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Chapter 10:  Data on a Continuous Variable

�One-sample issues
�Two independent samples
�More than 2 samples
�Blocking, stratification and related

samples
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T-test and  CI for the nitrate ion
concentration data (mg/mL) in H2O

� 10 samples measuring the NO3
_

ion concentration 
(possible fertilizer leak) in H2O are given {0.513, 0.524,  
0.529, 0.481, 0.492, 0.499, 0.518, 0.490, 0.494, 
0.501}. Each sample measure is obtained by taking a 
sample of the H2O and performing spectral chemical 
analysis. There’s concern that there is a change from 
the desired nitrate concentration of 0.492.
�The data are plotted on the next slide, no reason to 
believe data is not coming form Normal distribution.
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_

0.530.520.510.500.490.48

Dotplot of Concentration
(with Ho and 95% t-confidence interval for the mean)

XHo
Hypothesized value

NO3
_

concentration in H2O
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_

0.530.520.510.500.490.48

Dotplot of Concentration
(with Ho and 95% t-confidence interval for the mean)

XHo
Hypothesized value

ConcentrationT - Te s t  o f  t h e  M e a n
Tes t o f mu = 0.4 9200 v s mu no t = 0.4 920 0

Var iab le N Me an S tDe v SE Me an T P
Con cen tr 10 0.5 04 10 0.0 160 0 0.0 05 06 2 .3 90.0 40

T  C o n f i d e n c e  I n t e r v a l s
Var iab le N Mea n St Dev S E Me an 95. 0 % CI
con cen tr 10 0. 5041 0 0.01 600 0 .005 06 (0 .4926 5, 0.5 1555 )

P-valuese(x) t0

Computer Analysis Output

Potential problems:
-small data size (10)
-Uncertainty about normal 

assumptions.
Approach, T-test, since it factors
sample size (df) and is robust
w.r.t. non-Normality.
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Robustness example
� Coverage of true mean by Normal-theory 95% CI’s 

when sampling from the distribution depicted below
�Coverage obtained by simulation
� i.e. by repeatedly generating samples, calculating an interval 

from the sample and then determining whether the true value 
was in the interval or not.

�This is called Chi-square distribution, χ2(df=4), see in Ch. 11.
�Results below represent 10,000 samples, each of 4 sample-

sizes. Results are frequencies/percentage-of-time the t-interval 
covered the population mean. Skewed distribution, but good 
coverage.

Sample Size 6 8 10 15
Coverage (%) 92 92 93 94

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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Effect of outliers

� We will shift one observation as shown below

0.52 0.54 0.56 0.58

0.48 0.50 0.52

Mean

Original data

Hypothesized
value

0.492

Largest obs’n shifted
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Effect of an outlier

0.48 0.50 0.52 0.54 0.56 0.58

ata

’n shifted

0.492

t  = 2.39,  P-value = 0.0400

t  = 1.92,  P-value = 0.0870

Mean & P-value change, due to shift, outlier

Test of mu = 0.49200 vs mu not = 0.49200

Variable N Mean StDev SE Mean t-stat. P-val
Outlier 10 0.50930 0.02853 0.00902 1.92 0.087

95.0 % CI (0.48889,0.52971)

Data with largest obs’n shifted
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Always plot, if you can, or look at your 
data before using formal tools of 
analysis.

Integrated approach to data analysis
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Normal probability plots for samples of size 20 from a 
Normal distribution

� Normal probability/quantile plot allows a graphical test for 
normality of the data, by comparing its quantiles to these of a 
standard normal distribution. We use Normal samples, why 
are we getting non-normal fit? Small sample size!

Stra
ight li

ne b
isec

tin
g th

e q
uadrant ����

good norm
al fi

t.
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Effect of outlier on Normal probability plot

P-Value (approx): > 0.1000
R:                  0.9795
W-test for Normality

N: 10
StDev: 0.0160031
Average: 0.5041

0.530.520.510.500.490.48

.999

.99

.95

.80

.50

.20

.05

.01
.001

Concentration

Normal Probability Plot

P-value > 0.100

(a)  Original Data

Figure 10.1.4 Normal plots for Example 10.1.1 data (from Minitab).
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Outlier

P-Value (approx): 0.0126
R:                0.8828
W-test for NormalityN: 10

StDev: 0.0285348
Average: 0.5093

0.580.530.48

.999

.99

.95

.80

.50

.20

.05

.01
.001

Normal Probability Plot

P-value = 0.0126

(b)  Largest obs’n
shifted
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Example 10.1.2: Moon illusion

Does the Moon look larger at times? When its low in the sky close to 
the horizon, compared to the size being high in the sky. Starting 
with the Greek astronomer Ptolemy, 2nd century A.D.,  this 
problem has puzzled us until Kaufman and Rock described the 
illusion in 1962. They designed an experiment projecting two 
discs of adjustable size from the horizon direction (level) and 
from the zenith (directly overhead). Then compared the ratios of 
the disc diameters. One disc was kept at fixed size the other’s size 
was updated until they appeared the same for the experimental 
subjects. Each measurement represents the ratio of the actual sizes 
zenith/horizon disc. If Moon-size-illusion occurs we’ll have 
ratio>1, as the zenith disc size had to be increased to match the 
horizon disc size. {2.03, 1.65, 1.00, 1.25, 1.05, 1.02, 1.67, 1.86, 1.56, 1.73}
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Example 10.1.2: Moon illusion
Data 2.03, 1.65, 1.00, 1.25, 1.05, 1.02, 1.67, 1.86, 1.56, 1.73
Assumptions: experimental subjects constitute random sample 

from large population.  Hypothesis: H0: µ=1, Ha: µ >1. One-
sided P-value=0.0014. 95% CI(µ)=[1.21 : 1.75].

Ratio of diameters

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

Figure 10.1.5Dot plot of moon illusion data with 95% C.I. for mean
Te st of m u = 1. 00 0 vs mu > 1. 000

Va ria bl e N Me an S tDe v S E M ean t -s tat P -va lue
El eva te d 10 1 .4 82 0 .37 4 0. 118 4 .07 0 .00 1

95 .0 % CI: (1 .21 4, 1. 750 )
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Comments 

� What assumptions about the data are made by the 
theory underlying t-tests and confidence intervals for 
a population mean µ? (data are from distribution close to Normal)

� When we say that a t-confidence interval for µ is 
robust against some particular form of                     
non-Normality, what do we mean by robust? (Applies for 
non-normal data too, as long as there are no heavy outliers/clusters/skewed).

� What do we mean when we say that a t-test is it 
robust against some departure from the assumptions? 
(As the sample size increases we remove the requirement on the data as coming 
from Normal distribution, by CLT effects).
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Review

� What should you always do with data on a continuous 
variable before performing formal significance tests or 
intervals? (Graph, Normal quantiles, eyeball).

� Under what circumstances should you not use t-tests 
and intervals?(small samples & skewed data–1-tailed test, outliers, clustered data).

� If there are outliers in a data set, what should you do? 
(check original data for typos, remove outliers)

� Four approaches to dealing with severe non-Normality 
(including the presence of outliers) are: non-parametric methods
make no Normal assumptions (sign-test); robust methods insensitive to outliers; adopt a new 
model for the data underlying distribution (other than Normal) much like we did for T-distr; 
transformation approach (e.g., log-transform) to make the data conform better to Normal. 
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Paired Comparisons

� Sometimes we have two data sets, which are not 
independent, but rather observations matched in pairs.

� Back to the Kaufman & Rock study of the Moon size 
illusion. Does the moon size appear different with eyes 
level  and with eyes raised? Does eye position make a 
difference? Eyes elevated refers to raising the eye from 
horizontal to zenith position. 10 Subjects are tested under eye-
level (control) condition, by physically moving the subject’s body from level 
to zenith position with fixed eye direction – horizontal. Ratios of the Moon 
size in level and zenith positions, for the two paradigms are given below.
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TABLE 10.1.1 The Moon Illusion
Difference

Subject Eyes Elevated  Eyes Level (Elevated - Level) 

1 2.03 2.03 0.00
2 1.65 1.73 -0.08
3 1.00 1.06 -0.06
4 1.25 1.40 -0.15
5 1.05 0.95 0.10
6 1.02 1.13 -0.11
7 1.67 1.41 0.26
8 1.86 1.73 0.13
9 1.56 1.63 -0.07
10 1.73 1.56 0.17

So urce :  Kaufman and Ro ck [1962].

Moon illusion Data
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Plotting Eyes elevated rations vs. eyes level rations

1.0 1.2 1.4 1.6 1.8 2.0
Eyes level

1.0

1.4

1.8

2.0

1.2

1.6
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For paired data, analyze the differences.

Looking for an effect due to elevating eyes

Differences (Elev. - Level)
0.30.1-0.1-0.2 0.20.0

Figure 10.1.7 Dot plot of differences for the moon illusion data
                            (with a 95% CI for the mean difference).
Te s t  o f  m u  =  0 . 0 0 0 0  v s  m u  >  0 . 0 0 0 0
Va r i a b l e      N       M e a n     S t D e v    S E  M e a n    t - s t a t   P - v a l u e
D i f f e r e n c e   1 0     0 . 0 1 9 0    0 . 1 3 7 1     0 . 0 4 3 4     0 . 4 4      0 . 3 4
                                   9 5 %  C I  (  - 0 . 0 7 9 1 ,   0 . 1 1 7 1 )

H0:µdiff = 0
Can’t reject H0, no
evidence eye position
causes illusion
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TABLE 10.1.2  Air Force Head Sizes Data

 Recruit  Cardboard  Metal   Difference  Sign of 
(mm) (mm) (Card-metal) difference 

1 146 145 1 + 
2 151 153 -2 - 
3 163 161 2 + 
4 152 151 1 + 
5 151 145 6 + 
6 151 150 1 + 

Measure the head-size of all air force recruits. Using 
cheaper cardboard or more expensive metal calipers. Are 
there systematic differences in the two measuring 
methods? Again,  paired comparisons.

Flying helmet sizes for NZ Air Force 
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TABLE 10.1.2  Air Force Head Sizes Data

 Recruit  Cardboard  Metal   Difference  Sign of 
(mm) (mm) (Card-metal) difference 

1 146 145 1 + 
2 151 153 -2 - 
3 163 161 2 + 
4 152 151 1 + 
5 151 145 6 + 
6 151 150 1 + 
7 149 150 -1 - 
8 166 163 3 + 
9 149 147 2 + 

10 155 154 1 + 
11 155 150 5 + 
12 156 156 0 0
13 162 161 1 + 
14 150 152 -2 - 
15 156 154 2 + 
16 158 154 4 + 
17 149 147 2 + 
18 163 160 3 + 

Helmet sizes for NZ Air Force – complete table
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Head sizes:  Does type of caliper make a difference?

Differences (Cardboard - Metal)
-2 0 2 4 6

Hypothesized value

Figure 10.1.8 Dot plot of differences in size (with 95% CI).
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.P a ir e d  T - Te s t  an d  C o nf id e n c e  I n t e r va l
paired T for cardboard - metal

N Mean StDev SE Mean

cardboard 18 154.56 5.82 1.37
metal 18 152.94 5.54 1.30
Difference 18 1.611 2.146 0.506

95% CI for mean difference: (0.544, 2.678)
T-Test of mean difference=0 (vs not=0): T-Value=3.19

P-Value=0.005

Figure 10.1.9 Minitab paired-t output for the size data.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

H0:µdiff = 0
Ha:µdiff != 0
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Review 

1. What is a paired-comparison experiment? (obs’d data are 
matched in pairs).

2. In a paired-comparison experiment, why is it wrong 
to treat the two sets of measurements as independent 
data sets? (data are usually taken from the same unit under diff. Treatments, so obs’s
should be related).

3. How do you analyze the data from a paired-
comparison experiment? (analyze the difference).

4. What situations is appropriate to use the paired-
comparison method to analyze the data? (pre- and post-
metrifonate study using FDG PET imaging).
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Helmet paired head measurements

From the cardboard vs. metal caliper tests, Table 10.1.2 
we see 14 + and 3 – signs, implying larger overall 
measurements using the cardboard calipers. It’s like 
tossing a coin 17 times and getting 14 heads. How 
likely is that?

If Y~Binomial(17, 0.5), number of successes (heads) in 
17 fair coin tosses, then P(Y>=14)=0.00636, hence if 
we test p=0.5, vs. p!=0.5, two-tailed test, the chance is 
2P(Y>=14)=0.0127.
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Comments

5. What independence assumption must hold before the 
sign test is applicable? How important is it that this 
assumption is true? (requires that obs’s are independent (one-sample test) and 
different pairs are independent (paired data), very sensitive.)

6. What advantages and disadvantages does the sign test 
have in comparison with the t-test? (Main advantage – test is 
distribution-free and insensitive to outliers. Disadvantage – when hypothesis for T-test, or a 
parametric test are met the CI are shorter and the parametric tests are more likely to detect 
departure from normality.)
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Review 

7. Why is the sign test called a distribution-free test? 
Does this mean that distributions are not used in 
performing the test? (no assumptions on the data underlying 
distribution, but distributions are actually used, e.g., Binomial).

8. In applying the sign test to paired data, how do you 
handle situations where both observations are tied 
(indistinguishable)? (ignore them)
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Zenith moon

Horizon moon

Ratio = 1.5Ratio = 1.1 Ratio = 1.9

Figure 10.1.11 Different moon illusions.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Inference about the sample spread

Assessing the variability in the Moon Illusion Ratios. 
Three ratios in the range of the data are graphically 
shown below. Enormous variability in the extend of 
the illusion for different people. How to stat-analyze it.
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Inference about the sample spread

1. Here inferences for the mean µ are straightforward, 
whereas inferences for the standard deviation σ are 
difficult. (inferences about σ are very sensitive to non-normality, and does not 
improve with increase of sample-size.)

2. What large sample theory can we invoke when 
making inferences about a mean? (CLT, for µ, not available for σ)
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TABLE 10.2.1 Urinary Androsterone Levels(mg/24 hr)

Homosexual: 2.5, 1.6, 3.9, 3.4, 2.3, 1.6, 2.5, 3.4, 1.6, 4.3, 2.0,
1.8, 2.2, 3.1, 1.3

Heterosexual: 3.9, 4.0, 3.8, 3.9, 2.9, 3.2, 4.6, 4.3, 3.1, 2.7, 2.3

So urce : Margo les e  [1970].

Analysis of two independent samples

Androsterone (mg/24 hrs)

1 2 3 4 5

Homosexuals

Heterosexuals

Urinary androsterone levels – data, dot-plots and 95% CI. Relations 
between hormonal levels and homosexuality, Margolese, 1970. 
Hormonal levels are lower for homosexuals. Samples are 
independent, as unrelated. Results, P-value of t-test 0.004 with a 
CI (µHet-µHom)=[0.4:1.7]. Normal hypothesis satisfied?Skewed?
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Androsterone (mg/24 hrs)

1 2 3 4 5

Homosexuals

Heterosexuals

Figure 10.2.1 Dot plots of the androsterone data (with 95% CIs).

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Two Sample T-Test and Confidence Interval
Two sample T for androsterone

N Mean StDev SE Mean
hetero 11 3.518 0.721 0.22
homose 15 2.500 0.923 0.24
95% CI for mu (hetero) - mu (homose): ( 0.35, 1.69)
T-Test mu (hetero) = mu (homose) (vs not=):

T=3.16 P=0.0044 DF=23

P-value

Confidence interval

t-test statistic
Figure 10.2.3 Minitab 2-sample t-output for the androstenone data

Urinary androsterone levels cont.
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Comparing two means for independent samples

Suppose we have 2 samples/means/distributions as 
follows: {                  } and {                    }. We’ve 
seen before that to make inference about              we 
can use a T-test for H0: with 

And CI(        ) =

If the 2 samples are independent we use the SE formula

with                                .
This gives a conservative approach for hand calculation of an 

approximation to the what is known as the Welch procedure, 
which has a complicated exact formula.

)
1

,
1

(,
1

σσσσµµµµNx )
2

,
2

(,
2

σσσσµµµµNx

21
µµµµµµµµ −−−−

0
21

====−−−− µµµµµµµµ

21
µµµµµµµµ −−−− )(

0)(
21

21

0

xxSE
xxt
−−−−

−−−−−−−−====
)( 2121 xxSEtxx −−−−××××±±±±−−−−

2
/2

21
/2

1
nsnsSE ++++==== )1

2
;1

1
( −−−−−−−−==== nnMindf

STAT 13, UCLA, Ivo DinovSlide 39

Means for independent samples –
equal or unequal variances?

Pooled T-test is used for samples with assumed equal 
variances. Under data Normal assumptions and equal 
variances of   

is exactly Student’s t distributed with

Here sp is called the pooled estimate of the variance, 
since it pools info from the 2 samples to form a 
combined estimate of the single variance σ1

2= σ2
2 =σ2. 

The book recommends routine use of the Welch unequal variance method.
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Comparing two means for independent samples

1. How sensitive is the two-sample t-test to non-Normality 
in the data? (The 2-sample T-tests and CI’s are even 
more robust than the 1-sample tests, against non-
Normality, particularly when the shapes of the 2 
distributions are similar and n1=n2=n, even for small n, 
remember df= n1+n2-2.

3. Are there nonparametric alternatives to the two-sample 
t-test? (Wilcoxon rank-sum-test, Mann-Witney test, equivalent tests, same P-
values.)

4. What difference is there between the quantities tested 
and estimated by the two-sample t-procedures and the 
nonparametric equivalent? (Non-parametric tests are based on 
ordering, not size, of the data and hence use median, not mean, for 
the average. The equality of 2 means is tested and CI(µ1

~- µ1
~).
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One-way ANOVA refers to the situation of having one 
factor (or categorical variable) which defines group 
membership – e.g., comparing 4 reading methods, effects 
of different reading methods on reading comprehension, 
data: 50  – 13/14 y/o students tested.

Hypotheses for the one-way analysis-of-variance F-test
Null hypothesis: All of the underlying true means are identical.
Alternative: Differences exist between some of the  true means.

We know how to analyze 1 & 2 sample data.
How about if we have than 2 samples –

One-way ANOVA,  F-test
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Comparing 4 reading methods, effects of different reading 
methods on reading comprehension, data: 50  – 13/14 y/o 
students tested.
-Mapping: using diagrams to relate main points in text;
-Scanning: reading the intro and skimming for an 
overview before reading details;
-Mapping and Scanning;
-Neither.
Table below shows increases in test scores, of 4 groups of 
students taking similar exams twice, w/ & w/o using a 
reading technique.
Research question: Are the results better for students 
using mapping, scanning or both?

Comparing 4 reading methods
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TABLE 10.3.1 Increase in Reading Age 

Both: 0.1 3.2 4.3 -0.5 1.9 3.3 2.5 3.6 0.4 2.3 -1.4 -0.7
-0.1 0.2 0.4 0.9 1.2 1.4 1.8 1.8 2.4 3.1

Map Only: 1.0 -0.5 1.0 0.6 0.6 1.0 1.0 -1.4 2.2 3.6 3.1 2.6
Scan Only: 1.0 3.3 1.4 -0.9 1.0 0.0 0.6
Neither: -0.3 -1.3 1.6 -0.4 -0.7 0.6 -1.8 -2.0 -0.7

Increase in reading age
-2 -1 0 1 2 3 4 5

Scan only

Map only

Map and scan

Neither

Figure 10.3.1 Increases in reading ages with individual 95% CIs.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Observational
study
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Increase in reading age
-2 -1 0 1 2 3 4

Scan only

Map only

Map and scan

Neither

Figure 10.3.1 Increases in reading ages with individual 95% CIs.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

One-way Analysis of Variance
Analysis of Variance for Increase

Source DF SS MS F P
Grp 3 27.06 9.02 4.45 0.008
Error 46 93.35 2.03
Total 49 120.41

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev ------+---------+---------+---------+
MapScan 22 1.459 1.544 (------*-----)
MapOnly 12 1.233 1.441 (-------*--------)
ScanOnly 7 0.914 1.302 (----------*----------)
Neither 9 -0.556 1.135 (--------*---------)

------+---------+---------+---------+
Pooled StDev = 1.425 -1.0 0.0 1.0 2.0

F-statistic P-value

Anova Table

Figure 10.3.2 Minitab analysis of variance output for reading ages
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

The F-test indicates that
there’s real evidence true

differences exist it does not
give indication of where the
differences are or how large

they are.
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Computer  output

One-way Analysis of Variance
Analysis of Variance for Increase

Source DF SS MS F P
Grp 3 27.06 9.02 4.45 0.008
Error 46 93.35 2.03
Total 49 120.41

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev ------+---------+---------+---------+
MapScan 22 1.459 1.544 (------*-----)
MapOnly 12 1.233 1.441 (-------*--------)
ScanOnly 7 0.914 1.302 (----------*----------)
Neither 9 -0.556 1.135 (--------*---------)

------+---------+---------+---------+
Pooled StDev = 1.425 -1.0 0.0 1.0 2.0

F-statistic P-value

Anova Table

Figure 10.3.2 Minitab analysis of variance output for reading ages
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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Interpreting the P-value from the F-test 

(The null hypothesis is that all underlying true means are identical.)

� A large P-value indicates that the differences seen 
between the sample means could be explained simply 
in terms of sampling variation.

� A small P-value indicates evidence that real 
differences exist between at least some of the true 
means, but gives no indication of where the 
differences are or how big they are.

� To find out how big any differences are we need 
confidence intervals.
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Form of a typical ANOVA  table

TABLE 10.3.2 Typical Analysis-of-Variance Table for One-Way ANOVA

Sum of Mean sum
Source squares df of Squaresa F -statistic P -value

Between k -1 pr(F    f 0)

Within n tot  - k

Total n tot  - 1
aMean sum of squares = (sum of squares)/df

ni (x i . −x ..)2
�

(ni −1)si
2

�

(xij −x . .)2
��

f0 = sB
2 / sW

2sB
2

sW
2

≥

� The F-test statistic, f0, applies when we have 
independent samples each from k Normal 
populations, N(µi, σ), note same variance is assumed.
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Gp  1
Gp  2
Gp  3

Gp  1
Gp  2
Gp  3

Gp  1
Gp  2
Gp  3

Example 1

Example 2

Example 3

Where did the F-statistics came from?

� Let’s look at this example comparing groups. How do 
we obtain intuitive evidence against H0? Far separated 
sample means + differences of sample means are large 
compared to their internal (within) variability! Which of 
the following examples indicate group diff’s are “large”?
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More about the F-test

� s2
B is a measure of variability 

of sample means, how far apart
they are.
� s2

W reflects the avg. internal
Variability within the samples.

� The F-test statistic, f0, tests H0 by comparing the 
variability of the sample means (numerator) with the 
variability within the samples (denominator).

� Evidence against H0 is provided by values of  f0
which would be unusually large if H0 was true.
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What are xi, x.., x .j, etc.? 

J-index

I-index
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What are xi, x.., x .j, etc.? 
Need Online reference

x i,j,  1<=i<=nj;  1<j<=3
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What are xi, x.., x .j, etc.? 
Sum of Squares for treatments (cities)
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What are xi, x.., x .j, etc.? 
Sum of squares for the Error
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What are xi, x.., x .j, etc.? 
F-test
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What are xi, x.., x .j, etc.? 
One-Way Design ANOVA Table
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F-test assumptions

1. Samples are independent, physically independent 
subjects, units, objects are being studies.

2. Sample Normal distributions, especially sensitive 
for small ni, number of observations, N(µi, σ).

3. Standard deviations should be equal within all 
samples, σ1= σ2= σ3=… σnk

= σ. (1/2 <= σk/σj<=2)

How to check/validate these assumptions for your data?
For the reading-score improvement data:
- independence is clear since different groups of students are used.
- Dot-plots of group data show no evidence of non-Normality.
- Sample SD’s are very similar, hence we assume population SD’s are 

similar.
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Diagnostic plots for the reading-scores 
improvement data
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Diagnostic plots for the reading-scores 
improvement data
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Residuals
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Review

1. What is an one-way analysis of variance? (compare means 
of several groups of independent samples.)

2. When do we use the one-way ANOVA F-test? ({N(µi, σ)}i
k

samples).

3. What null hypothesis does it test? What is the 
alternative hypothesis? (all underlying true means are identical; at least 2 are different.)

4. Qualitatively, how does the F-test obtain evidence 
against H0? (separation between sample means/intra-sample variability).

5. Qualitatively, what type of information is captured 
by the numerator of the F-statistic? What about the 
denominator? (variability-of-sample-means/variability-within-samples).
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Review

6. Qualitatively, what values of f0 provide evidence 
against H0? (unusually large f0 if H0 is true.)

7. What does a large P-value from the F-test tell us 
about differences between means? How about a small 
P-value? (diff’s between sample means can be explained by sampling variation.)

8. What does a small P-value tell us about which means 
differ from one another? about how big the 
differences between means are? (nothing about which/size, only 
indicates real diff’s exist, between at least some sample means.)

9. How do we obtain information about the sizes of 
differences between means? (need confidence intervals.)
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Review 

10.What assumptions are made by the theory on which  
the F-test is based upon? How important is each of 
these assumptions in practice? (1.Sample independence – critical; 
2.Normal data – robust, if sample-sizes are large; 3.Equal SD’s – not too bad if 
σmax/ σmin<=2.)

11.What new problem arises when we need to obtain 
and inspect a large set of confidence intervals? (all need to 
simultaneously catch, with 95% confidence, their true values, which requires increase of 
individual levels.)

12.Which is affected worst by departures from the   
equal-standard-deviations assumption, the F-test or 
the confidence intervals? Why? [CI, since CI(least-variable 
groups) = too wide & CI(most-variable-groups)=too narrow.]
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Chapter 10 Summary
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Always plot your data

Always plot your data before using formal tools of 
analysis (tests and confidence intervals).

� the quickest way to see what the data says

� often reveals interesting features that were not 
expected

� helps prevent inappropriate analyses and unfounded 
conclusions

� Plots also have a central role in checking up on the 
assumptions made by formal methods.
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All formal methods make assumptions

� If the assumptions are false, the results of the analysis 
may be meaningless.

� A method is robust against a specific departure from 
an assumption if it still behaves in the desired way 
despite that assumption being violated.
� e.g.   it gives “95% confidence intervals” that still cover the 

true value of θ for close to 95% of samples taken.

� A method is sensitive to departures from an 
assumption if even a small departure from the 
assumption causes it to stop behaving in the desired 
way.
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Assumptions cont.

� Many types of assumption are seldom, if ever, 
obeyed exactly so that methods which are sensitive to 
departures from such assumptions are of limited use 
in practical data analysis. 

� You must check whether the data contradicts the 
assumptions to an extent where the tests and intervals 
no longer behave properly.
� (Plots are a useful tool here.)
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Outliers

� If present, try and check back the original sources.

� Any observations which you know to be mistakes 
should be corrected or removed.

� If in doubt, do the analysis with and without the 
outliers to see if you come to the “same” conclusions.

STAT 13, UCLA, Ivo DinovSlide 81

Nonparametric (distribution-free) methods

� less sensitive to outliers 

� do not assume any particular distribution for the 
original observations 

� do assume random samples from the populations of 
interest

� measure of center is the median rather than the mean

� tend to be somewhat less effective at detecting 
departures from a null hypothesis and tend to give 
wider confidence intervals



11

STAT 13, UCLA, Ivo DinovSlide 82

Normal Theory Techniques

One sample methods

� Two-sided t-tests and t-intervals for a single mean  
are 
� quite robust against non-Normality
� can be sensitive to presence of outliers in small to 

moderate-sized samples

� One-sided tests are reasonably sensitive to skewness. 

� Normality can be checked
� graphically using  Normal quantile plots 
� formally, e.g.  the Wilk-Shapiro test. 
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Paired data

� We have to distinguish between independent and 
related samples because they require different 
methods of analysis.

� Paired data (Section 10.1.2) is an example of related data. 

� With paired data, we analyze the differences
� this converts the initial problem into a one-sample 

problem.

� The sign test and Wilcoxon rank-sum test are 
nonparametric alternatives to the one-sample or 
paired t-test.
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2-sample t-tests and intervals for differences 
between means  µµµµ1111−−−−µµµµ2222

Assume
� statistically independent random samples from the two 

populations of interest
�both samples come from Normal distributions

� Pooled method also assumes that  σ1=σ2
Welch method (unpooled) does not

Two-sample t-methods are
�remarkably robust against non-Normality
�can be sensitive to the presence of outliers in small to moderate-

sized samples
�One-sided tests are reasonably sensitive to skewness.

�The Wilcoxon or Mann-Whitney test is a nonparametric 
alternative to the two-sample t-test.
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More than two samples and the F-test 

� For testing whether more than two means are 
different we use the F-test. 

� The method of comparing several means is referred 
to as a one-way analysis of variance.

� The formal null hypothesis (H0) tested is that all  k
(k ≥ 2) underlying population means   µi are 
identical.

� The alternative hypothesis (H1) is that differences 
exist between at least some of the µi's.
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The F-test cont.

� The numerator of the F-statistic f0 reflects how far 
apart the sample means are.  The denominator 
reflects average variability within the samples

� Evidence against H0 is provided by
� sample means that are further apart than expected from the 

internal variability of the samples.
� large values of the F-statistic.

� A small P-value demonstrates evidence that 
differences exist between some of the true means
�To estimate the size of any differences we use confidence 

intervals
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Assumptions of the F-test cont.

� Assumptions of the F-test
� independent samples;
�Normality;
� equal population standard deviations.

� The test
� is robust to non-Normality
� is reasonably robust to differences in the standard deviations 

when there are equal numbers in each sample, but not so robust 
if the sample sizes are unequal

� can be used if the usual plots are satisfactory and the largest 
sample standard deviation is no larger than twice the smallest

� is not robust to any dependence between the samples.


