Chapter 5

4. The probability density function of X, the lifetime of a certain type of electronic device (measured in hours), is given by

$$
f(x)= \begin{cases}\frac{10}{x^{2}} & x>10 \\ 0 & x \leq 10\end{cases}
$$

(a) Find $P\{X>20\}$.
(b) What is the cumulative distribution function of X ?
(c) What is the probability that of 6 such types of devices at least 3 will function for at least 15 hours? What assumptions are you making?
8. The lifetime in hours of an electronic tube is a random variable having a probability density function given by

$$
f(x)=x e^{-x} \quad x \geq 0
$$

Compute the expected lifetime of such a tube.
13. You arrive at a bus stop at 10 o'clock, knowing that the bus will arrive at some time uniformly distributed between 10 and 10:30.
(a) What is the probability that you will have to wait longer than 10 minutes?
(b) If at 10:15 the bus has not yet arrived, what is the probability that you will have to wait at least an additional 10 minutes?
21. Suppose that the height, in inches, of a 25 -year-old man is a normal random variable with parameters $\mu=71$ and $\sigma^{2}=6.25$. What percentage of 25 -year-old men are over 6 feet 2 inches tall? What percentage of men in the 6 -footer club are over 6 foot 5 inches?
32. The time (in hours) required to repair a machine is an exponentially distributed random variable with parameter $\lambda=\frac{1}{2}$. What is
(a) the probability that a repair time exceeds 2 hours;
(b) the conditional probability that a repair takes at least 10 hours, given that its duration exceeds 9 hours?
37. If X is uniformly distributed over ($-1,1$), find
(a) $P\left\{|X|>\frac{1}{2}\right\}$;
(b) the density function of the random variable $|X|$.

Theoretical exercise: Chapter 5

14. If X is an exponential random variable with parameter λ, and $c>0$, show that $c X$ is exponential with parameter λ / c.
