstruct spe-
ific components on the images including lensed quasars (VAE LQ ),
ontaminant galaxies (VAE G ), underlying source quasars (VAE Q ),
nd deflectors (VAE D ) that represent the strength of the gravitational
eld of the lensing galaxy. We found that reconstruction on the
uasars and deflectors achieved the best results when conditioned on
he output of the VAE LQ and VAE G , respectively. This is implemented
y stacking the second order VAE model on top of the decoder and
sing the mean component of the latent features of the first encoder.
e choose a 128-dimensional latent space since it is able to converge

o a global minimum of the loss function and it was earlier suggested
y the results of PCA to keep the explained variance ratio abo v e
9 per cent . Ho we ver, because galaxies and lensed quasars have an
dentical distribution along the majority of the latent space axes,
e apply a stronger dimensionality reduction: � u : R 

512 + 512 
→ R 

64 .
ote that the standard deviations estimated by the encoding CNN
odels carry information about the noise in the images and the

ssociated confidence levels. Since μ and σ often have different
cales and distributions we first blend them separately and then
ombine new intermediate feature spaces. The output layer linearly
ombines the features of the upper and lower branches to classify the
nput samples. 

To train the entire end-to-end model, we split the training data
et into two halves. We train each individual component (supervised
nd unsupervised) on the first half. Then, after stacking, we train the
lending dense layers using the second half of the data. This scheme
llows us to minimize additional o v erfitting as the blending layers
NRAS 513, 2407–2421 (2022) 
earn how to combine the feature spaces of the pre-trained models on
reviously unseen samples. Moreo v er, to foster generalization we use
ormalization and dropout layers as well as combination of L 1 and
 2 (‘elastic net’) regularization. The corresponding hyperparameters
f the model and its components are selected using the Hyperband
earch described earlier. After training Argus, we investigated the
mportance of the extracted features from each component of the
nsemble by conducting an ablation study. We disconnected one of
he components at a time and e v aluated model predictions, using
UROC score on the mixed data set as described in the next section.
erformance severely degraded by dropping any component, except-

ng NaiveNetV2: 3.86 per cent drop without VAEs, 6.28 per cent drop
ithout AttnNet, 3.48 per cent drop without polar NaiveNetV2 and
.23 per cent drop without Naiv eNetV2. In addition, we observ ed no
ignificant differences in the distribution of the weights of the dense
ayers that take the outputs of different components, which makes us
elieve that each part is equally important and benefits the overall
erformance. 

 RESULTS  

.1 Training and testing set-up 

fter training these models we tested their performance on three
ata sets that were not used during the training (the data sets are
ummarized in Table 1 for convenience). First, the simulated objects
s a conventional ‘testing’ data set that was sampled from the data
enerated for model training as described in Section 3 . It contains
round 250 000 lensed quasars and 250 000 contaminant galaxies.
econdly, the past candidate data set contain 20 confirmed lensed
uasars and 108 confirmed non-lenses that were previously proposed
s candidates for spectroscopic follow-up within the STRIDES
ollaboration (as collated by one of us, CL). Finally, the mixed
ata set contains 1216 objects randomly sampled from the simulated
bjects and past candidates . We augmented the samples from past
andidates via random rotations and mirroring to achieve a roughly
:1 ratio. 
We trained each model on a computer with a single GPU (Nvidia

eForce GTX 1080 Ti). A full training cycle of a single model with
yperparameter optimization took between 20 and 180 h depending
n the model. In addition to our proposed models, we reproduced two
reviously reported models, CNNS and LensFlow, retraining these
n our data. In doing so we followed the design choices as reported,
ut adjusted learning rates and the corresponding parameters (decay
ate, learning rate schedule, etc.) to maximize performance. 

.2 Performance 

s a first performance metric, we consider the area under the
eceiving operating curve (AUROC). This can be interpreted as the
robability that the model ranks a random positive example more
ighly than a random ne gativ e e xample. 
Table 2 shows the results. Both existing models, CNNS and

ensFlow, had approximately 8.8 million trainable parameters and
emonstrated AUROC values of roughly 0.85 on the mixed data,
omparable to our initial NaiveNet model. The enhanced version
ith residual skip-connection, NaiveNetV2, achieved an AUROC of
.86 on the mixed data set, while reducing the number of parameters
o 2.4 million. 

Attention masking (AttnNet), ho we ver, led to a substantial im-
ro v ement in performance with an AUROC of 0.940 on the simulated
bjects and 0.774 on the past candidates. AttnNet was the most
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Figur e 11. Ar gus: An end-to-end ensemble of deep neural networks. The proposed method includes feature extraction elements of pre-trained models: a 
512-dimensional output from the first dense layer of AttnNet, and a 128-dimensional vector from the second dense layer of NaiveNetV2. These features are 
concatenated together and then reduced to 128-dimensional space through two dense layers. In addition, the model takes 128-dimensional latent features of four 
serially connected VAE models trained on reconstructing images of lensed quasars (LQ), galaxies (G), delensed quasars (Q), and deflector fields (D) from the 
blended input image. As the encoders produce both means and standard deviations of these features, they are first processed independently and then combined 
into a 64-dimensional feature vector. The final output is produced by a dense layer that classifies samples based on 192 features. 
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onserv ati ve in detecting lenses and had the highest AUROC on the
ast candidates data set, which is driven by the built-in feature se-
ection and stronger orthogonal regularization. Finally, the proposed 
nsemble model (Argus) reached a nearly perfect AUROC score of 
.997 on the simulated data, but had a slightly lower score on the past
andidates compared to AttnNet. On the mixed data, Argus achieved 
n AUROC of 0.894, the highest among all models. 

ROC curves of the AttnNet and Argus models on the ‘mixed data
et’ are shown in Fig. 12 . The Argus ensemble achieves a nearly
erfect true positive rate while keeping the false positive rate under 
.3. The AttnNet demonstrates true positive rate of about 0.8 for the
ame false positive rate under 0.3. 

Fig. 13 depicts how precision (the fraction of true lenses among the
redicted lenses) and recall (the fraction of correctly identified lenses 
mong true lenses) of two best performing models change with AB
agnitude of the whole system (obtained by summing the flux o v er

he entire cut-out; for comparison, the 10 σ limiting magnitude of the
ata for point sources is 23.34). To produce these plots, we grouped
he samples of the mixed data set into five bins of equal width in AB

agnitude and e v aluated the metrics for each group. We found that as
B magnitude increases the proposed models start suffering from a 
oticeable drop in precision. This is expected because of the declining 
ignal-to-noise ratio of the images and false positives become more 
ifficult to identify as such. Remarkably, however, recall is uniformly 
lose to 100 per cent, suggesting that our method should achieve high
ompleteness even when the signal-to-noise ratio is low. 

Fig. 14 shows objects misclassified as lenses (false positives) 
y the Argus Ensemble model. Those in the top row were also
MNRAS 513, 2407–2421 (2022) 
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Table 1. Details of various samples used in our analysis. 

Sample name Description Sample size 
Original Augmented 

Simulated lenses RedMagic deflectors + simulated lensed quasars 28 500 1254 000 
Simulated non-lenses RedMagic deflectors + contaminants 2000 128 000 
RedMaGiC non-lenses RedMagic galaxies 28 500 1140 000 
Augmented data Augmented simulated lenses and non-lenses, and 

RedMaGiC non-lenses 
– 2522 000 

Training data set 40 per cent of the augmented data – 1008 800 
Validation data set 40 per cent of the augmented data – 1008 800 
Test data set 20 per cent of the augmented data – 504 400 
Confirmed real systems Spectroscopically confirmed true positives and 

ne gativ es from STRIDES 
119 128 

Mixed data set Random samples from the test data set and additionally 
augmented confirmed real systems 

– 1216 

Table 2. Classification performance (AUROC). 

Model and parameters Simulated Past Mixed 
objects candidates data set 

CNNS (8.8M) 0.889 0.580 0.853 
LensFlow (8.8M) 0.901 0.593 0.855 
NaiveNet (10.2M) 0.901 0.605 0.862 
NaiveNetV2 (2.4M) 0.914 0.684 0.863 
NaiveNetV2 polar (2.4M) 0.937 0.582 0.864 
AttnNet (5.8M) 0.940 0.774 0.878 
Argus (17.7M) 0.997 0.650 0.894 

Figure 12. Receiver operating characteristic (ROC) curves of the best 
performing models on the mixed data set , which show the possible trade- 
offs between the probability of a correct detection (true positive rate) and 
the probability of false detection (false positive rate). The Argus ensemble 
achieves a nearly perfect true positive rate while keeping the false positive 
rate under 0.3. The AttnNet demonstrates true positive rate of about 0.8 for 
the same false positive rate under 0.3. 
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Figure 13. Precision and recall as a function of the AB magnitude of the 
whole system (obtained by summing up the flux in the cut-out) estimated on 
the mixed data set . For comparison, the 10 σ limiting magnitude of the data 
for point sources is 23.34. 
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elected by previous searches and were considered credible enough
o warrant telescope time for investigation, so it is not catastrophic
hat they mislead Argus. Those in the bottom row were simulated
alse positives and indeed look like plausible lenses to a human
lassifier, so it does not seem catastrophic that they mislead Argus
NRAS 513, 2407–2421 (2022) 
s well. At some level, a small number of false positive is inevitable
ue to the finite amount of information in the imaging data used
or the search. Those false positives will need additional data to be
esolved (spectroscopy and/or higher resolution images). We discuss
he practical implications of this and other limitations to be kept in

ind when applying this method to search for quads in the next
ection. 

.3 Practical considerations 

onsidering that telescope time is costly and limited, we wish to
stimate how effectively lists of candidates produced by Argus or At-
nNet can prioritize search time. The tw o k ey aspects of performance
n this context are precision – the proportion of candidates examined
hat pro v e to be lenses – and recall , the fraction of true lenses
hat are identified in a given catalog. Fig. 15 shows the estimated
recision and recall as we adjust the number of selected candidates
anked by the models. Both Argus and AttnNet look promising in the
ense that o v er a wide range of the number of candidates that might
easibly be considered, the precision rate remains quite high, well
 v er 80 per cent until the number of candidates begins to approach
he actual number of lenses in this sample (400). Naturally, the recall
an at best grow linearly with a slope of 1, and the observed recall
s not far below this. If these results generalize to images outside of
hose used in this paper, this plot would suggest that a search using
ur methods would be very efficient, yielding a complete sample
f quadruply imaged quasars with a relatively modest fraction of
ontaminants. A follow-up paper will put our methods to further test
y applying them to new DES data sets. 
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Figure 14. Examples of false positives found by the Argus ensemble model. The false positives identified by Argus from a sample of lenses found by previous 
searches in the DES data are shown in the top row. The false positives identified by Argus from the simulated sample are shown in the bottom row. 

Figure 15. Precision and recall at n highest-ranked candidates in the mixed 
data set . The plots were generated by taking n candidates with the highest 
scores estimated by the models as predicted positives and taking the remaining 
objects as predicted negatives . 
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 SUMMARY  

n this work, we proposed and trained no v el deep learning-based
ethods for detecting quadruply lensed quasars. We investigated sev- 

ral ANN architectures and compared them with previously proposed 
ensFlow and CNNS models. Overall, our newly developed tools and 

n particular the ensemble model impro v e on the previously proposed
lgorithms (Agnello et al. 2015 ; Hezaveh et al. 2017 ; Lanusse et al.
017 ; Petrillo et al. 2017 , 2018 ; Williams et al. 2017a ; Pourrahmani
t al. 2018 ; Schaefer et al. 2018 ; Avestruz et al. 2019 ; Jacobs et al.
019 ; Madireddy et al. 2019 ; Cheng et al. 2020 ) in terms of precision
nd recall, although prior work was not tailored to the detection of
uadruply imaged quasars, and therefore the comparison is not direct. 
A major strength of our method is its ability to process 10 8 objects

n a single day on an ordinary hardware set-up with a single GPU.
his makes it suitable for disco v ering lenses across wide areas from
urv e ys such as DES with minimal pre-screening of candidates, 
educing the risk of discarding lenses. In a follow-up paper, we 
ill carry out such a search. 
Two particularly no v el and powerful elements of our approach 

re the use of polar convolution, which is well tuned to detecting
ircularly-arranged features at different scales, and attention mask- 
ng. In the future, yet other ideas for feature extraction approaches, 
ikely moti v ated by expert knowledge, may further impro v e perfor-
ance. 
Finally, the challenges that remain are not only algorithmic, but 

n the acquisition of training data, real or simulated. That said, 
ne area in which further progress could be made is in taking
ccount of additional data, such as bands beyond griz , or using
ime-series rather than single-epoch images. Availability of larger 
ets of unlabelled and labelled training data might enable use of
ore sophisticated and accurate models including deep CNN models 

uch as ResNet, DenseNet, and EfficientNet (Tan & Le 2019 ), as
ell as no v el Vision Transformer architectures (Dosovitskiy et al.
020 ). Another promising direction for future research includes use 
f ranking models that are routinely trained on large volumes of
ata in the domain of recommender systems, because the problem 

f detecting extremely rare objects such as gravitational lenses 
ractically comes down to ranking of a set of candidates with respect
o the probability of being a lens. For example, a promising solution
ould be an ensemble of CNN and transformer models trained on
everal tasks such as classification, ranking, prediction, and so on. 
o we v er, use of comple x ensembles requires thorough analysis of

he extracted features and the development of methods to understand 
nd interpret predictions made by each component, which could be 
nother interesting direction for future research. 
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