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T-test and CI for the nitrate ion
concentration data (mg/mL) in H,O

® 10 samples measuring the NO;™ ion concentration
(possible fertilizer leak) in H,O are given {0.513, 0.524,
0.529, 0.481, 0.492, 0.499, 0.518, 0.490, 0.494,
0.501}. Each sample measure is obtained by taking a
sample of the H,O and performing spectral chemical
analysis. There’s concern that there is a change from
the desired nitrate concentration of 0.492.

®The data are plotted on the next slide, no reason to
believe data is not coming form Normal distribution.

T-Test of the Mean

sSe(x _yal,
Test of mu = 0.49200 vs mu not = 0.49200/() Jof e
Vari abl e N Me an St Dev SE Mean T P
Concentr 10 0.50410 0.01600 0.00506 2.390\040
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Chapter 10: Data on a Continuous Variable

®One-sample issues

®Two independent samples
®More than 2 samples

®Blocking, stratification and related
samples

Dotplot of Concentration
(with Ho and 95% t-confidence interval for the mean)
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_Robustness example

® Coverage of true mean by Normal-theory 95% CI’s
when sampling from the distribution depicted below
B Coverage obtained by simulation

M i.e. by repeatedly generating samples, calculating an interval
from the sample and then determining whether the true value
was in the interval or not.

B This is called Chi-square distribution, x2(df=4), see in Ch. 11.

B Results below represent 10,000 samples, each of 4 sample-
sizes. Results are frequencies/percentage-of-time the t-interval
covered the population mean. Skewed distribution, but good

coverage.
Sample Size | 6 8§ 10 15
Coverage (%) | 92 92 93 94

tom Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000,




Effect of outliers

® We will shift one observation as shown below
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Integrated approach to data analysis

Always plot, if you can, or look at your
data before using formal tools of
analysis.

Effect of outlier on Normal probability plot

(b) Largest obs’n
shifted

Normal Probability Plot
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Figure 10.1.4  Normal plots for Example 10.1.1 data (from Minitab).

1 by C.1Wid nd G A, Sebe,  John Wiky & Sors, 2000

From Chance Encounte

Effect of an outlier

ta —— {y=2.39, P-value =0.040
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® Normhal probability/quantile plot allows a graphical test for
normality of the data, by comparing its quantiles to these of a
standard normal distribution. We use Normal samples why
are we getting non-normal fit? Small sample size!

Example 10.1.2: Moon illusion

Does the Moon look larger at times? When its low in the sky close to
the horizon, compared to the size being high in the sky. Starting
with the Greek astronomer Ptolemy, 2™ century A.D., this
problem has puzzled us until Kaufman and Rock described the
illusion in 1962. They designed an experiment projecting two
discs of adjustable size from the horizon direction (level) and
from the zenith (directly overhead). Then compared the ratios of
the disc diameters. One disc was kept at fixed size the other’s size
was updated until they appeared the same for the experimental
subjects. Each measurement represents the ratio of the actual sizes
zenith/horizon disc. If Moon-size-illusion occurs we’ll have

ratio>1, as the zenith disc size had to be increased to match the

horizon disc size. {2.03, 1.65, 1.00, 1.25, 1.05, 1.02, 1.67, 1.86, 1.56, 1.73}




Example 10.1.2: Moon illusion

Data 2.03, 1.65, 1.00, 1.25, 1.05, 1.02, 1.67, 1.86, 1.56, 1.73

Assumptions: experimental subjects constitute random sample
from large population. Hypothesis: Hy: p=1, H,: i >1. One-
sided P-value=0.0014. 95% CI(n)=[1.21 : 1.75].
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Figure 10.1.5 Dot Blot of moon illusion data with 95% C.I. for mean|

Test of mu 1.000 vs mu > 1.000

Vari abl e N Mean StDev SE Mean t-stat P-value
El evated 10 1.482 0.374 0.118 4.07 0.001

95.0 % Cl: (1.214, 1.750)

Review

® What should you always do with data on a continuous
variable before performing formal significance tests or
intervals? (Graph, Normal quantiles, eyeball).

® Under what circumstances should you not use t-tests
and interValS?(small samples & skewed data—1-tailed test, outliers, clustered data).

® If there are outliers in a data set, what should you do?

(check original data for typos, remove outliers)

® Four approaches to dealing with severe non-Normality
(including the presence of outliers) are: non-parametric methods

make no Normal assumptions (sign-test); robust methods insensitive to outliers; adopt a new
model for the data underlying distribution (other than Normal) much like we did for T-distr;
transformation approach (e.g., log-transform) to make the data conform better to Normal.

Moon illusion Data
TABLE10.1.1 The Moon Illusion
Difference
Subject Eyes Elevated  Eyes Level (Elevated - Level)
1 2.03 2.03 0.00
2 1.65 1.73 -0.08
3 1.00 1.06 -0.06
4 1.25 1.40 -0.15
5 1.05 0.95 0.10
6 1.02 1.13 -0.11
7 1.67 1.41 0.26
8 1.86 1.73 0.13
9 1.56 1.63 -0.07
10 1.73 1.56 0.17
Source: Kaufman and Rock [1962].

Comments

® What assumptions about the data are made by the
theory underlying #-tests and confidence intervals for
a population mean m (data are from distribution close to Normal)

® When we say that a ¢~confidence interval for f/is
robust against some particular form of

non-Normality, what do we mean by robust? (applies for
non-normal data too, as long as there are no heavy outliers/clusters/skewed).

® What do we mean when we say that a #-test is it

robust against some departure from the assumptions?
(As the sample size increases we remove the requirement on the data as coming
from Normal distribution, by CLT effects).

Paired Comparisons

® Sometimes we have two data sets, which are not
independent, but rather observations matched in pairs.

® Back to the Kaufman & Rock study of the Moon size
illusion. Does the moon size appear different with eyes
level and with eyes raised? Does eye position make a
difference? Eyes elevated refers to raising the eye from

horizontal to zenith position. 10 Subjects are tested under eye-
level (control) condition, by physically moving the subject’s body from level
to zenith position with fixed eye direction — horizontal. Ratios of the Moon
size in level and zenith positions, for the two paradigms are given below.

Plotting Eyes elevated rations vs. eyes level rations
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Looking for an effect due to elevating eyes

For paired data, analyze the differences. | -

evidence eye position———@—
causes illusign | ° oo o °

02 0.1 0.0 0.1 0.2 0.3
Differences (Elev. - Level)

Figure 10.1.7 Dot plot of differences for the moon illusion data
(with a 95% CI for the mean difference).
Test of mu = 0.0000 vs mu > 0.0000

Variable N Mean StDev SE Mean t-staf
Difference 10 0.0190 0.1371 0.0434 0.44
95% CI ( -0.0791, 0.1171)

Helmet sizes for NZ Air Force — complete table
TABLE 10.1.2 Air Force Head Sizes Data
Recruit Cardboard Metal Difference Sign of
(mm) (mm) (Card-metal) difference
1 146 145 1 +
2 151 153 -2 -
3 163 161 2 +
4 152 151 1 +
5 151 145 6 +
6 151 150 1 +
7 149 150 -1 -
8 166 163 3 +
9 149 147 2 +
10 155 154 1 +
11 155 150 5 +
12 156 156 0 0
13 162 161 1 +
14 150 152 -2 -

Review

1. What is a paired-comparison experiment? (obs'd data are
matched in pairs).

2. In a paired-comparison experiment, why is it wrong
to treat the two sets of measurements as independent
data Sets? (data are usually taken from the same unit under diff. Treatments, so obs’s
should be related).

3. How do you analyze the data from a paired-
comparison experiment? (analyze the difference).

4. What situations is appropriate to use the paired-

comparison method to analyze the data? (pre- and post-
metrifonate study using FDG PET imaging).

Flying helmet sizes for NZ Air Force

Measure the head-size of all air force recruits. Using
cheaper cardboard or more expensive metal calipers. Are
there systematic differences in the two measuring
methods? Again, paired comparisons.

TABLE 10.1.2 Air Force Head Sizes Data
Recruit Cardboard Metal Difference Sign of
(mm) (mm] (Card-metal) difference
1 146 145 1 +
2 151 153 2 -
3 163 161 2 +
4 152 151 1 +
5 151 145 6 +
6 151 150 1 +

Head sizes: Does type of caliper make a difference?

Hypothesized vall_w
L §
8 [e) o 8 o o
2 0 2 4

Differences (Cardboard - Metal)

Figure 10.1.8 Dot plot of differences in size (with 95% CI).

Paired T-Test and Confidence Interval

paired T for cardboard - metal

N Mean St Dev SE Mean
car dboard 18 154.56 5.82 1.37
met al 18 152.94 5.54 1.30
Di f ference 18 1.611 2.146 0.506

95% CI for mean difference: (0.544, 2.67
IT-Test of mean difference=0 (vs not=0)/ -Value=3. 197y
P-Val ue=0. 005 >

Figure 10.1.9  Minitab paired- output for the size data.

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Helmet paired head measurements

From the cardboard vs. metal caliper tests, Table 10.1.2
we see 14 + and 3 — signs, implying larger overall
measurements using the cardboard calipers. It’s like
tossing a coin 17 times and getting 14 heads. How
likely is that?

If Y~Binomial(17, 0.5), number of successes (heads) in
17 fair coin tosses, then P(Y>=14)=0.00636, hence if
we test p=0.5, vs. p!=0.5, two-tailed test, the chance is
2P(Y>=14)=0.0127.




Comments

5. What independence assumption must hold before the
sign test is applicable? How important is it that this
aSSanption is true? (requires that obs’s are independent (one-sample test) and

different pairs are independent (paired data), very sensitive.)

6. What advantages and disadvantages does the sign test
have in comparison with the #-test? (Main advantage - test is

distribution-free and i itive to outliers. Disad — when hypothesis for T-test, or a
parametric test are met the CI are shorter and the parametric tests are more likely to detect
departure from normality.)

Inference about the sample spread

Assessing the variability in the Moon Illusion Ratios.
Three ratios in the range of the data are graphically
shown below. Enormous variability in the extend of
the illusion for different people. How to stat-analyze it.

Zenith moon

Horizon moon . ‘ ‘

Ratio=1.1 Ratio=1.5 Ratio =1.9

Figure 10.1.11 Different moon illusions.

[From Chance Encounters by C.J. Wild and G A E. Seber, © John Wiley & Sons, 2000.

Analysis of two independent samples

Urinary androsterone levels — data, dot-plots and 95% CI. Relations
between hormonal levels and homosexuality, Margolese, 1970.
Hormonal levels are lower for homosexuals. Samples are

independent, as unrelated. Results, P-value of t-test 0.004 with a

CI (UygerMpom)=10.4:1.7]. Normal hypothesis satisfied?Skewed?

TABLE 10.2.1 Urinary Androsterone Levels(mg/24 hr)

Homosexual: 2.5, 1.6, 3.9, 34, 23, 1.6, 2.5, 34, 16, 43, 2.0,
18, 22, 3.1, 13
Heterosexual: 3.9, 4.0, 3.8, 3.9, 29, 32, 46, 43, |3.1, |27, 2.3

—a—
Homosexuals o g o 0 oo 8 o 8 o o

Heterosexuals

Androsterone (mg/24 hrs)

Review

7. Why is the sign test called a distribution-free test?
Does this mean that distributions are not used in

performing the test? (no assumptions on the data underlying
distribution, but distributions are actually used, e.g., Binomial).

e}

. In applying the sign test to paired data, how do you
handle situations where both observations are tied
(indistinguishable)? (ignore them)

Inference about the sample spread

. Here inferences for the mean f/ are straightforward,
whereas inferences for the standard deviation oare
difficult. (inferences about oare very sensitive to non-normality, and does not
improve with increase of sample-size.)

2. What large sample theory can we invoke when

making inferences about a mean? (cLr, for 4 not available for 0y

Urinary androsterone levels cont.

Two Sample T-Test and Confidence Interval
Two sanple T for androsterone

N Mean St Dev SE Mean Confid. . !
hetero 11 3.518 0.721 0.22 onfidence interva
honose 15 2.500 0.923 0.24

95% Cl for mu (hetero) - nu (honose): ( 0.35, 1.69)
T-Test nu (hetero) = nu (honpbse) (vs not=):

t-test statistic _P-value

T=3.16 P=0.0044 DF=23

Figure 10.2.3 Minitab 2-sample #-output for the androstenone data




| Comparing two means for independent samples Bl Lo iy i .samples a
equal or unequal variances?

Suppose we have 2 samples/means/distributions as Pooled T-test is used for samples with assumed equal
follows: {X ,N(u .0 )} and {*¥ . N(u_.0_ )}. We've variances. Under data Normal assumptions and equal
. 2 Zb 2 _ . Lo Lo
seen before that %0 make inference about 4 ~H_  we variances of (.- x.-0)/SE(% - x.), where
can use a T-test for H: #l 'ﬂz =0 with . (xi=-x:)—-0

2 2
n =Ds“+(n_=1)s
(1 )1 (2 )2

T SE(x.-x - .2 =
And CI(#, ~#) = %= % £ X SE(¥. = .) SE(a=x.) SE= s [Vn #lins =
If the 2 samples are independent we use the SE formula

2 2
SE=_[s“/n +5°/n g =Mi e o
1T with df Mzn(n1 l,n2 1

n+n =2
2
is exactly Student’s t distributed with 4 = (”1 + ny 2)

Here s, is called the pooled estimate of the variance,
since it pools info from the 2 samples to form a

This gives a conservative approach for hand calculation of an
approximation to the what is known as the Welch procedure,

i . combined estimate of the single variance 0,%= 0,2 =02,
which has a complicated exact formula. & & 2

The book recommends routine use of the Welch unequal variance method.

Comparing two means for independent samples We know how to analyze 1 & 2 sample data.
How about if we have than 2 samples —

One-way ANOVA, F-test

. How sensitive is the two-sample #-test to non-Normality
in the data? (The 2-sample T-tests and CI’s are even
more robust than the 1-sample tests, against non-
Normality, particularly when the shapes of the 2
distributions are similar and n,=n,=n, even for small n,
remember df=n,+n,-2.

One-way ANOVA refers to the situation of having one
factor (or categorical variable) which defines group
membership — e.g., comparing 4 reading methods, effects
of different reading methods on reading comprehension,

3. Are there nonparametric alternatives to the two-sample data: 50 — 13/14 y/o students tested.

t-test? (Wilcoxon rank-sum-test, Mann-Witney test, equivalent tests, same P-
VD) Hypotheses for the one-way analysis-of-variance F-test
4. What difference is there between the quantities tested
and estimated by the two-sample 7-procedures and the
nonparametric equivalent? (Non-parametric tests are based on
ordering, not size, of the data and hence use median, not mean, for
the average. The equality of 2 means is tested and CI(1, - |,).

Null hypothesis: All of the underlying true means are identical.
Alternative: Differences exist between some of the true means.

TABLE 10.3.1 Increase in Reading Age
Comparing 4 reading methods

Both: 01 32 43 -05 19 33 25 36 04 23 -14 -07

| B ) : - 01 02 04 09 12 14 18 18 24 31
Comparing 4 reading methods, effects of different reading Map Only: 1.0 -05 1.0 06 06 1.0 10 -14 22 36 3.1 26

methods on reading comprehension, data: 50 — 13/14 y/o ScanOnly: 1.0 33 14 -09 10 00 06
students tested. Neither: 03 13 16 -04 07 06 -18 20 -07

-Mapping: using diagrams to relate main points in text; Mapjandiscan o o0 ow8 o0oo b aw w@o o
-Scanning: reading the intro and skimming for an —
overview before reading details; Map only o o 8 § oo o o -
- 3 1 .
Mapplng and Scanning; Sean only S T .
-Neither.
Table below shows increases in test scores, of 4 groups of Neither 0 0 8w o o
students taking similar exams twice, w/ & w/o using a 5 1 0 T 3 3 } 3
reading technique_ Increase in reading age

Research question: Are the results better for students

Figure 10.3.1 Increases in reading ages with individual 95% Cls.
using mapping, scanning or both?

oy C.J_Wikd and G.AF. Seber, © John Wiley & Sons, 2
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One-way Analysis of Variance
Anal ysis of Variance for |ncrease I F-Staﬁstt'CI I;-value I
Source  DF Ss M F P
ap 3 27.06 9.02 4,45  0.008 > Anova Tuble
Error 46 93.35 2.03 H
Tot al 49 120. 41

I ndi vi dual 95% Cl's For Mean

Level N
2.

Mapnly 12
ScanOnly 7
Neither 9 -0.

sis of variance output for reading ages

Ty C. Wil and G_AF_ Saber, © Joh Wiley & Sons, 2000

Interpreting the P-value from the F-test

(The null hypothesis is that all underlying true means are identical.)

® A large P-value indicates that the differences seen
between the sample means could be explained simply

in terms of sampling variation.

® A small P-value indicates evidence that real
differences exist between at least some of the true
means, but gives no indication of where the
differences are or how big they are.

® To find out how big any differences are we need
confidence intervals.

Where did the F-statistics came from?

® Let’s look at this example comparing groups. How do
we obtain intuitive evidence against H,? Far separated
sample means + differences of sample means are large
compared to their internal (within) variability! Which of
the following examples indicate group diff’s are “large”?

o ocoo 9| o o o Gp 1
Example I o o o o | @ o o Gp 2
@ oo | o oo o Gp3
om¢oo o Gp 1
Example 2 oomje Gp 2
© o o Gp 3
o Gp 1
Example 3 [} Gp 2
@® Gp 3

T T T T

Computer output

One-way Analysis of Variance
Anal ysi s of Variance for Increase £I-statistic /P-value
¥

Source  DF SS vs T F P

Gp 3 27.06 9.02 4.45 0.008 Anova Table
Error 46 93. 35 2.03

Tot al 49 120. 41 |

I ndi vidual 95% Cl's For Mean

Level N Mean

MapOnly 12 1.233
ScanOnly 7 0.914
Neither 9 -0.556

Pool ed StDev = 1.

Figure 10.3.2 Minitab analysis of variance output for reading ages

rom Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000,

Form of a typical ANOVA table

TABLE 10.3.2 Typical Analysis-of-Variance Table for One-Way ANOVA

Sum of Mean sum
Source squares df of Squares”  F -statistic P-value
. =%)? 2 2,2
Between Z"’(x“ 2 k-1 S Isy pr(F> fo)
2 2
Within =] Hop -k S

tot

Total LYY, =il

"M ean sum of squares = (sum of squares)/df

® The F-test statistic, f;, applies when we have
independent samples each from & Normal
populations, N(l;, 0), note same variance is assumed.

More about the F-test

® 52, is a measure of variability
of sample means, how far apart §2 =

they are. B k=1

® 2, reflects the avg. internal pACAS) si2
Variability within the samples. I%V -

> n; (fi. —J?..)2

4 k
Mot

® The F-test statistic, f;, tests H, by comparing the
variability of the sample means (numerator) with the
variability within the samples (denominator).

® Evidence against H,, is provided by values of f;
which would be unusually large if H|, was true.




What are x;, X.., X P etc.?

One-Way Anova (

AL

between treatments varability J-inde

]

X

Response

SPE R A 51U THED T U

Treatments I-index

What are x;, x.., x j, etc.?
Sum of Squares for treatments (cities)

k

SST =Y n (X, -%)°

=1
88T =20(377.55- 6§13.07¢

+ 20(653.00 - 613.07)

+ 20(608.65 - 613.07)2

=5751223

What are x;, x.., x j, etc.?
F-test

o MST _ 8ST/(k-1)
MSE  SSE/(n-k)
57,512.23/3-1)
 506,967.8%/(60-3)
=3.23

Test Statistic:

Rejection Region: F=F 1 1 037F g5 25=3.15
Conclusion: Reject Hy

What are x;, x.., x j, etc.?
Need Online reference

oty A AR ot
Conunos @ uallty Frige
CRl 204 arg

Applejuice sales 45T azn au e

(units per week) I e e Tee
4 are an2

TP an4 602

Tii a20 dE6B

Hy: 5= 1= 1t; o
B2F da16 612

H,: atleast 2 e . e

A

- an04 raer NN

means differ o ane T

488 RS 81

. . BET 628 ET2

X 1<=1<=nj; 1<j<=3 — - T
BET 434 621

547 630 aTE

ai4 474 6282

What are x;, x.., x j, etc.?
Sum of squares for the Error

k(o
Sum of Squares for Error: S5E = Z[Z (Xij - fj)z]

j=1vi=1

SSE = 10¢10,77.44) + 10(7,238.61) + 10(8,660.47)
= 506,967.88 |

What are x;, x.., x j, etc.?
One-Way Design ANOVA Table

Degrees Sum of Mean F
Sour ce of Freedom Sguares Squares Statistic
Treatments k-1 SST MST MST/MSE
Error n-k SS5E MSE
Total n-1 SS(Total)

Note: MST=8ST/{k 1)
MSE=SSE/in-k)




F-test assumptions

Samples are independent, physically independent
subjects, units, objects are being studies.

2. Sample Normal distributions, especially sensitive
for small n;, number of observations, N(l;, 0).

3. Standard deviations should be equal within all
samples, 0,= 0,= 05=... 0,=0. (12 <= 0,/0;<=2)

How to check/validate these assumptions for your data?
For the reading-score improvement data:

- independence is clear since different groups of students are used.

- Dot-plots of group data show no evidence of non-Normality.

- Sample SD’s are very similar, hence we assume population SD’s are
similar.

Residuals

Diagnostic plots for the reading-scores
_ improvement data
(b) Residual plot (c) Normal prob. plot
3
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I 2 3 3210123
Group Residuals

Review

6. Qualitatively, what values of f; provide evidence
against HO? (unusually large f; if H, is true.)

7. What does a large P-value from the F-test tell us
about differences between means? How about a small
P-value? (diff’s between sample means can be explained by sampling variation.)

8. What does a small P-value tell us about which means
differ from one another? about how big the
differences between means are? (nothing about which/size, only
indicates real diff’s exist, between at least some sample means.)

9. How do we obtain information about the sizes of

differences between means? (need confidence intervals.)

Incr. mn reading age

Diagnostic plots for the reading-scores
improvement data
(a) Original data (b) Residual plot
4_ o 3 o
g o o o ° ° o
o 8 o
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8 o , & X T ., ., 8
) ) o 8
-2- T T T e| -3 cl) o| T T
1 2 3 4 1 2 3 4

Review

1. What is an one-way analysis of variance? (compare means
of several groups of independent samples.)

2. When do we use the one-way ANOVA F-test? nw, o3

samples).

3. What null hypothesis does it test? What is the
alternative hypothesis? (all underlying true means are identical; at least 2 are different.)

4. Qualitatively, how does the F-test obtain evidence
against H, 0? (separation between sample means/intra-sample variability).

5. Qualitatively, what type of information is captured
by the numerator of the F-statistic? What about the
denominator? (variability-of-sample-means/variability-within-samples).

Review

10.What assumptions are made by the theory on which
the F-test is based upon? How important is each of
these assumptions in practice? (1.Sample independence — critical;
2.Normal data — robust, if sample-sizes are large; 3.Equal SD’s — not too bad if
O/ Oin<=2.)

11.What new problem arises when we need to obtain
and inspect a large set of confidence intervals? (i necd o

simultaneously catch, with 95% confidence, their true values, which requires increase of
individual levels.)

12.Which is affected worst by departures from the
equal-standard-deviations assumption, the F-test or

the confidence intervals? Why? [cL, since Cl(least-variable
groups) = too wide & CI(most-variable-groups)=too narrow.]




Chapter 10 Summary

All formal methods make assumptions

® If the assumptions are false, the results of the analysis
may be meaningless.

® A method is robust against a specific departure from
an assumption if it still behaves in the desired way
despite that assumption being violated.

Me.g. it gives “95% confidence intervals” that still cover the
true value of @for close to 95% of samples taken.

® A method is sensitive to departures from an
assumption if even a small departure from the
assumption causes it to stop behaving in the desired
way.

Outliers

® If present, try and check back the original sources.

® Any observations which you know to be mistakes
should be corrected or removed.

® [f in doubt, do the analysis with and without the
outliers to see if you come to the “same” conclusions.

Always plot your data

Always plot your data before using formal tools of
analysis (tests and confidence intervals).

® the quickest way to see what the data says

® often reveals interesting features that were not
expected

® helps prevent inappropriate analyses and unfounded
conclusions

® Plots also have a central role in checking up on the
assumptions made by formal methods.

Assumptions cont.

® Many types of assumption are seldom, if ever,
obeyed exactly so that methods which are sensitive to
departures from such assumptions are of limited use
in practical data analysis.

® You must check whether the data contradicts the
assumptions to an extent where the tests and intervals
no longer behave properly.

B (Plots are a useful tool here.)

Nonparametric (distribution-free) methods

® [ess sensitive to outliers

® do not assume any particular distribution for the
original observations

® do assume random samples from the populations of
interest

® measure of center is the median rather than the mean

® tend to be somewhat less effective at detecting
departures from a null hypothesis and tend to give
wider confidence intervals
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Normal Theory Techniques

One sample methods

® Two-sided #-tests and ¢-intervals for a single mean
are
M quite robust against non-Normality

M can be sensitive to presence of outliers in small to
moderate-sized samples

® One-sided tests are reasonably sensitive to skewness.

® Normality can be checked
M graphically using Normal quantile plots
B formally, e.g. the Wilk-Shapiro test.

Paired data

® We have to distinguish between independent and
related samples because they require different

methods of analysis.
® Paired data (section 10.1.2) is an example of related data.

® With paired data, we analyze the differences

M this converts the initial problem into a one-sample
problem.

® The sign test and Wilcoxon rank-sum test are
nonparametric alternatives to the one-sample or
paired z-test.

2-sample #-tests and intervals for differences
between means L4—(,

Assume
W statistically independent random samples from the two
populations of interest
Oboth samples come from Normal distributions
B Pooled method also assumes that 0,=0,
Welch method (unpooled) does not
Two-sample -methods are
Oremarkably robust against non-Normality

Ucan be sensitive to the presence of outliers in small to moderate-
sized samples

One-sided tests are reasonably sensitive to skewness.
B The Wilcoxon or Mann-Whitney test is a nonparametric
alternative to the two-sample r-test.

More than two samples and the F-test

® For testing whether more than two means are
different we use the F-test.

® The method of comparing several means is referred
to as a one-way analysis of variance.

® The formal null hypothesis (H,) tested is that all &
(k= 2) underlying population means [ are
identical.

® The alternative hypothesis (H,) is that differences
exist between at least some of the £4s.

The F-test cont.

® The numerator of the F-statistic f, reflects how far
apart the sample means are. The denominator
reflects average variability within the samples

® Evidence against H,, is provided by

B sample means that are further apart than expected from the
internal variability of the samples.

M Jarge values of the F-statistic.

® A small P-value demonstrates evidence that
differences exist between some of the true means

B To estimate the size of any differences we use confidence
intervals

Assumptions of the F-test cont.

® Assumptions of the F-test
M independent samples;
M Normality;
M equal population standard deviations.

® The test
M is robust to non-Normality
B is reasonably robust to differences in the standard deviations
when there are equal numbers in each sample, but not so robust
if the sample sizes are unequal
M can be used if the usual plots are satisfactory and the largest
sample standard deviation is no larger than twice the smallest

B is not robust to any dependence between the samples.
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