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Experiments, Models, RV’s

® An experiment is a naturally occurring
phenomenon, a scientific study, a sampling trial or a
test., in which an object (unit/subject) is selected at
random (and/or treated at random) to
observe/measure different outcome characteristics of
the process the experiment studies.

® Model — generalized hypothetical description used to
analyze or describe a phenomenon.

® A random variable is a type of measurement
taken on the outcome of a random experiment.

Stopping at one of each or 3 children

omplete/unique description of the
this experiment.

GGG _GGB_GB _BG BBG BBB
1 1 1 1 1

8 8 4 4 8 3

Calculating Interval probabilities
from cumulative probabilities

.|III
3 6 7
8

I |
x-values: 1 2

4 5
Lo get 4 to

start with everything up to 8

and remove from 3 down

Definitions

® The probability function for a discrete random
variable X gives the chance that the observed value
for the process equals a specific outcome, x.
B P(X=x) [denoted pr(x) or P(x)]
for every value x that the R.V. X can take

® E.g., number of heads when a coin is tossed twice
x|

pr(x ) |

Tossing a biased coin twice

® For each toss, P(Head)=p > P(Tail)=
P(comp(H))=1-p

® QOutcomes: HH, HT, TH, TT
® Probabilities: p.p, p(1-p), (1-p)p, (1-p)(1-p)
® Count X, the number of heads in 2 tosses

X 0 1 2
pr(x ) (1-p ) 2p (1-p)

Let's Make a Deal Paradox — "
aka Mn  Hall 3-door problem

&

® This paradox is related to a popular television show
in the 1970's. In the show, a contestant was given a
choice of three doors/cards of which one contained a
prize (diamond). The other two doors contained gag
gifts like a chicken or a donkey (clubs).

&
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Let's Make a Deal Paradox.

® After the contestant chose an initial door, the host of
the show then revealed an empty door among the two
unchosen doors, and asks the contestant if he or she
would like to switch to the other unchosen door. The
question is should the contestant switch. Do the odds

of winning increase by switching to the remaining
Applets.dir/StatGames.exe

Let's Make a Deal Paradox.

® The probability of picking the wrong door in the
initial stage of the game is 2/3.

® If the contestant picks the wrong door initially, the
host must reveal the remaining empty door in the
second stage of the game. Thus, if the contestant
switches after picking the wrong door initially, the
contestant will win the prize.

® The probability of winning by switching then reduces
to the probability of picking the wrong door in the
initial stage which is clearly 2/3.

The two-color urn model

balls in an urn, of which thre are

M black balls —
N-M whiteballs  —__

Sample n balls and count X = # black balls in sample

Let's Make a Deal Paradox.

® The intuition of most people tells them that each of
the doors, the chosen door and the unchosen door, are
equally likely to contain the prize so that there is a
50-50 chance of winning with either selection? This,
however, is not the case.

® The probability of winning by using the switching
technique is 2/3, while the odds of winning by not

switching is 1/3. The easiest way to explain this is as

follows:

Bernoulli Trials

® A Bernoulli trial is an experiment where only two
possible outcomes are possible (0 / 1).

® Examples:
® Coin tosses
® Computer chip (0/ 1) signal.

® Poll supporters/opponents; yes/no; for/against.

The biased-coin tossing model

toss 1 toss 2 toss n

pr(H)=p pr(H) =p pr(H) =p

Perform n tosses and count X = # heads




The answer is: Binomial distribution

® The distribution of the number of heads in n
tosses of a biased coin is called the Binomial
distribution.

Binary random process

The biased-coin tossing model is a physical model for
situations which can be characterized as a series of
trials where:

BMeach trial has only two outcomes: success or
failure;

Hp = P(success) is the same for every trial; and

Mtrials are independent.

® The distribution of X = number of successes (heads)
in N such trials is

Binomial(V, p)

Binomial Probabilities —

the moment we all have been waiting for!

® Suppose X ~ Binomial(n, p), then the probability

n

P(X=x)=| |p(-p), 0<sx<n
X

® Where the binomial coefficients are defined by

nY _«—mnal
. :m, n!wx(n_l)xn

n-factorial

Samplin from a finite population —
Binomial Approximation

If we take a sample of size n
® from a much larger population (of size V)

® in which a proportion p have a characteristic of
interest, then the distribution of X, the number in
the sample with that characteristic,

® is approximately Binomial(n, p).
O (Operating Rule: Approximation is adequate if n / N< 0.1.)

® Example, polling the US population to see what
proportion is/has-been married.

Binomial Formula with examples

® Does the Binomial probabilit

y satisfy the requirements?
-\ = n\ oy _ (n=x) _ n_
IPX =0 =Ty | (-p) =(p+(1-p)' =1

® Explicit examples for n=2, do the case n=3 at home!
% (2)Px(1 —p)(z =Xx) - { Three terms in the sum

x=0

2 2 2

( )p“(l-p)“( )p‘(l-p)‘+( Jpz(l-p)“ =

0 1 2 Usual
IXIX(1=p) +2%x pX(1=p)+1x p' x1= § quadratic-

expansion

(]7 +(1_p))2 =1 Sormula




Expected values

® The game of chance: cost to play:$1.50; Prices {$1, $2, $3},
probabilities of winning each price are {0.6, 0.3, 0.1}, respectively.

® Should we play the game? What are our chances of
winning/loosing?

Prize (3) X | 1 2 3

Probability pr(x) | 0.6 0.3 0.1
What we would "expect" from 100 games add across row
Number of games won 0.6 X 100 0.3 X100 0.1 X100

$ won 1x0.6x100 2x0.3 %100 3x0.1 x100 Sum

otal prize money = Sum; Average prize money = Sum/100
’ 7 ser Y =1x0.6 + 2<0.3 + 3<0.1
=15

price to play expected return

Definition of the expected value, in general.

® The expected value:

2 x P(x)|= [x P(x)dx
all X

= Sum of (value times probability of value)

The expected value and population mean

M= E(X) is called the mean of the distribution of X.

Hy = E(X) is usually called the population mean.

M« is the point where the bar graph of P(X = x) balances.

Average Winnings from a Game conducted N times

Prize won in dollars(x)
1 2 3
frequencies per game

Average winnings

(Relative frequencies) 65)
64 25 11
(.64) (.25) (.11) 1.7
573 316 111
(573)  (316)  (.111)
5995 3015 990
(.5995)  (.3015)  (.099)
11917 6080 2000
(.5959) (.3040) (.1001)
17946 9049 3005
(.5982) (.3016) (.1002)

(6) (3) (@)

Example

Population standard deviation

The population standard deviation is

sd(X) = YE[(X - py]

Note that if X is a RV, then (X-|l) is also a RV,
and so is (X-[1)>. Hence, the expectation,
E[(X-)?], makes sense.



For the Binomial distribution

400~ {1-p)

For the Binomial distribution ... SD For the Binomial distribution . . . mean

S0~ npl1-p) S400)~A1-p)

For the Binomial distribution ... SD

sd00=npA1-p)

Linear Scaling (affine transformations) aX + b

For any constants @ and b, the expectation of the RV aX + b
is equal to the sum of the product of a and the expectation of
the RV X and the constant b.

E(aX + b) = a E(X) +b

And similarly for the standard deviation (&, an additive
factor, does not affect the SD).

SD(aX +b) = |a| SD(X)




Linear Scaling (affine transformations) aX + b

Why is that so?
E(aX +b)=a E(X) +b

SD(aX +5) = |a| SD(X)

Linear Scaling (affine transformations) aX + b

And why do we care?

E(aX+b)=aEX)+h  SD(aX+b) = |a| SD(X)

-completely general strategy for computing the distributions
of RV’s which are obtained from other RV’s with known
distribution. E.g., X~N(0,1), and Y=aX+b, then we need
not calculate the mean and the SD of Y. We know from the
above formulas that E(Y) = b and SD(Y) =a|.

-These formulas hold for all distributions, not only for
Binomial and Normal.

Means and Variances for (in)dependent Variables!

® Means:
B Independent/Dependent Variables {X1, X2, X3, ..., X10}

0O E(XI+X2+X3+ ... + X10) = E(X1)+ E(X2)+ E(X3)+... + E(X10)

® Variances:
B Independent Variables {X1, X2, X3, ..., X10}, variances add-up

Var(X1+X2+X3 +... + X10)=
Var(X1)+Var(X2)+Var(X3)+...+Var(X1)
B Dependent Variables {X1, X2}
Variance contingent on the variable dependences,
Q Eg.,If X2=2X1+5,

Var(X1 +X2) =Var (X1 + 2X1 +5) =
Var(3X1 +5) =Var(3X1) = 9Var(X1)

Linear Scaling (affine transformations) aX + b

Example:
E(aX+b)=a E(X)+b SD(aX +b) = |a| SD(X)
1. X={-1,2,0,3,4,0,-2, 1}; P(X=x)=1/8, for each x
. Y=2X-5={7,-1,-5,1,3,-5,-9,-3}
. EX)=
. E(Y)=
. Does E(X) = 2E(X)-5?
. Compute SD(X), SD(Y). Does SD(Y) = 2 SD(X)?

Linear Scaling (affine transformations) aX + b

And why do we care?
E(aX+ b)=a E(X) +b SD(aX +b) = |a] SD(X)

-E.g., say the rules for the game of chance we saw before change and
the new pay-off is as follows: {$0, $1.50, $3}, with probabilities of
{0.6, 0.3, 0.1}, as before. What is the newly expected return of the
game? Remember the old expectation was equal to the entrance fee of
$1.50, and the game was fair!

Y =3(X-1)/2
{$1,$2,$3} > {30, $1.50, $3},
E(Y) = 32 E(X)-3/2=3/4=$0.75

And the game became clearly biased. Note how easy it is to compute E(Y).

For the Binomial distribution ... SD

SDX) =+np1-p)




Sample spaces and events

® A sample space, S, for a random experiment is the set
of all possible outcomes of the experiment.

® An event is a collection of outcomes.

® An event occurs if any outcome making up that event
occurs.

Combining events — all statisticians agree on

® “4 or B” contains all outcomes in 4 or B (or both).

® “4 and B” contains all outcomes which are in both 4
and B.

G| 1G] ] 100

events

Two events.

(a)Events 4 and B (b) “4 or B” shaded (c) “4 and B” shaded (d) Mutually exclusive

rom Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000,

Mutually exclusive events cannot occur at the same time.

Rules for manipulating
Probability Distributions

For mutually exclusive events,
pr(4 or B) = pr(A) + pr(B)

The complement of an event

® The complement of an event 4, denoted 4 N
occurs if and only if A does not occur.

o] (o] [

a) Sample space con- (b) Event 4 shaded (c) A shaded
taining event A

An event 4 in the sample space S.

Probability distributions

® Probabilities always lie between 0 and 1 and they
sum up to 1 (across all simple events) .

® pr(A) can be obtained by adding up the probabilities
of all the outcomes in A4.

pr(A)=x pr(E)

in event A

Review

® If 4 and B are mutually exclusive, what is the
probability that both occur? o) What is the probability
that at least one occurs?  (sum of probabilities)

® [f we have two or more mutually exclusive events,
how do we find the probability that at least one of them
occurs? (sum of probabilities)

® Why is it sometimes easier to compute pr(4) from

pr(A) = ]- DV(A )‘7 (The compl of the even may be easer to find
or may have a known probability. E.g., a random number between 1 and 10 is drawn.
Let A ={a number less than or equal to 9 appears}. Find pr(A) = 1 — pr(4 )).
probability of 4 is pr({10 appears}) = 1/10 = 0.1. Also Monty Hall 3 door example!




Sample vs. theoretical mean & varaince

® The Expected value:
(population mean) ~E(X)= Y x P(x) | =[x P(x)dx
v all x all x
® Sample mean X = *Z X
® (Theoretical) Variance |

Var(X)= ¥ (x=p,) P(x) {= [Ge-n,) P(X)dXJ
all x all x
©® (Sample) variance

k

(x, - X =3 (x, - XFP(x)

1 k=1

M-

Var(X):ﬁ

=
i

Conditional Probability

The conditional probability of A occurring given that
B occurs is given by

pr(4 and B)

pr(4|B)= oi(B)

Suppose we select one out of the 400 patients in the study and we
want to find the probability that the cancer is on the extremities
given that it is of type nodular: P = 73/125 = P(C. on Extremities | Nodular)

Tree diagram for poverty in Israel

Ethnic Poverty Product
Group Level Equals
A= 052 poor pr(Poor and Arabic|

Arabic pr(PooT |
)
Not  pr(Not and Arabic)

Jewish PP oorl /)~ 0L Poor pr(Poor and Jewish|
)
Not pr(Not and Jewish)

Melanoma — type of skin cancer —
an example of laws of conditional probabilities

o __ 400 Melanoma Patients by Type and Site
Site

Head and Row
Type Neck Trunk Extremities Totals
Hutchinson's
melanomic freckle 22 2 10 34
Superficial 16 54 115 185
Nodular 19 33 73 125
Indeterminant 11 17 28 56
Column Totals 68 106 226 400

Israelis at are poor and Arabic?

Multiplication rule- what’s the percentage of

3 e A= 2| Al = i Al ) |

All people in Israel
- 14% of these are Arabic

. 52% of this 14% are poor

7.28% of Israelis are both poor and Arabic
(0.52x.014 = 0.0728)

Ilustration of the multiplication rule.

0\ 014 1.0

Statistical independence

® Events A and B are statistically independent if
knowing whether B has occurred gives no new
information about the chances of 4 occurring,

ie. if pr(4|B)=pr(Ad)

® Similarly, P(B | 4) = P(B), since
P(BJA)=P(B & A)/P(A) = P}}(@P(B)//B(?() =P(B)
® If A and B are statistically independent, then

pr( Aand B)=pr(A)xpr(B)




People vs. Collins

Frequencies Assumed by the Prosecution

Yellow car Girl with blond hair

=
|— wi—

Man with mustache Black man with beard

|— &1—
- =

Girl with ponytail Interracial couple in car

1000

=

The first occasion where a conviction was made in an American court of law,
largely on statistical evidence, 1964. A woman was mugged and the offender
was described as a wearing dark cloths, with blond hair in a pony tail who
got into a yellow car driven by a black male accomplice with mustache and
beard. The suspect brought to trial were picked out in a line-up and fit all of
the descriptions. Using the product rule for probabilities an expert witness
computed the chance that a random couple meets these characteristics, as
1:12,000,000.

Continuous RV’s

® A RV is continuous if it can take on any real value in a
non-trivial interval (a ; b).

® PDF, probability density function, for a cont. RV, Y, is
a non-negative function py(y), for any real value y,
such that for each interval (a; b), the probability that Y
takes on a value in (a; b), P(a<Y<b) equals the area
under py(y) over the interval (a: b).
py(y)

®  pla<y<b)

Convergence of density histograms to the PDF

® For a continuous RV the density histograms converge
to the PDF as the size of the bins goes to zero.
B AdditionallnstructorAids\BirthdayDistribution_1978_systat.SYD
T T T T T T

Convergence of density histograms to the PDF

® For a continuous RV the density histograms converge
to the PDF as the size of the bins goes to zero.

Computing Probabilities using PDFs

® PYOA)= [p,(y)dy
A

p,(y)=e’,y20
® Example: 5 (i) Exponential shape
PO<Y<3)= [p,(y)dy =

CDF (cumulative distribution function)

F(y»)=P(Y <y)= [p,(»)dy
p,(y)=e’,y20

® Example: 3
F,(3)=P(Y<3)= [p,(»)dy =

10



Measures of central tendency/variability for
Continuous RVs

® Mean

u, = |yxp,(y)dy

—co

S gl = (=) % p, (n)dy

v, = [ [(y=p)xp,(»dy

Continuous Distributions

L] ormal distribution

® Student’s T distribution
® F-distribution

® Chi-squared ( X Z)

® Cauchy’s distribution

® Exponential distribution

® Poisson distribution, ...

Uniform Distribution — CDF, mean, variance

[ ] iform Distribution CDF:
v min(y,b)
1
F(»)= [p,(x)dx= dx =
e : —-da
X 0, y<a
b-a = y—a, asysb
b—a
b<y

Facts about PDF’s of continuous RVs

® Non-negative

p,(¥)=0,0y

® Completeness J- pY ( y) dy — 1

® Probability

P(a<Y<b)= [yxp,(y)dy

Uniform Distribution

® Uniform Distribution PDF: Y~Uniform(asb) €=
py(y)=1/(b-a), for each a<=y<=b, and p,(y)=0, otherwise.

1/(b-a)

Uniform Distribution — CDF, mean, variance

©® Mean: y2

_ 'ty . _2b-a)/ _atb
Hy = _!ypy(y)dy —Jb_ady = b T 5
® Variance: a

, ® , b 2y — +b 2 b— 2
02 = -1, p, Gy =[R2 @* D) g (b=a)

db-a) 0 12

SD: 9 -
’ aY:\/ky—uy)zpy(y)dy:(bﬂL;)

11



Continuous Distributions - Normal

® (General) Normal distribution

)
202
e

V= N 270°

Standard Normal (Gaussian) Distribution

® Normal Distribution PDF: Y~Normal(u=0, ?=1) €=

zf

p,(y)= F

[]1— 00<y <00

2
X

F,(y)= IPY(X)dx jdx

(General) Normal Distribution

® Normal D1str1but10n PDF: Y~Normal(y, ¢® €=

(y-ﬂ)
2

p,(y)= W

D—m<y<m

_(x-p)’

F0)= o =[S v

Effects of H and O (on the graphs of Normal Distribution)
shifts the curve along the axis

0= 0,=6

| (b) Increasing o |

increases the spread and flattens the curve

The Normal distribution density curve

® |s symmetric about the mean! Bell-shaped and
unimodal.

® Mean = Median!

50% [50%

C1 =6

U =160  p,=174

140 160 T 180 2

Understanding the standard deviation: o

Shaded area = 0.997

Shaded area = 0.683 Shaded area = 0.954

t t H t
H-o utro H-20 H*+20  p-30 #H+30
68% chance of falling 95% chance of falling 99.7% chance of falling
between y—c and p+o between (=20 and u+20 between y—-30 u+30c

t
Mean u

12



0.14

To standardized histograms with

approximating Normal density curve

Normal density curve has
1 =398in., o=2.05in.

0.0

.06

.04 1

.02 1

T T
35 40

(a) Chest measurements of Quetelet’s Scottish soldiers (in.)

T
45

Normal density curve has
u=174cm, c=6.57 cm

.00

150

160 170 180

(b) Heights of the 4294 men in the workforce database (cm)

190 200

(a) Computing pr(160 <X < 180)

Programs supply

pr(X<180) and

pr(X <160)

Shaded Shaded Shaded
area area area

‘We want

pr(160 < X' <180) = difference

u= 174

160 H 174

160 H= 174

| pr(160 < X < 180) = pr(X<180) — pr(X<160)

Obtaining an upper-tail probability

We want Programs supply
(X > 25) pr(X<25) pr(X>25)
=7 =0.2874
11 t1
25 - =272 25 - H=272

Since total area under curve = 1,

pr(X>25)=1-pr(X <25

Generally, pr(X>x) =

1=pr(X<x)

Basic method for obtaining probabilities

® Sketch a Normal curve, marking the mean and other
values of interest.

® Shade the area under the curve that gives the desired
probability.

® Devise a way of getting the desired area from lower-
tail areas.

® Obtain component lower-tail probabilities from a
computer program

Tabular representation of probabilities

(c) More Normal probabilities
(values obtained from Minitab)

b pr(X<b) a pr(X<a) |pr(a<X<b)= difference
167.6  0.165 1524 0.001 0.164
177.8 0.718 167.6 0.165 0.553
177.8 0.718 152.4 0.001 0.717
182.9 0.912 167.6 0.165 0.747
Note: 152.4cm = 5ft, 167.6cm = 5ft 6in., 177.8cm = 5ft 10in., 182.9cm = 6ft

From Chance Encounters by C.J. Wild and G.A.F. Scber, © John Wiley & Sons, 2000.

Continuous Distributions — Student’s T

® Student’s T distribution [approx. of Normal(0,1)]
BY,Y, ... Yy IID fromaNormal([;0)
W Variance 02 is unknown

® In 1908, William Gosset (pseudonym Student) derived the
exact sampling distribution of the following statistics

T=Y_1UY

® T~Student(df=N-1), whe%:e

13



We will come back to the
T-distribution at the end
of this chapter!

Density curves for Student’s ¢

df = X

[i.e., Normal(0,1)]
_____ df=5
e f = 2

Student(df) density curves for various df.

Continuous Distributions — F-distribution

=

® F-distribution k-samples of different sizes
TABLE 10.3.2 Typical Analysis-of-Variance Table for One-Way ANOVA

Sum of Mean sum
Source squares df of Squares”  F-statistic P-value
T =% )? 2 _2,2

Between Ln(.~%) k-1 Sp =535y pr(E fo)

2 2
Within 201, -k S

e - 2

Total Zz(x‘f ) n,, -1 > n, (x,' -X..)
“M ean sum of squares = (sum of squares)/df’ Sé =
® <2, is a measure of variability of &=l

sample means, how far apart they are, 2 -1)Si2
s?y reflects the avg. internal SI%V R ——
variability within the samples.

Continuous Distributions — Cauchy’s |

=

Cauchy’s distribution, X~Cauchy(t,s), t=location; s=scale
PDFX): f(x) = ; xOR (reals
/&) sl +(x—1)/5)*) (reals)

_ 1
PDF(Std Cauchy’s(0,1)): fx)= sl +x%)

The Cauchy distribution is (theoretically) important as an example of’
a pathological case. Cauchy distributions look similar to a normal
distribution. However, they have much heavier tails. When studying
hypothesis tests that assume normality, seeing how the tests perform
on data from a Cauchy distribution is a good indicator of how
sensitive the tests are to heavy-tail departures from normality. The
mean and standard deviation of the Cauchy distribution are
undefined!!! The practical meaning of this is that collecting 1,000
data points gives no more accurate of an estimate of the mean and
standard deviation than does a single point.

® F-distribution k-samples of different sizes.

® Snedecor's F distribution is most commonly used in tests of

Continuous Distributions — F-distribution

variance (e.g., ANOVA). The ratio of two chi-squares divided
by their respective degrees of freedom is said to follow an F
distribution

/T P — Y} 1ID from a Normal([y;04)
{Yo. Yoo Yoo} 1ID from a Normal(Hy; 0,)

{Yys Yioe oo Yo} 1ID from a Normal(Hy;05)

0,=0,=0;=... 0, = 0. (1/2 <= 0,/0;<=2)

Samples are independent!

Continuous Distributions — X*> [Chi-Square]

® 2 [Chi-Square] goodness of fit test:

W Let {X;, X,, ..., Xy} are IID N(O, 1)
BW=X.2+X2+X2+ ...+ X

B W ~ xX(df=N)

B Note: If {Y,, Y, ..., Yy} are IID N(l, G), then

N
D == (1, -Ff
k=1
B And the Statistics W ~x2(df=N-1) J/ = N—21 SD*(Y)
Y (0, -E) g
xZ - Z k Kkl /Yz

k=1 k
B E(W)=N; Var(W)=2N

Continuous Distributions — Exponential

=

Exponential distribution, X~Exponential(\)

The exponential model, with only one unknown parameter, is the
simplest of all life distribution models.
x=0

f(x)=2Ae™;
E(X)=1/X\; Var(X)=1/A%

Another name for the exponential mean is the Mean Time To Fail
or MTTF and we have MTTF = 1/ A.

If X is the time between occurrences of rare events that happen on the average
with a rate | per unit of time, then X is distributed exponentially with parameter A.
Thus, the exponential distribution is frequently used to model the time interval
between successive random events. Examples of variables distributed in this
manner would be the gap length between cars crossing an intersection, life-times
of electronic devices, or arrivals of customers at the check-out counter in a grocery

store.

14



Continuous Distributions — Exponential

Continuous Distributions — Exponential Examples

® Exponential distribution, Example:
By-hand vs. ProbCalc.htm

® On weeknight shifts between 6 pm and 10 pm, there are an
average of 5.2 calls to the UCLA medical emergency
number. Let X measure the time needed for the first call on
such a shift. Find the probability that the first call arrives
(a) between 6:15 and 6:45 (b) before 6:30. Also find the
median time needed for the first call ( 34.578%; 72.865% ).

B We must first determine the correct average of this exponential
distribution. If we consider the time interval to be 4x60=240
minutes, then on average there is a call every 240 / 5.2 (or 46.15)
minutes. Then X ~ Exp(1/46), [E(X)=46] measures the time in
minutes after 6:00 pm until the first call.

@ Customers arrive at a certain store at an average of 15 per hour. What is the
probability that the manager must wait at least 5 minutes for the first customer?

® The exponential distribution is often used in probability to model (remaining)
lifetimes of mechanical objects for which the average lifetime is known and for
which the probability distribution is assumed to decay exponentially.

® Suppose after the first 6 hours, the average remaining lifetime of batteries for a
portable compact disc player is 8 hours. Find the probability that a set of batteries
lasts between 12 and 16 hours.

Solutions:

® Here the average waiting time is 60/15=4 minutes. Thus X ~ exp(1/4). E(X)=4.
Now we want P(X>5)=1-P(X <= 5). We obtain a right tail value of .2865. So
around 28.65% of the time, the store must wait at least 5 minutes for the first
customer.

® Here the remaining lifetime can be assumed to be X ~ exp(1/8). E(X)=8. For the
total lifetime to be from 12 to 16, then the remaining lifetime is from 6 to 10. We
find that P(6 <= X <= 10) = .1859.

Poisson Distribution — Definition

® Used to model counts — number of arrivals (k) on a
given interval ...

® The Poisson distribution is also sometimes referred to
as the distribution of rare events. Examples of
Poisson distributed variables are number of accidents
per person, number of sweepstakes won per person,
or the number of catastrophic defects found in a
production process.

Functional Brain Imaging —
Positron Emission Tomography (PET)

Annihilation (simple)

anitilation A .
choen Y ComServation of momentum:

Functional Brain Imaging - Positron Emission
Tomography (PET)

detecior

Functional Brain Imaging —
Positron Emission Tomography (PET)

1Isotope Energy (MeV) Range(mm) 1/2-life Appl.
|
C

0.96 1.1 20 min receptors
.. 1o 1.7 1.5 2min stroke/activation
B8R 0.6 1.0 110min  neurology
L4y ~2.0 1.6 4.5days oncology

15



Functional Brain Imaging —
Positron Emission Tomography (PET)

Left Hand

Poisson Distribution — Mean

® Used to model counts — number of arrivals (k) on a
oiven interval ...

Y~Poisson( ] ), then P(Y=k) =

Ae™
k!

Lk=0,1,2, ...

® Mean of Y, [y = A, since
o /\k -A ~ o /\k ~ o Ak
E(Y):ZkL:e/‘zk_:eA [
k=0 k! k=0 k! k=1 (k_l)!
o k-1 o k

- A e A -
=Y L =g S A= feet = A
R AT=TR T

Poisson Distribution - Variance

® Y~P01ss0n(A ), then P(Y=k) = Ae” ,k=0,1,2,...
1
® Variance of Y, 0, = A, since K

A

o2 =Var(Y)= i(k-/\)z/‘ki =..=A
v 2, o

® For example, suppose that Y denotes the number of
blocked shots (arrivals) in a randomly sampled game
for the UCLA Bruins men's basketball team. Then
a Poisson distribution with mean=4 may be used to
model Y .

Poisson Distribution - Example

® For example, suppose that Y denotes the number of
blocked shots in a randomly sampled game for the
UCLA Bruins men's basketball team. Poisson
distribution with mean=4 may be used to model Y .

12345 67891011 1213 14 15

Poisson as an approximation to Binomial

® Suppose we have a sequence of Binomial(n, p,)
models, with lim(n p,) = A, as n->infinity.

® For each 0<=y<=n, if Y ~ Binomial(n, p,), then

n y n-y
(Y, =)~ ( y)P,, (-p,)

M But this converges to:

, oway? YA
(2)pra-py-ogid o=
Y o »

® Thus, Binomial(n, p,) = Poisson(A)

Poisson as an approximation to Binomial

® Rule of thumb is that approximation is good if:

[ n>=100
[ | p<=0.01
[ | A=np <=20

® Then, Binomial(n, p,) = Poisson(A)
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Example using Poisson approx to Binomial

® Suppose P(defective chip) = 0.0001=10. Find the
probability that a lot of 25,000 chips has > 2 defective!

® Y~ Binomial(25,000, 0.0001), find P(Y>2). Note that
Z~Poisson(A =n p =25,000 x 0.0001=2.5)

P(Z>2):1_P(ZS2):1—Z'75e_2'5 =

(2.50 L 250 . 2.5
- —e " +—e¢
0! I

Normal approximation to Binomial — Example

©® Roulette wheel investigation:
® Compute P(Y>=58), where Y~Binomial(100, 0.47) —

M The proportion of the Binomial(100, 0.47) population having
more than 58 reds (successes) out of 100 roulette spins (trials).

m Since np=47>=10 & n(1-p)=53>10 Normal
approx is justified.
® 7Z=(Y-np)/Sqrt(np(1-p)) =

58 —100%0.47)/Sqrt(100%0.47*%0.53)=2.2
® P(Y>=58) € = P(Z>=2.2)=0.0139
® True P(Y>=58) = 0.177, using SOCR (demo!)
©® Binomial approx useful when no access to SOCR avail.

Poisson or Normal approximation to Binomial?

® Poisson Approximation (Binomial(n, p,) > POissoﬁ(}\) ):
y —
y n-y ? /1 e
() a-py-DlHE T2 —
y nxp, m A y'
En>=100 & p<=0.01 & A =np<=20
@ Normal Approximation

(Binomial(n, p) > N (np, (np(1-p))'?))
Enp >=10 & n(1-p)>10

Normal approximation to Binomial

[ uppose Y~Binomial(n, p)
® Then Y=Y+ Y,+ Y;+...+ Y, where
B Y, ~Bernoulli(p) , E(Y,)=p & Var(Y,)=p(1-p) 2>
B E(Y)=np & Var(Y)=np(1-p), so(v)- (np(i-p))”
B Standardize Y:
Q Z=(Y-np) / (np(1-p))*
0 By CLT 9 Z ~N(0, 1). So, Y ~ N [np. (ap(1-p)'?|
® Normal Approx to Binomial is

reasonable when np >=10 & n(1-p)>10
(p & (1-p) are NOT too small relative to n).

Normal approximation to Poisson

® Let X,~Poisson(A) & X,~Poisson(l) >X,+ X,~Poisson(A+})
® Let X, X,, X, ..., X, ~ Poisson(A), and independent,
® Y, =X, +X,+ +X, ~Poisson(kA), E(Y,)=Var(¥)=kA.
® The random variables in the sum on the right are

independent and each has the Poisson distribution
with parameter A.

® By CLT the distribution of the standardized variable
(Y, — kX) / (kN)'2 =» N(0, 1), as k increases to infinity.

® So, for kA >=100, Z, = {(¥, — kA) / (bAN)2 } ~ N(0,1).
©> ¥, ~ N(k\, (kA)'2).

Exponential family and arrival numbers/times

® First, let 7 - denote the time of the k'th arrival for k =
1,2, ... The gamma experiment is to run the process
until the £'th arrival occurs and note the time of this
arrival.

® Next, let M denote the number of arrivals in the time
interval (0, 7] for ¢> 0. The Poisson experiment is to run

the process until time 7 and note the number of
arrivals.

® Howare 7, & N, related?
([ J ]_Vt >k € > l‘k <t scale paramerer

gamma distribution
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Independence of continuous RVs

® TheRV’s {Y,Y,, Y;, ..., Y,} are independent if for any
n-tuple {yla Y2, ¥35 -5 Yn}

™

T =syinl<syinff<yin.n{l,<y});3
P(Y, < p,)xP(Y, < y,)xP(Y, < p,)x..xP(Y, < y,

Standard Normal Curve

® The standard normal curve is described by the equation:

Where remember, the natural number e ~ 2.7182...

We say: X~Normal(y, g), or simply X~N(, o)

General Normal Curve |

® The general normal curve is defined by: _(x-u )2
W Where |l is the average of (the symmetric) e 207

normal curve, and O is the standard —
deviation (spread of the distribution). y -

B Why worry about a standard and general normal curves?
B How to convert between the two curves?

The inverse problem — Percentiles/quantiles

‘ (b) 80th percentile (0.8-quantile)

of women’s heights

[Programs supply x,
x-value for which pr(X=<x p) =p

prob=p i i
A
x,=2? H

| (¢) Further percentiles of women’s heights ‘

Normal(= 1624 80% of people have

prob=0.8 height below the
80th percentile.
This is EQ to

" :152-7%0 Si 124 saying there’s
I:mgmm eums|  80% chance that a
[ Thus 80% lie belo random
observation from
[Percent 1% | 5% | 10% | 20% | 30% | 70% | 80% | 90% | 95% the distribution
ll:::)el'l“ﬂe (g?;uan%gj 0.1 0.2 0.3 0.7 0.8 0.9 | 0.95 Wlll fall below the
80th percentile.

(cm) 1483 (1525 1548 157.5 |159.4 166.0 | 167.9 | 170.6  172.
The inverse problem is what is the height for the 80th percentile/quantile? So

gl 410" 50"

far we studied given the height value what’s the corresponding percentile?

Standard Normal Approximation

® The standard normal curve can be used to estimate the percentage of
entries in an interval for any process. Here is the protocol for this
approximation:
W Convert the interval (we need the assess the percentage of entries in) to
standard units. We saw the algorithm already.
B Find the corresponding area under the normal curve (from tables or online
databases);

Compute %

Transform to Std.Units

What percentage of the

density scale histogram

is shown on this graph?

Areas under Standard Normal Curve —
Normal Approximation

® Protocol:
B Convert the interval (we need to assess the percentage of entries in)
to Standard units. Actually convert the end points in Standard units.

QIn general, the transformation X - (X-p)/g, standardizes the
observed value X, where |1 and 0 are the average and the
standard deviation of the distribution X is drawn from.

B Find the corresponding area under the normal curve (from tables or
online databases);
USketch the normal curve and shade the area of interest
Separate your area into individually computable sections

U Check the Normal Table and extract the areas of every sub-
section

JAdd/compute the areas of all
sub-sections to get the total area.
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Areas under Standard Normal Curve — Example

® Many histograms are similar in shape to the standard normal curve. For
example, persons height. The height of all incoming female army
recruits is measured for custom training and assignment purposes (e.g., 4
very tall people are inappropriate for constricted space positions, and
very short people may be disadvantages in certain other situations). The 3
mean height is computed to be 64 in and the standard deviation is 2 in.
Only recruits shorter than 65.5 in will be trained for tank operation and
recruits within % standard deviations of the mean will have no
restrictions on duties.

B What percentage of the incoming recruits will be trained to operate
armored combat vehicles (tanks)? a

B About what percentage of the recruits will have no restrictions on
training/duties?

Identifying Common Distributions — QQ plots

® Plots are useful for identifying candidate distribution model(s)
in approximating a population (data) distribution.

® Histograms, can reveal much of the features of the data
distribution.

® Quantile-Quantile plots indicate how well the model
distribution agrees with the data.

® ¢ quantile, for 0<q<lI, is the (data-space) value, Vg ator
below which lies a proportion q of the data.

® E.g., q=0.80, Y={1,2,3,4,5,6,7,8,9,10}. The q** quantile V=8,

since 80% of the data is at or below 8.

Constructing QQ plots

® Start off with data {y, y,, y3, ..., ¥}
® Order the data observations y;, <=y, <= y3 <=...<=y,
® Compute quantile rank, q,, for each observation, y,
P(Y<= q) = (k-0.375) / (n+0.250), where
Y is a RV from the (target) model distribution.
® Finally, plot the points (Y, q) in 2D plane, 1<=k<=n.

® Note: Different statistical packages use slightly different
formulas for the computation of q . However, the results are
quite similar. This is the formulas employed in SAS.

® Basic idea: Probability that: (model)Y<=(data)y, ~ 1/n;

Y<=y,~2/mn; Y<=y;~3/n; ...

Areas under Standard Normal Curve - Example |

® The mean height is 64 in and the standard deviation is 2 in.
B Only recruits shorter than 65.5 in will be trained for tank operation.
What percentage of the incoming recruits will be trained to operate
armored combat vehicles (tanks)?

X > (X-64)/2
65.5 > (65.5-64)12 = %
60 62 64 65566 68 Percentage is 77.34%

B Recruits within 2 standard deviations of the mean will have no
restrictions on duties. About what percentage of the recruits will
have no restrictions on training/duties?

X > (X-64)/12 s‘
65 > (65-64)/2 = V% R
63 > (63-64)12 = -

60 62 63 64 65 66 68 Percentage is 38.30%

Identifying Common Distributions — QQ plots

® Quantile-Quantile plots indicate how well the model
distribution agrees with the data.

® ¢ quantile, for 0<g<lI, is the (data-space) value, Vg ator
below which lies a proportion q of the data.

1| Graph of the CDF, F\(y)=P(Y<=V,)=¢

Example - Constructing QQ plots

® Start off with data {y,, y,, y3, ..., ¥}
® Plot the points (y ), ) in 2D plane, 1<=k<=n.

al Distribution

ty Plot, Var4, Nor

Loapw

Normal Distribution

1
N

Expected Value for

C:\Ivo.di'UCLA_Classes\Winter2002\AdditionalInstructorAids
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Data transformations

® In practice oftentimes observed data does not directly fit any of

the models we have available. In these cases transforming the raw data
may provide/satisfy the requirements for using the distribution models we know.

® Common transformations: Y=T(X), X=raw data, Y=new
M Data positively skewed to right use T(X)=Sqrt(X) or
T(X)=log(X)
H]f data varies by more than 2 orders of magnitude
O For X>0, use T(X)=log(X)
O For any X, use T(X)=-1/X.
0 If X are counts (categorical var’s), T(X)=Sqrt(X)

0 X=proportions & largest/ smallest Proportions >=2, use
Logit transform: T(X) = log[X/(1-X)].

Data transformations - Example

® BirthDay data:

C:\vo.diUCLA_Classes\Winter2002\AdditionalInstructorAids
BirthdayDistribution_1978_systat.SYD
SYSTAT, Graph-> Probability Plot, Var4, Normal Distribution

3 - —

Recall we looked at the sampling distribution of X

® For the sample mean calculated from a random sample,
E(X) =pand SD( X) =7 , provided
= \n
X =X +X,* ... + X )/n, and X,~N(H4, 0). Then

® X ~N(u, %). And variability from sample to sample
in the sample-means is given by the variability of the
individual observations divided by the square root of
the sample-size. In a way, averaging decreases variability.

Expected Value for

Normal Distribution

1
N

Data transformations - Example

Loapmpw

® For the BirthDay data:

Plot, Var4, Normal Distribution

C:\Ivo.dir\UCLA_Classes\Winter2002\AdditionalInstructorAids|

Data transformations - Example

® BirthDay data:

C:\lvo.diUCLA_Classes\Winter2002\AdditionalInstructorAids

BirthdayDistribution_1978_systat.SYD

SYSTAT, Graph-> Probability Plot, COS(Var2), Normal Distribution

T(X)=COS(X)

J

)

'
)

Central Limit Effect —

Histograms of sample means
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Central Limit Effect -- Histograms of sample means
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Central Limit Effect -- Histograms of sample means
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Central Limit Effect -- Histograms of sample means

n=4 n=10

1.0 s

0.8
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0 i > 3 0 ! 2

Central Limit Effect —

Histograms of sample means
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Central Limit Effect —

Histograms of sample means

Central Limit Effect —

Histograms of sample means

y=12(x-1f, xoo,
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Central Limit Effect -- Histograms of sample means

0
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Central Limit Theorem —
theoretical formulation

Let le,Xz,,,,,X J be a sequence of independent
observations from one specific random process. Let
and E(X)=pu and SD(X) = g ,and both be

finite (0<g <oo; |p|<o0). If X == ¥ X, sample-avg,
n nk=1 ﬁ

Then X has a distribution which approaches
N(W, 0%/n), as n - o.

Review

® When you have data from a moderate to small sample
and want to use a normal approximation to the
distribution of X in a calculation, what would you
want to do before having any faith in the results? 3o or
more for the sample-size, depending on the skewness of the distribution of X. Plot
the data - non-symmetry and heavyness in the tails slows down the CLT effects).
® Take-home message: CLT is an application of
statistics of paramount importance. Often, we are not
sure of the distribution of an observable process.
However, the CLT gives us a theoretical description
of the distribution of the sample means as the sample-
size increases (N, o).

Central Limit Theorem — heuristic formulation

Central Limit Theorem:
When sampling from almost any distribution,

X is approximately Normally distributed in large samples.

Review

® What does the central limit theorem say? Why is it
useful? (If the sample sizes are large, the mean in Normally distributed, as a RV)

® In what way might you expect the central limit effect
to differ between samples from a symmetric
distribution and samples from a very skewed
distribution? (Larger samples for non-symmetric distributions to see CLT effects)

® What other important factor, apart from skewness,
slows down the action of the central limit effect?

(Heavyness in the tails of the original distribution.)

The standard error of the mean — remember ...

® For the sample mean calculated from a random
sample, SD( X' ) =% . This implies that the
variability from sample to sample in the sample-
means is given by the variability of the individual

observations divided by the square root of the

sample-size. In a way, averaging decreases variability.

® Recall that for known SD(X)=0, we can express the
SD( X)= % . How about if SD(X) is unknown?!?

22



The standard error of the mean

The standard error of the sample mean is an
estimate of the SD of the sample mean

®i.c. a measure of the precision of the sample
mean as an estimate of the population mean

Sample standard deviation

®givenby SE(Y) = \/Sample size

S | ® Note similarity with

SE(%) =

n|e sp(X)= 2.

Cavendish’s 1798 data on mean density of the
Earth, g/cm> relative to that of H,0

550 561 488 507 526 555 536 529 558 5.65
557 553 5.62 529 544 534 579 510 527 539

542 547 563 534 546 530 575 568 585
Source:Cavendish [1798].

Sample mean x =5.447931 g/cm”

and sample SD = 5 =02209457 g/em’

Then the standard error for these data is:

s
SE(X) = o = 22209857 _ 4100858

Jn T 29

Density curves for Student’s ¢

%;4,§oml(0, D]
df =5

Student(df) density curves for various df.

Cavendish’s 1798 data on mean density of the
Earth, g/cm> relative to that of H,0

550 561 488 507 526 555 536 529 558 5.65

557 553 5.62 529 544 534 579 510 527 539

542 547 563 534 546 530 575 568 585
Source:Cavendish [1798].

Total of 29 measurements obtained by
measuring Earth’s attraction to masses

¢} 00 @& 600 0O OCO® @O O O O O

R ‘wo-standard-error interval
rT for true value

5.0 52 5.4 5.6 5.8
Measured density (g/cm )3

Student’s z-distribution

® For random samples from a Normal distribution,

r=X-4

SE(X)

. . . _ A X/ H‘
is exactly distributed as Student(df'=n - 1)« PRI EF

B but methods we shall base upon this distribution for 7' work
well even for small samples sampled from distributions
which are quite non-Normal.

B Jf'is number of observations —1, degrees of freedom.

Notation

® By ¢ ,(prob), we mean the number ¢ such that when
T ~ Student(df), P(T 21 4) = prob; that is, the tail area
above 7 (that is to the right of ¢ on the graph) is prob.

Normal(0,1) density Student(df) density
prob prob
o ! o
2(prob) t f(prob)
The z(prob) and t(prob) notations.
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Student(df) density

Reading Student’s 7 table

prob

t -
t (prob) Desired
A upper-tail prob

TABLE7.6.1 Extracts from the Student's t-Di: Table
prab/

df 20 .15 10 .05 025 .01 .005  .001 .0005 .0001
6 10906 1.134 1440 1943 2447 3.143 3.707 5208 5959 8.025
7 10896 1.119 1415 1.895 2365 2998 3.499 4785 5408 7.063
8 0.889 1.108 1.397 1860 2306 2.896 3.355 4.501 5.041 6.442

“Lg(005) (005
The central 90% of the Student(df) distribution.

Desired 10 | 0879 1.093 1372 1812 3169 4144 4587  5.694
df

15 ] 0.866 1.074 1341 1.753 2131\ 2,602 2947 3.733 4.073  4.880

0.842 1.036 1282 1.645 1960 |2.326 2.576 3.090 3.291 3.719

t-value




