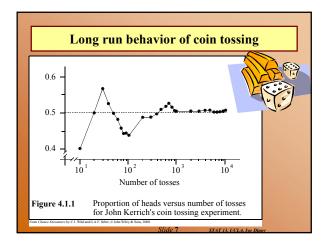
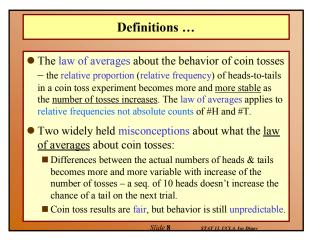
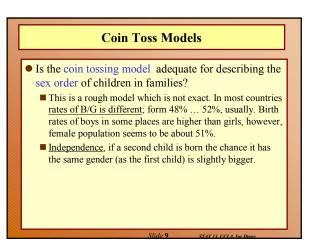

University of California, Los Angeles, Fall 2002 http://www.stat.ucla.edu/~dinov/

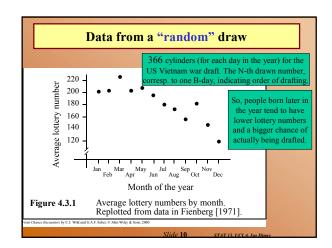
TAT 13 UCLA Ivo Din

- Where do probabilities come from?Simple probability models
- probability rules
- Conditional probability
- Statistical independence



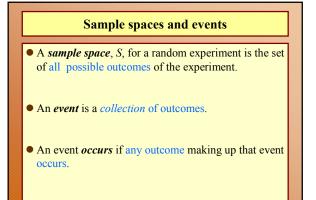

Let's Make a Deal Paradox.

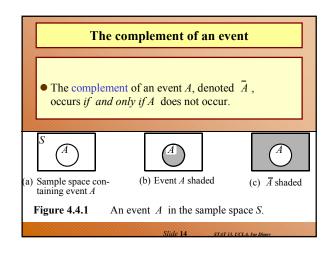

- The *intuition* of most people tells them that each of the doors, the chosen door and the unchosen door, are equally likely to contain the prize so that there is a 50-50 chance of winning with either selection? This, however, is **not the case**.
- The probability of winning by using the switching technique is 2/3, while the odds of winning by not switching is 1/3. The easiest way to explain this is as follows:


Let's Make a Deal Paradox.

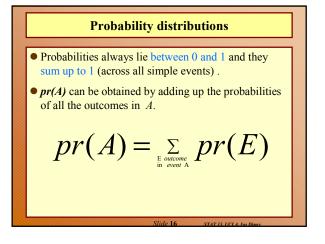
- The probability of picking the wrong door in the initial stage of the game is 2/3.
- If the contestant picks the wrong door initially, the host must reveal the remaining empty door in the second stage of the game. Thus, if the contestant switches after picking the wrong door initially, the contestant will win the prize.
- The probability of winning by switching then reduces to the probability of picking the wrong door in the initial stage which is clearly 2/3.

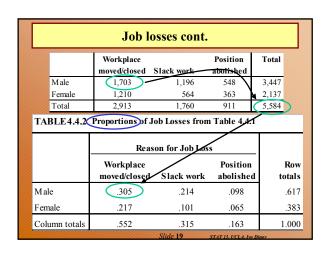





Types of Probability

- Probability models have two essential components (*sample space*, the space of all possible outcomes from an experiment; and a list of *probabilities* for each event in the sample space). Where do the outcomes and the probabilities come from?
- <u>Probabilities from models</u> say mathematical/physical description of the sample space and the chance of each event. Construct a fair die tossing came.
- <u>Probabilities from data</u> data observations determine our probability distribution. Say we toss a coin 100 times and the observed Head/Tail counts are used as probabilities.
- <u>Subjective Probabilities</u> combining data and psychological factors to design a reasonable probability table (e.g., gambling, stock market).

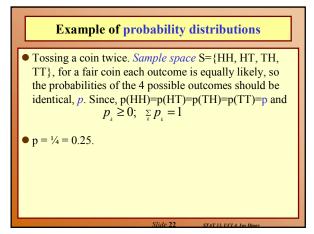


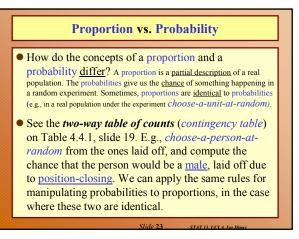

STAT 13 UCLA IN

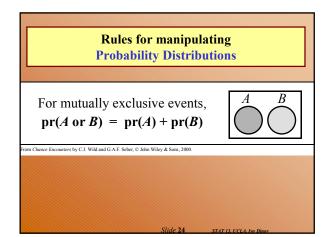
	Job lo	sses in the	US	
TADIEA	4.1 Job Losses in	the US (in the	usands)	
for 1987 to		the US (In those	isanus)	
	Reas	son for Job Loss		
	Reas Workplace	son for Job Loss	Position	Total
		son for Job Loss Slack work		Total
Male	Workplace		Position	Total 3,447
M ale Female	Workplace moved/closed	Slack work	Position abolished	

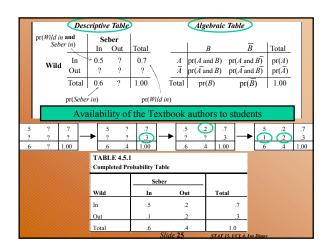
Review

- What is a sample space? What are the <u>two essential</u> <u>criteria</u> that must be satisfied by a possible sample space? (completeness – every outcome is represented; and uniqueness – no outcome is represented more than once.
- What is an event? (collection of outcomes)
- If A is an event, what do we mean by its complement, \overline{A} ? When does \overline{A} occur?
- If A and B are events, when does A or B occur? When does A and B occur?

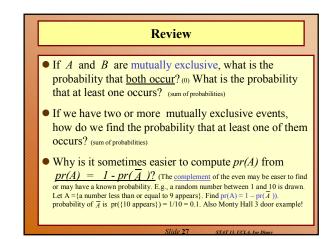

Properties of probability distributions


• A sequence of number $\{p_1, p_2, p_3, ..., p_n\}$ is a probability distribution for a sample space $S = \{s_1, s_2, s_3, ..., s_n\}$, if $pr(s_k) = p_k$, for each $1 \le k \le n$. The two essential properties of a probability distribution $p_1, p_2, ..., p_n$?


 $p_{\mu} \ge 0; \quad \sum_{k} p_{\mu} = 1$

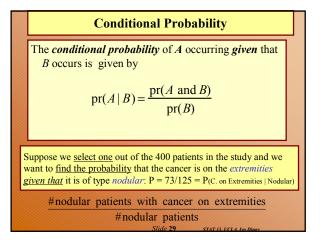

- How do we get the probability of an event from the probabilities of outcomes that make up that event?
- If all outcomes are <u>distinct</u> & <u>equally likely</u>, how do we calculate pr(A)? If $A = \{a_1, a_2, a_3, ..., a_9\}$ and $pr(a_1)=pr(a_2)=...=pr(a_9)=p$; then

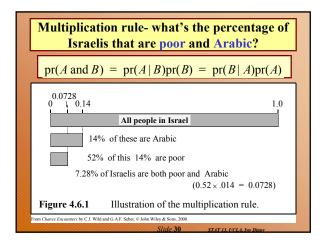
 $\underline{pr(A)} = 9 \ge \underline{pr(a_1)} = 9\underline{p}.$

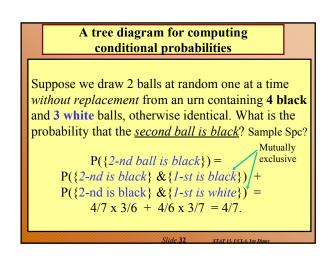

Unmarried	couples
-----------	---------

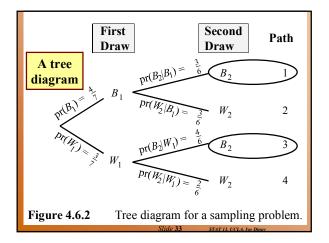
Select an unmarried couple *at random* – the table <u>proportions</u> give us the probabilities of the events defined in the row/column titles.

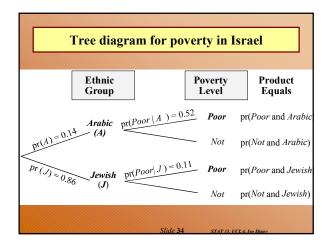
 TABLE 4.5.2
 Proportions of Unmarried Male-Female Couples

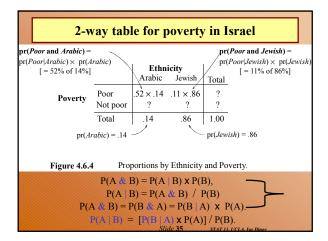

 Sharing Household in the US, 1991

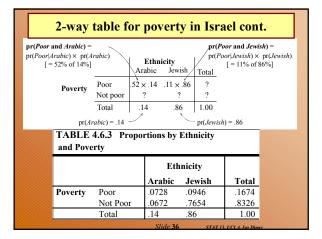

Male	Never Married	Divorced	Widowed	Married to other	Total
Never Married	0.401	.111	.017	.025	.554
Divorced	.117	.195	.024	.017	.353
Widowed	.006	.008	.016	.001	.031
M arried to other	.021	.022	.003	.016	.062
Total	.545	.336	.060	.059	1.000
		Slide 2	6 STAT L	B. UCLA. Ivo Dinov	

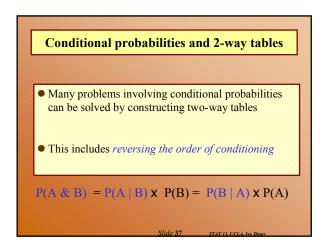


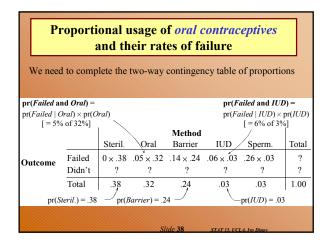

		• •	kin cancer – ional probabili	<u>ties</u>
TABLE 4.6.1: 400 N	lelanoma Pa			-
	Head and	Si	te	- Row
Туре	Neck	Trunk	Extremities	Totals
Hutchinson's				
melanomic freckle	22	2	10	34
Superficial	16	54	115	185
Nodular	19	33	73	125
Indeterminant	11	17	28	56
Column Totals	68	106	226	400

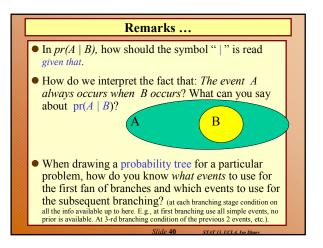

lida **18** erur

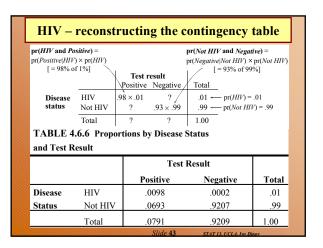




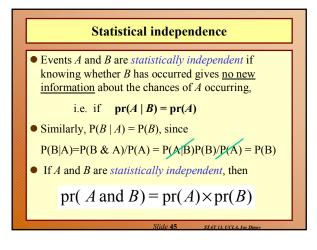


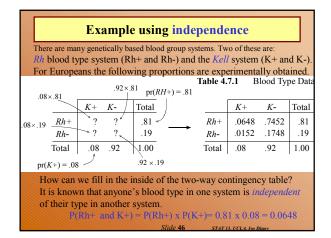






		Oral co	ontrac	eptives	s cont.			
pr(Failed	pr(Failed and Oral) = pr(Failed Oral) × pr(Oral) [= 5% of 32%]			Method	pr(<i>Failed</i> and <i>IUD</i>) = pr(<i>Failed</i> <i>IUD</i>) × pr(<i>IUD</i>) [= 6% of 3%] d			
		Steril.	Oral	Barrier	IUD /	Sperm.	Total	
Outcome	Failed Didn'		.05×.32 ?	.14×.24 ?	.06 × .03 ?	.26×.03 ?	? ?	
	Total	.38	.32	.24	.03	.03	1.00	
pr	Steril.) =	38 – pr(<i>l</i>	Barrier) = .2	4 –				
TABLE 4	.6.4 Tab	le Construct	ted from th	e Data in E	xample 4.6.	8		
				Method				
		Steril.	Oral	Barrier	IUD	Sperm.	Tota	1
Outcome	Failed Didn't	0 .3800	.0160 .3040	.0336 .2064	.0018 .0282	.0078 .0222	.0592 .9408	
	Total	.3800	.3200	.2400	.0300	.0300	1.0000)
			S	lide 39	STAT 13.1	CLA. Ivo Dinov		




Having a Give	Number of Individ n Mean Absorbance I ELISA for HIV Antib	Ratio
MAR	Healthy Donor	HIV patients
<2	$202 \}_{275}$	0 > 2 False-
2 - 2.99	$_{73}$ $\int \frac{275}{Tes}$	t cut-off ^{2 J ² Negati}
3 - 3.99	15	(FNE) 7 Power o
4 - 4.99	³ Fals	7
5 - 5.99	2 > posi	tives ¹⁵ 1-P(FNE)
6 -11.99	2	36 1-P(Neg HI
12+	0	21 ~ 0.976
Total	297	88
Adapted from Weis	s et al.[1985] Slide 41	STAT 13. UCLA Ivo Dinov

		HIV	⁷ cont.	
or(<i>HIV</i> and <i>Po</i>	sitive) =			pr(<i>Not HIV</i> and <i>Negative</i>) =
or(Positive HIV	,			pr(Negative Not HIV) × pr(Not
[=98% o	f 1%]			[= 93% of 99%]
		Test r	Negative	Total
Disease	HIV	.98 × .01	2	$.01 \leftarrow pr(HIV) = .01$
status	Not HIV	.96 × .01	.93 × .99	$.99 \leftarrow pr(Not HIV) = .99$
	Total	?	?	1.00
Б.		D Was III		
Figure		0		on into the table.
Chance Encounters by	C.J. Wild and G.A	.F. Seber, © John V	/iley & Sons, 2000	L

TABLE 4.6.7	Proportions In	fected with HIV		
Country	No. AIDS Cases	Population (millions)	pr(HIV)	Having Test pr(HIV Positive)
United States	218,301	252.7	0.00864	0.109
Canada	6,116	26.7	0.00229	0.031
Australia	3,238	16.8	0.00193	0.026
New Zealand	323	3.4	0.00095	0.013
United Kingdom	5,451	57.3	0.00095	0.013
Ireland	142	3.6	0.00039	0.005

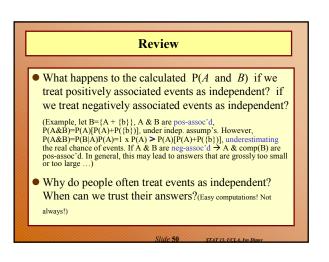


TABLE 4.7.2 Frequen	icies Assi	umed by the Prosecution	
Yellow car	$\frac{1}{10}$	Girl with blond hair	$\frac{1}{3}$
Man with mustache	$\frac{1}{4}$	Black man with beard	$\frac{1}{10}$
Girl with ponytail	$\frac{1}{10}$	Interracial couple in car	$\frac{1}{1000}$
largely on statistical evic was described as a wearing ot into a yellow car driv beard. The suspect broug the descriptions. Using t	dence, 196 ing dark c ven by a b ght to trial he <i>produc</i>	ion was made in an American (64. A woman was mugged and loths, with blond hair in a pony lack male accomplice with mus were picked out in a line-up ar <i>tt rule for probabilities</i> an expen n couple meets these characteri	the offend tail who stache and nd fit all of rt witness

	Nucle	ar reactor s	safety	
Probability of worst consequence	Probability of initiating event		× Probability of worst weather	Probability of highest population density
year that fail, rele <i>faulty tro</i>	t containment o asing volatile p	f a possible nuc roducts into the ny probability s	000,000,000 per lear core meltdow atmosphere, wer statements were n	vn would e based on

Summary

- What does it mean for two events *A* and *B* to be *statistically independent*?
- Why is the working rule under independence, P(A and B) = P(A) P(B), just a special case of the multiplication rule P(A & B) = P(A | B) P(B)?
- Mutual independence of events $A_1, A_2, A_3, ..., A_n$ if and only if $P(A_1 \& A_2 \& ... \& A_n) = P(A_1)P(A_2)...P(A_n)$
- What do we mean when we say two human characteristics are *positively associated*? *negatively associated*? (blond hair – blue eyes, pos.; black hair – blue eyes, neg assoc.)

Summary of ideas

- The *probabilities* people quote come from 3 main sources:
 - (i) *Models* (idealizations such as the notion of equally likely outcomes which suggest probabilities by symmetry).
 - (ii) Data (e.g. relative frequencies with which the event has occurred in the past).
 - (iii) *subjective feelings* representing a degree of belief
- A simple probability model consists of a sample space and a probability distribution.
- A sample space, *S*, for a random experiment is the set of all possible outcomes of the experiment.

Summary of ideas cont.

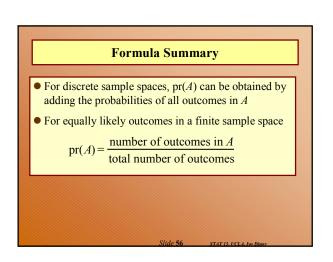
- A list of numbers p_1, p_2, \dots is a *probability distribution* for $S = \{s_1, s_2, s_3, \dots\}$, provided
 - **all of the** p_i 's lie between 0 and 1, and
 - they add to 1.
- According to the probability model, p_i is the probability that outcome s_i occurs.
- We write $p_i = P(s_i)$.

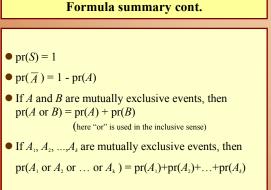
Summary of ideas cont.

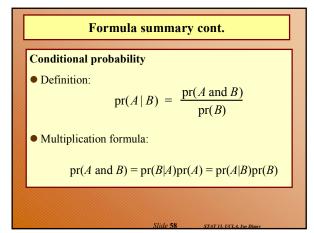
• An event is a collection of outcomes

- An event *occurs* if any outcome making up that event occurs
- The probability of event A can be obtained by adding up the probabilities of all the outcomes in A
- If all outcomes are equally likely,

$$pr(A) = \frac{\text{number of outcomes in } A}{\text{total number of outcomes}}$$


Summary of ideas cont.


- The *complement* of an event A, denoted \overline{A} , occurs if A does not occur
- It is useful to represent events diagrammatically using *Venn diagrams*
- A union of events, A or B contains all outcomes in A or B (including those in both). It occurs if at least one of A or B occurs
- An intersection of events, A and B contains all outcomes which are in both A and B. It occurs only if both A and B occur
- Mutually exclusive events cannot occur at the same time


Summary of ideas cont.

• The conditional probability of A occurring given that B occurs is given by $pr(A | B) = \frac{pr(A \text{ and } B)}{pr(B)}$

- occurring, i.e. if P(A | B) = P(A) → P(B|A)=P(B).
 If events are physically independent, then, under any sensible
- probability model, they are also statistically independentAssuming that events are independent when in reality they are
- not can often lead to answers that are grossly too big or grossly too small

Formula summary cont.

Slide 57

STAT 13. UCLA. Ivo E

Multiplication Rule under independence:

• If A and B are independent events, then pr(A and B) = pr(A) pr(B)

• If A_1, A_2, \dots, A_n are mutually independent, pr $(A_1 \text{ and } A_2 \text{ and } \dots \text{ and } A_n) = \text{pr}(A_1) \text{ pr}(A_2) \dots \text{pr}(A_n)$