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UCLA  STAT 110A
Applied Statistics

�Instructor:   Ivo Dinov, 
Asst. Prof. In Statistics and Neurology

�Teaching Assistants: Helen Hu,  UCLA Statistics

University of California, Los Angeles,  Spring 2002
http://www.stat.ucla.edu/~dinov/
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Chapter 4:  Discrete/Continuous Variables, 
Probabilities, CLT

�Density Histograms
�Probabilities
�Bernoulli trials
�Central Limit Theorem (CLT)
�Standardizing Transformations
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Frequency Distributions- damaged boxes
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Type Total Relative Percentage 
Frequency Frequency

A - Flap out 16 0.0096 1
B - Flap torn 17 0.0102 1
C - End smashed 132 0.0793 8
D – Puncture 95 0.0571 6
E - Glue problem 87 0.0523 5
F - Corner gouge 984 0.5913 59
G – Compr. wrinkle 15 0.0090 1
H - Tip crushed 303 0.1821 18
I - Tot. destruction 15 0.0090 1

Total 1664 0.9999* 100
(* the relative frequencies do not add to 1.0000 due to rounding) 

Frequency Distributions- damaged boxes
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Relative frequency for type A  is: 

Percentage for type A  is:  
percent.

The usefulness of relative frequencies and 
percentages is clear: for example, it is easily seen 
that corner gouge
accounts for 59% of the total number of damages. 

0.0096
1664

16 =

10.96100
1664
16 ≈=×

Frequency Distributions- damaged boxes
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The frequency distribution of a variable is often presented 
graphically as a bar-chart/bar-plot. For example, the data 
in the frequency table above can be shown as: 

The vertical axis can be frequencies or relative 
frequencies or percentages.  On the horizontal axis all 
boxes should have the same width leave gaps between 
the boxes (because there is no connection between them) 
the boxes can be in any order.

Frequency Distributions- damaged boxes
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Experiments,    Models,   RV’s

� An experiment is a naturally occurring 
phenomenon, a scientific study, a sampling trial or a 
test., in which an object (unit/subject) is selected at 
random (and/or treated at random) to 
observe/measure different outcome characteristics of 
the process the experiment studies.

�Model – generalized hypothetical description used to 
analyze or describe a phenomenon.

� A random variable is a type of measurement 
taken on the outcome of a random experiment.
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Definitions

� The probability function for a discrete random 
variable X gives the chance that the observed value 
for the process equals a specific outcome, x.
� P(X = x) [denoted pr(x) or P(x)]

for every value x that the R.V. X can take

� E.g., number of heads when a coin is tossed twice

x 0 1 2

pr(x ) 1
2

1
4

1
4
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Outcome GGG GGB GB BG BBG BBB

Probability
1
4

1
8

1
8

1
8

1
8

1
4

Stopping at one of each or 3 children

� For R.V.   X = number of girls, we have

X 0 1 2 3

pr(x )
5
8

1
8

1
8

1
8

Sample Space – complete/unique description of the 
possible outcomes from this experiment.
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� For each toss,  P(Head) = p   � P(Tail) = 
P(comp(H))=1-p

� Outcomes:      HH,  HT,        TH,            TT

� Probabilities:  p.p,  p(1-p),   (1-p)p,   (1-p)(1-p)

� Count X, the number of heads in 2 tosses
X 0 1 2
pr(x ) (1−p )2 2p (1−p ) p 2

Tossing a biased coin twice
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Calculating Interval probabilities
from cumulative probabilities

1 2 3 4 5 6 7 8 9 10 11 12
To get 4 to 8,

and remove from 3 down

pr(3 < X - 8)
=  pr(X - 8)

pr(X - 3)

[= p

x-values :

start with everything up to 8
P(3< X <9)

P(X <9)
P(X<=3)

How to find the upper-tail?
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Let's Make a Deal Paradox –
aka, Monty Hall 3-door problem

� This paradox is related to a popular television show 
in the 1970's. In the show, a contestant was given a 
choice of three doors/cards of which one contained a 
prize (diamond). The other two doors contained gag 
gifts like a chicken or a donkey (clubs). 
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Let's Make a Deal Paradox.

� After the contestant chose an initial door, the host of 
the show then revealed an empty door among the two 
unchosen doors, and asks the contestant if he or she 
would like to switch to the other unchosen door. The 
question is should the contestant switch. Do the odds 
of winning increase by switching to the remaining 
door? 1.Pick

One
card

2.Show one
Club Card

3. Change 
1st pick?

Applets.dir/StatGames.exe
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Let's Make a Deal Paradox.

� The intuition of most people tells them that each of 
the doors, the chosen door and the unchosen door, are 
equally likely to contain the prize so that there is a 
50-50 chance of winning with either selection? This, 
however, is not the case. 

� The probability of winning by using the switching 
technique is 2/3, while the odds of winning by not 
switching is 1/3. The easiest way to explain this is as 
follows:
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Let's Make a Deal Paradox.

� The probability of picking the wrong door in the 
initial stage of the game is 2/3. 

� If the contestant picks the wrong door initially, the 
host must reveal the remaining empty door in the 
second stage of the game. Thus, if the contestant 
switches after picking the wrong door initially, the 
contestant will win the prize. 

� The probability of winning by switching then reduces 
to the probability of picking the wrong door in the 
initial stage which is clearly 2/3. 
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Bernoulli Trials

� A Bernoulli trial is an experiment where only two 
possible outcomes are possible (0 / 1).

� Examples: 

�Coin tosses

�Computer chip (0 / 1) signal.

�Poll supporters/opponents; yes/no; for/against.
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The two-color urn model

Sample  n  balls and count  X = # black balls in sample

M  black balls

N – M  white balls

N  balls in an urn, of which there are

We will compute the probability distribution of the R.V. X
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The biased-coin tossing model

  Perform  n  tosses and count  X = # heads

toss 1 toss 2 toss  n
pr(H) = p pr(H) = p pr(H) = p

We also want to compute the probability
distribution of this R.V. X!

Are the two-color urn and the biased-coin
models related? How do we present the 

models in mathematical terms?
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� The distribution of the number of heads in n
tosses of a biased coin is called the Binomial 
distribution.

The answer is:  Binomial distribution
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x 0 1 2 3 4 5 6
Individual pr(X = x) 0.001 0.010 0.060 0.185 0.324 0.303 0.118
Cumulative pr(X - x) 0.001 0.011 0.070 0.256 0.580 0.882 1.000

Binomial(N, p) – the probability distribution
of the number of Heads in an N-toss coin 
experiment, where the probability for Head 
occurring in each trial is p.

E.g., Binomial(6, 0.7)

For example  P(X=0) = P(all 6 tosses are Tails) =

001.03.0)7.01( 66 ========−−−−
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Binary random process

The biased-coin tossing model is a physical model for 
situations which can be characterized as a series of 
trials where:
�each trial has only two outcomes: success or 

failure;
�p = P(success) is the same for every trial; and
�trials are independent.

� The distribution of X = number of successes (heads) 
in N such trials is

Binomial(N, p)
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Sampling from a finite population –
Binomial Approximation

If we take a sample of size n

� from a much larger population (of size N)

� in which a proportion p have a characteristic of 
interest, then the distribution of X, the number in 
the sample with that characteristic,

� is approximately Binomial(n, p).
� (Operating Rule: Approximation is adequate if n / N< 0.1.)

� Example, polling the US population to see what 
proportion is/has-been married.
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Binomial Probabilities –
the moment we all have been waiting for!

� Suppose X ~ Binomial(n, p), then the probability

� Where the binomial coefficients are defined by
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x
n
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����
����
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nnn
xxn
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Binomial Formula with examples

� Does the Binomial probability satisfy the requirements?

� Explicit examples for n=2, do the case n=3 at home!

(((( )))) 1  np)-(1p   )()1()( ====++++====����
−−−−−−−−����

����

����
����
����

����====���� ==== x
xnpxp

x
n

x xXP

(((( )))) 121

1112111

1
2
2

1
1
2

1
0
2

2

0

21
2

22

021120

  -p)(p

pp)(pp)(

p)(pp)(pp)(p

   
x

x)(p)(xp
x

====++++

====××××××××++++−−−−××××××××++++−−−−××××××××

====−−−−����
����

����
����
����

����++++−−−−����
����

����
����
����

����++++−−−−����
����

����
����
����

����

====����
====

−−−−−−−−����
����

����
����
����

����

Usual
quadratic-
expansion
formula

Three terms in the sum
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Prize ($) x 1 2 3
Probability pr(x) 0.6 0.3 0.1

$ won

Total  prize money  =  Sum; Average prize money  =  Sum/100
 = 1  0.6  +  2  0.3  +  3  0.1
 = 1.5

Sum
Number of games won

What we would "expect" from 100 games add across row
0.6 100 0.3 100 0.1 100

2 0.3 100 3 0.1 1001 0.6 100

Expected values

� The game of chance: cost to play:$1.50;  Prices {$1, $2, $3}, 
probabilities of winning each price are {0.6, 0.3, 0.1}, respectively.

� Should we play the game? What are our chances of 
winning/loosing?

Theoretically Fair Game: price to play EQ the expected return!
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TABLE 5.4.1   Average Winnings from a Game conducted N  times

Number
of games 1 2 3 Average winnings 

played per game

(N )

100 64 25 11
( .64) ( .25) ( .11) 1.7

 1,000 573 316 111
( .573) ( .316) ( .111) 1.538

10,000 5995 3015 990
( .5995) ( .3015) ( .099) 1.4995

20,000 11917 6080 2000
( .5959) ( .3040) ( .1001) 1.5042

30,000 17946 9049 3005
( .5982) ( .3016) ( .1002) 1.5020

( .6) ( .3)  ( .1) 1.5

Prize won in dollars(x )

frequencies

(Relative frequencies)

∞

(x  ) So far we looked
at the theoretical
expectation of the
game. Now we 
simulate the game
on a computer
to obtain random 
samples from
our distribution, 
according to the
probabilities
{0.6, 0.3, 0.1}.
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� The expected value:

E(X) =

� = Sum of (value times probability of value)

����

x
xx

  all
)(P  

Definition of the expected value, in general.
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Example

X 0 1 2 3

pr(x )
5
8

1
8

1
8

1
8

25.1
8
13

8
12

8
51

8
10

)(P)(E

====

××××++++××××++++××××++++××××====

����====
x

xxX

In the at least one of each or at most 3 children
example, where X ={number of Girls}  we have:
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µµµµX = E(X) is called the mean of the distribution of X.

µµµµX = E(X) is usually called the population mean.

µµµµx is the point where the bar graph of P(X = x) balances.

The expected value and population mean
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The population standard deviation is

sd( X) =  E[(X -  µ)2 ]

Population standard deviation

Note that if X is a RV, then (X-µµµµ) is also a RV, 
and so is (X-µµµµ)2. Hence, the expectation, 

E[(X-µµµµ)2],  makes sense.
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)-1( = )sd( pnpX

For the Binomial distribution . . . mean

E(X) = n p,

X~Binomial(n, p) ����

X=Y1+Y2+Y3+..+Yn,
where Yk ~Bernoulli(p),

E(Y1)=p ����
E(X) = E(Y1+Y2+Y3+..+Yn)=np
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)-1( = )sd( pnpX

For the Binomial distribution . . . SD

E(X) = n p,

(((( ))))

====����
====

−−−−−−−−����
����

����
����
����

����−−−−����
====

−−−−−−−−����
����

����
����
����

����

++++����
====

−−−−−−−−����
����

����
����
����

����

====����
====

−−−−−−−−����
����

����
����
����

����−−−−====−−−−====

   
n

x

x)(np)(xp
x
n

xnp 
n

x

x)(np)(xp
x
n

np

  
n

x

x)(np)(xp
x
n

x

   
n

x

x)(np)(xp
x
n

npxXEXSD

0
1 2

0
1  

 
0

1  

0
1  )()()(

2

2

222 µµµµ

E(X) = Sum(Value x Probability)

Expand the square term
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)-1( = )sd( pnpX

For the Binomial distribution . . . SD

E(X) = n p,
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)-1( = )sd( pnpX

For the Binomial distribution . . . mean

E(X) = n p,
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Change the summation index  x ���� x+1

This is simply the 
Expectation of X2,

E(X2) and we compute
It exactly like E(X)
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)-1( = )sd( pnpX

For the Binomial distribution . . . SD

E(X) = n p,
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==== As before, factor out nxp and do the math

Split off the (x+1) term

Binomial Formula and a bit of arithmetic yield the result
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For any constants a and b, the expectation of the RV aX + b
is equal to the sum of the product of a and the expectation of 
the RV X and the constant b.

E(aX + b) = a E(X) +b

And similarly for the standard deviation (b, an additive 
factor, does not affect the SD).

SD(aX +b) = |a| SD(X)

Linear Scaling (affine transformations) aX + b
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Why is that so?

E(aX + b) = a E(X) +b SD(aX +b) = |a| SD(X)

Linear Scaling (affine transformations) aX + b

.1
00

00

0

baE(X)baE(X)
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Example:

E(aX + b) = a E(X) +b SD(aX +b) = |a| SD(X)

1. X={-1, 2, 0, 3, 4, 0, -2, 1}; P(X=x)=1/8, for each x 

2. Y = 2X-5 = {-7, -1, -5, 1, 3, -5, -9, -3}

3. E(X)=

4. E(Y)=

5. Does  E(X)  =  2 E(X) –5 ?

6. Compute SD(X),  SD(Y). Does SD(Y)  =  2 SD(X)?

Linear Scaling (affine transformations) aX + b
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And why do we care?

E(aX + b) = a E(X) +b SD(aX +b) = |a| SD(X)

-completely general strategy for computing the distributions 
of RV’s which are obtained from other RV’s with known 
distribution. E.g., X~N(0,1), and Y=aX+b, then we need 
not calculate the mean and the SD of Y. We know from the 
above formulas that E(Y) = b and SD(Y) =|a|.

-These formulas hold for all distributions, not only for 
Binomial and Normal.

Linear Scaling (affine transformations) aX + b
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And why do we care?

E(aX + b) = a E(X) +b SD(aX +b) = |a| SD(X)

-E.g., say the rules for the game of chance we saw before change and 
the new pay-off is as follows: {$0, $1.50, $3}, with probabilities of 
{0.6, 0.3, 0.1}, as before. What is the newly expected return of the 
game? Remember the old expectation was equal to the entrance fee of 
$1.50, and the game was fair!

Y = 3(X-1)/2
{$1, $2, $3} � {$0, $1.50, $3}, 

E(Y) =  3/2 E(X) –3/2 = 3 / 4 = $0.75

And the game became clearly biased. Note how easy it is to compute E(Y).

Linear Scaling (affine transformations) aX + b
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Means and Variances for (in)dependent Variables!

� Means:
� Independent/Dependent Variables {X1, X2, X3, …, X10}

� E(X1 + X2 + X3 + … + X10) = E(X1)+ E(X2)+ E(X3)+… + E(X10)

� Variances:
�� IndependentIndependent Variables {X1, X2, X3, …, X10}, variances add-up

Var(X1 +X2 + X3 + … + X10) = 
Var(X1)+Var(X2)+Var(X3)+…+Var(X1)

�� DependentDependent VariablesVariables {X1, X2} 
Variance contingent on the variable dependences, 
� E.g., If  X2 = 2X1 + 5,

Var(X1 +X2) =Var (X1 + 2X1 +5) = 
Var(3X1 +5) =Var(3X1) = 9Var(X1)
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For the Binomial distribution . . . SD

)-1( = )SD( pnpXE(X) = n p

X~Binomial(n, p) ����
X=Y1+Y2+Y3+…+Yn,

where Yk ~ Bernoulli(p),
Var(Y1)  =  (1-p)2xp + (0-p)2x(1-p) ����

Var(Y1)  = (1-p)(p-p2+p2)  =  (1-p)p ����
Var(X) = Var(Y1) + … + Var(Yn) =   n(1-p)p

SD(X)=Sqrt[Var(X)] = Sqrt[n(1-p)p]
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Sample spaces and events

� A sample space, S, for a random experiment is the set 
of all  possible outcomes of the experiment.

� An event is a collection of outcomes.

� An event occurs if any outcome making up that event 
occurs.
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A A

(a) Sample space con-
taining event A

(b) Event A shaded (c)  A shaded

A

Figure 4.4.1 An event  A  in the sample space S.

S

� The complement of an event A, denoted      ,
occurs if  and only if A does not occur.

A

The complement of an event
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� “A or B” contains all outcomes in A or B (or both).

� “A and B” contains all outcomes which are in both A
and B.

Combining events – all statisticians agree on

Mutually exclusive events cannot occur at the same time.

A B A B A B A B

(a) Events A and B (b)  “A or B”  shaded (c)  “A and B”  shaded (d) Mutually exclusive
events

Figure 4.4.2 Two events.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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Probability distributions

� Probabilities always lie between 0 and 1 and they 
sum up to 1 (across all simple events) .

� pr(A) can be obtained by adding up the probabilities 
of all the outcomes in  A.

�=
A  in   

  E
)()(

event
outcome

EprApr
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A BFor mutually exclusive events,
pr(A or B)  =  pr(A) + pr(B)

Rules for manipulating
Probability Distributions
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� If  A and  B are mutually exclusive, what is the 
probability that both occur? (0) What is the probability 
that at least one occurs?  (sum of probabilities)

� If we have two or more  mutually exclusive events, 
how do we find the probability that at least one of them 
occurs? (sum of probabilities)

� Why is it sometimes easier to compute pr(A) from
pr(A)  =   1 - pr( )? (The complement of the even may be easer to find 

or may have a known probability. E.g., a random number between 1 and 10 is drawn. 
Let A ={a number less than or equal to 9 appears}. Find pr(A) = 1 – pr(    )). 
probability of     is  pr({10 appears}) = 1/10 = 0.1. Also Monty Hall 3 door example!

A 

Review

A 
A 
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� The Expected value:
(population mean)

� Sample mean

� (Theoretical) Variance

� (Sample) variance

�
�

�

�

�
�

�

�
�=�=

x
dxxx

x
xxXE

   all
)(P    

  all
)(P  )(

Sample vs. theoretical mean & varaince
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k
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X
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Melanoma – type of skin cancer –
an example of laws of conditional probabilities

Contingency table based on Melanoma histological type and its location

TABLE 4.6.1:  400 Melanoma Patients by Type and Site

Head and Row
Type Neck Trunk Extremities Totals
Hutchinson's 
melanomic freckle 22 2 10 34
Superficial 16 54 115 185
Nodular 19 33 73 125
Indeterminant 11 17 28 56
Column Totals 68 106 226 400

 Site
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The conditional probability of A occurring given that 
B occurs is  given by

pr(A | B) =
pr(A and B)

pr(B)
 

Conditional Probability

Suppose we select one out of the 400 patients in the study and we 
want to find the probability that the cancer is on the extremities
given that it is of type nodular: P = 73/125 = P(C. on Extremities | Nodular)

patientsnodular  #
sextremitieon  cancer    with  patientsnodular  #
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))pr(|pr( = ))pr(|pr(=)&pr( PPAAAPAP

Multiplication rule- what’s the percentage of 
Israelis that are poor and Arabic?

0
0.0728

0.14 1.0

 All people in Israel

14%  of these are Arabic

52%  of this  14%  are poor

7.28% of Israelis are both poor and  Arabic
(0.52  .014  =  0.0728)

Figure 4.6.1 Illustration of the multiplication rule.
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Poor

Not

Arabic
(A)

Jewish
(J)

Ethnic
Group

Poverty
Level

Poor

Not

pr(Poor and Arabic)

pr(Not and Arabic)

pr(Poor and Jewish)

pr(Not and Jewish)

Product
Equals

Tree diagram for poverty in Israel
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� Events A and B are statistically independent if 
knowing whether B has occurred gives no new 
information about the chances of A occurring,

i.e.  if     pr(A | B) = pr(A)

� Similarly, P(B | A) = P(B), since 

P(B|A)=P(B & A)/P(A) = P(A|B)P(B)/P(A) = P(B)

� If A and B are statistically independent, then

)pr()pr( = ) and  pr( BABA ×

Statistical independence
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People vs. Collins

� The first occasion where a conviction was made in an American court of law, 
largely on statistical evidence, 1964. A woman was mugged  and the offender 
was described as a wearing dark cloths, with blond hair in a pony tail who 
got into a yellow car driven by a black male accomplice with mustache and 
beard. The suspect brought to trial were picked out in a line-up and fit all of 
the descriptions. Using the product rule for probabilities an expert witness 
computed the chance that a random couple meets these characteristics, as 
1:12,000,000.

TABLE 4.7.2 Frequencies Assumed by the Prosecution

Yellow car Girl with blond hair

Man with mustache Black man with beard

Girl with ponytail Interracial couple in car1
10

1
1 0 0 0

1
10

1
10
1
4

1
3
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Continuous RV’s

� A RV is continuous if it can take on any real value in a 
non-trivial interval (a ; b).

� PDF, probability density function, for a cont. RV, Y, is 
a non-negative function pY(y), for any real value y, 
such that for each interval (a; b), the probability that Y 
takes on a value in (a; b), P(a<Y<b) equals the area 
under pY(y) over the interval (a: b).

�

pY(y)

a            b

P(a<Y<b)

STAT 110A, UCLA, Ivo DinovSlide 64

Convergence of density histograms to the PDF

� For a continuous RV the density histograms converge 
to the PDF as the size of the bins goes to zero.
� AdditionalInstructorAids\BirthdayDistribution_1978_systat.SYD

�
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Convergence of density histograms to the PDF

� For a continuous RV the density histograms converge 
to the PDF as the size of the bins goes to zero.

�
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Computing Probabilities using PDFs

�

� Example: 

�=∈
A

dyypAYP Y )()(

11

0
3
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0,)(

3
3

0

3

0

≅−=−=
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yeyp
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Y

y
Y

(i)   Exponential shape
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CDF (cumulative distribution function)

�

� Example: 

�
∞−

=≤=
y

YY dyypyYPyF )()()(

11

0
3

)()3()3(

0,)(

3
3

0

3

0
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−−−

−

�

�
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Measures of central tendency/variability for 
Continuous RVs

� Mean

� Variance

� SD

�
∞

∞−

×= dyypy YY )(µ

�
∞

∞−

×−= dyypy YYY )()( 22 µσ

�
∞

∞−

×−= dyypy YYY )()( 2µσ
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Facts about PDF’s of continuous RVs

� Non-negative

� Completeness

� Probability

yypY ∀≥ ,0)(

1)( =�
∞

∞−

dyypY

� ×=<<
b

a
Y dyypybYaP )()(
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Continuous Distributions

� Normal distribution

� Student’s T distribution

� F-distribution

� Chi-squared (     )

� Cauchy’s distribution

� Exponential distribution

� Poisson distribution, …

2χ
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Uniform Distribution

� Uniform Distribution PDF:  Y~Uniform(a;b) ��

pY(y)=1/(b-a), for each a<=y<=b, and pY(y)=0, otherwise.

a

1/(b-a)

b

Area = 1
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Uniform Distribution – CDF, mean, variance

� Uniform Distribution CDF:

�
�
�

��
�

�
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Uniform Distribution – CDF, mean, variance

� Mean:

� Variance:

� SD: 

2
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Continuous Distributions - Normal

� (General) Normal distribution

� (Standard) Normal distribution (µ=0, σ=1)

2

22

2)(

2πσ

σ
µ−−

=

x

ey

π2

2

2x

ey

−
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µ−= YZ
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(General) Normal Distribution

� Normal Distribution PDF:  Y~Normal(µ, σµ, σµ, σµ, σ2222) ��
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Standard Normal (Gaussian) Distribution

� Normal Distribution PDF:  Y~Normal(µ=0, σµ=0, σµ=0, σµ=0, σ2222=1) ��
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Effects of µµµµ and σ σ σ σ (on the graphs of Normal Distribution)

140 160 180

shifts the curve along the axis

200

2 =174

2 = 61 =

(a)  Changing

1 = 160

160 180 200140

1 = 6

2 = 12

2 =1701 =

increases the spread and flattens the curve

(b)  Increasing

Mean is a measure of …
central tendency

Standard deviation is 
a measure of …

variability/spread
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� Is symmetric about the mean! Bell-shaped and 
unimodal.

� Mean = Median!

50% 50%

Mean

2.2

The Normal distribution density curve

N(µ, σµ, σµ, σµ, σ)
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Understanding the standard deviation: σσσσ

(c)  Probabilities and numbers of standard deviations

Shaded area = 0.683 Shaded area = 0.954 Shaded area = 0.997

    68% chance of falling
between             and

− +

+
     95% chance of falling
between              and

+2

+2

3+

     99.7% chance of falling
between              and 3+

− 2 − 3

−3− −2

Probabilities/areas and numbers of standard deviations
for the Normal distribution

NormalCurveInteractive.html
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4035 45
0.0

0.1

0.2

150 160 170 180 190 200
.00

.02

.04

.06

(a)  Chest measurements of Quetelet’s Scottish soldiers (in.)

(b)  Heights of the 4294 men in the workforce database  (cm)

= 39.8 in.,      = 2.05 in.

= 174 cm,      = 6.57 cm

Normal density curve has

Normal density curve has

Two standardized histograms with 
approximating Normal density curve
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Basic method for obtaining probabilities

� Sketch a Normal curve, marking the mean and other 
values of interest.

� Shade the area under the curve that gives the desired 
probability.

� Devise a way of getting the desired area from lower-
tail areas.

� Obtain component lower-tail probabilities from a 
computer program
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180160 =174160 =174180=174

pr(X    180) pr(X    160) pr(160 < X    180) = difference

Shaded
area

(a)  Computing   pr(160 < X     180)

Shaded
area

Shaded
area

Programs supply We want

and

pr(160 < X    180)  =  pr(X   180)     pr(X   160)
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(c)  More Normal probabilities
        (values obtained from Minitab)

Note: 152.4cm = 5ft, 167.6cm = 5ft 6in., 177.8cm = 5ft 10in., 182.9cm = 6ft

pr(a < X  b) = differenceb
167.6
177.8
177.8
182.9

pr(X  b)
0.165
0.718
0.718
0.912

a
152.4
167.6
152.4
167.6

pr(X  a)
0.001
0.165
0.001
0.165

0.164
0.553
0.717
0.747

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Tabular representation of probabilities
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Programs supply

pr(X    25)

25 =27.2

We want

pr(X > 25)

25 =27.2

= 0.2874= ??

Since total area under curve = 1,    pr(X > 25) = 1 - pr(X     25)

Obtaining an upper-tail probability

pr(X > 25)

Generally,    pr(X > x)  =  1  -  pr(X     x)
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Continuous Distributions – Student’s T

� Student’s T distribution [approx. of Normal(0,1)]
�Y1, Y2, …, YN IID from a Normal(µ;σ)
�Variance σ2 is unknown

� In 1908, William Gosset (pseudonym Student)  derived the 
exact sampling distribution of the following statistics

� T~Student(df=N-1), where 
Y

YYT
σ

µ
ˆ
−=

( )
1

ˆ 1

2

−

−
=
�

=

N

YY
N

k
k

Yσ
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Density curves for Student’s t

∞∞∞∞

0 2 4- 2- 4

df  =  ×
[i.e., Normal(0,1)]

df  =  5
df  =  2

Figure 7.6.1 Student(df) density curves for various df.

We will come back to the
T-distribution at the end
of this chapter!
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Continuous Distributions – F-distribution

� F-distribution k-samples of different sizes.

� Snedecor's F distribution is most commonly used in tests of 
variance (e.g., ANOVA). The ratio of two chi-squares divided 
by their respective degrees of freedom is said to follow an F 
distribution 

� {Y1;1, Y1;2, ………….., Y1;N1}  IID from a Normal(µ1;σ1)
� {Y2;1, Y2;2,.., Y2;N2}  IID from a Normal(µ2;σ2)
� .,..
� {Yk;1, Yk;2, ….., Yk;N2}  IID from a Normal(µ2;σ2)
� σ1= σ2= σ3=… σnk

= σ. (1/2 <= σk/σj<=2)
� Samples are independent!

k
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Continuous Distributions – F-distribution

� F-distribution k-samples of different sizes

� s2
B is a measure of variability  of

sample means, how far apart they are.
� s2

W reflects the avg. internal
variability within the samples.

TABLE 10.3.2 Typical Analysis-of-Variance Table for One-Way ANOVA

Sum of Mean sum
Source squares df of Squaresa F -statistic P -value

Between k -1 pr(F    f 0)

Within n tot - k

Total n tot - 1
aMean sum of squares = (sum of squares)/df

ni(x i . −x ..)2
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Continuous Distributions – χχχχ2 [Chi-Square]
� χ2 [Chi-Square] goodness of fit test:

�Let {X1, X2, …, XN} are IID N(0, 1)
�W = X1

2 + X2
2 + X3

2 + …+ XN
2

�W ~ χ2(df=N)
�Note: If {Y1, Y2, …, YN} are IID N(µ, σµ, σµ, σµ, σ), then

�And the Statistics W ~ χ2(df=N-1)

�E(W)=N;  Var(W)=2N

( )�
=

−
−

=
N

k
k YY

N
YSD

1

2

1
1)(

)(1 2
2 YSDNW

σ
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( ) 2~
1

2
2 χ�
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Continuous Distributions – Cauchy’s

� Cauchy’s distribution, X~Cauchy(t,s), t=location; s=scale
� PDF(X):

� PDF(Std Cauchy’s(0,1)):

� The Cauchy distribution is (theoretically) important as an example of 
a pathological case. Cauchy distributions look similar to a normal
distribution. However, they have much heavier tails. When studying 
hypothesis tests that assume normality, seeing how the tests perform 
on data from a Cauchy distribution is a good indicator of how 
sensitive the tests are to heavy-tail departures from normality. The 
mean and standard deviation of the Cauchy distribution are 
undefined!!! The practical meaning of this is that collecting 1,000 
data points gives no more accurate of an estimate of the mean and 
standard deviation than does a single point. 
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Continuous Distributions – Exponential

� Exponential distribution, X~Exponential(λ)
� The exponential model, with only one unknown parameter, is the 

simplest of all life distribution models.

� E(X)=1/ λ;    Var(X)=1/ λ2; 

� Another name for the exponential mean is the Mean Time To Fail
or MTTF and we have MTTF = 1/ λ. 

� If X is the time between occurrences of rare events that happen on the average 
with a rate l per unit of time, then X is distributed exponentially with parameter λ. 
Thus, the exponential distribution is frequently used to model the time interval 
between successive random events. Examples of variables distributed in this 
manner would be the gap length between cars crossing an intersection, life-times 
of electronic devices, or arrivals of customers at the check-out counter in a grocery 
store. 

0     ;)( ≥= − xexf xλλ
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Continuous Distributions – Exponential

� Exponential distribution, Example:

� On weeknight shifts between 6 pm and 10 pm, there are an 
average of 5.2 calls to the UCLA medical emergency 
number. Let X measure the time needed for the first call on 
such a shift. Find the probability that the first call arrives 
(a) between 6:15 and 6:45 (b) before 6:30. Also find the 
median time needed for the first call  ( 34.578%; 72.865% ). 
�We must first determine the correct average of this exponential 

distribution. If we consider the time interval to be 4x60=240 
minutes, then on average there is a call every 240 / 5.2 (or 46.15) 
minutes. Then X ~ Exp(1/46), [E(X)=46] measures the time in 
minutes after 6:00 pm until the first call. 

By-hand vs. ProbCalc.htm
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Continuous Distributions – Exponential Examples

� Customers arrive at a certain store at an average of 15 per hour. What is the 
probability that the manager must wait at least 5 minutes for the first customer? 

� The exponential distribution is often used in probability to model (remaining) 
lifetimes of mechanical objects for which the average lifetime is known and for 
which the probability distribution is assumed to decay exponentially. 

� Suppose after the first 6 hours, the average remaining lifetime of batteries for a 
portable compact disc player is 8 hours. Find the probability that a set of batteries 
lasts between 12 and 16 hours. 

Solutions: 

� Here the average waiting time is 60/15=4 minutes. Thus X ~ exp(1/4). E(X)=4.
Now we want P(X>5)=1-P(X <= 5).  We obtain a right tail value of .2865. So 
around 28.65% of the time, the store must wait at least 5 minutes for the first 
customer. 

� Here the remaining lifetime can be assumed to be X ~ exp(1/8). E(X)=8. For the 
total lifetime to be from 12 to 16, then the remaining lifetime is from 6 to 10. We 
find that P(6 <= X <= 10) = .1859.
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Poisson Distribution – Definition

� Used to model counts – number of arrivals (k) on a 
given interval …

� The Poisson distribution is also sometimes referred to 
as the distribution of rare events. Examples of 
Poisson distributed variables are number of accidents 
per person, number of sweepstakes won per person, 
or the number of catastrophic defects found in a 
production process.
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Functional Brain Imaging –
Positron Emission Tomography (PET)
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Functional Brain Imaging - Positron Emission 
Tomography (PET)

http://www.nucmed.buffalo.edu
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Functional Brain Imaging –
Positron Emission Tomography (PET)

Isotope Energy (MeV)   Range(mm)  1/2-life  Appl.
C 0.96 1.1     20 min    receptors
O 1.7 1.5     2 min     stroke/activation
F 0.6      1.0     110 min      neurology
I ~2.0 1.6     4.5 days      oncology

11

15
18

124
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Functional Brain Imaging –
Positron Emission Tomography (PET)
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Poisson Distribution  – Mean

� Used to model counts – number of arrivals (k) on a 
given interval …

� Y~Poisson(    ), then P(Y=k) =              , k = 0, 1, 2, …

� Mean of Y, µY = λ, since
!
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Poisson Distribution - Variance

� Y~Poisson(    ), then P(Y=k) =              , k = 0, 1, 2, …

� Variance of Y, σY = λ, since

� For example, suppose that Y denotes the number of 
blocked shots (arrivals) in a randomly sampled game
for the UCLA Bruins men's basketball team. Then 
a Poisson distribution with mean=4 may be used to 
model Y .
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Poisson Distribution - Example

� For example, suppose that Y denotes the number of 
blocked shots in a randomly sampled game for the
UCLA Bruins men's basketball team. Poisson 
distribution with mean=4 may be used to model Y .

1   2   3   4   5 6   7   8   9   10   11   12   13   14   15
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Poisson as an approximation to Binomial

� Suppose we have a sequence of Binomial(n, pn)
models, with   lim(n pn)  � λλλλ, as  n�infinity. 

� For each 0<=y<=n, if Yn~ Binomial(n, pn), then

� P(Yn=y)=
�But this converges to:

� Thus, Binomial(n, pn) � Poisson(λλλλ) 
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Poisson as an approximation to Binomial

� Rule of thumb is that approximation is good if:

� n>=100
� p<=0.01
� λλλλ =n p <=20

� Then, Binomial(n, pn) � Poisson(λλλλ) 
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Example using Poisson approx to Binomial

� Suppose P(defective chip) = 0.0001=10-4. Find the 
probability that a lot of 25,000 chips has > 2 defective!

� Y~ Binomial(25,000, 0.0001), find P(Y>2). Note that 
Z~Poisson(λλλλ =n p =25,000 x 0.0001=2.5)
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Normal approximation to Binomial

� Suppose Y~Binomial(n, p)
� Then Y=Y1+ Y2+ Y3+…+ Yn, where

� Yk~Bernoulli(p) , E(Yk)=p  & Var(Yk)=p(1-p) ����

� E(Y)=np &  Var(Y)=np(1-p), SD(Y)= (np(1-p))1/2

� Standardize Y:
� Z=(Y-np) / (np(1-p))1/2

� By CLT ���� Z ~ N(0, 1). So, Y ~ N [np, (np(1-p))1/2]

� Normal Approx to Binomial is 
reasonable when  np >=10   &   n(1-p)>10
(p & (1-p) are NOT too small relative to n).
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Normal approximation to Binomial – Example

� Roulette wheel investigation:
� Compute P(Y>=58),  where Y~Binomial(100, 0.47) –

�The proportion of the Binomial(100, 0.47) population having 
more than 58 reds (successes) out of 100 roulette spins (trials).

� Since np=47>=10   &   n(1-p)=53>10 Normal 
approx is justified.

�Z=(Y-np)/Sqrt(np(1-p))   =                                  
58 – 100*0.47)/Sqrt(100*0.47*0.53)=2.2

� P(Y>=58)   ���� ���� P(Z>=2.2) = 0.0139
� True P(Y>=58) = 0.177, using SOCR (demo!)
� Binomial approx useful when no access to SOCR avail.

Roulette has 38 slots
18red 18black 2 neutral
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Normal approximation to Poisson

� Let X1~Poisson(λλλλ) & X2~Poisson(µµµµ)  ����X1+ X2~Poisson(λ+µλ+µλ+µλ+µ)

� Let X1, X2, X3, …, Xk ~ Poisson(λλλλ), and independent,
� Yk = X1 + X2 + ··· + Xk ~ Poisson(kλλλλ), E(Yk)=Var(Yk)=kλλλλ.

� The random variables in the sum on the right are 
independent and each has the Poisson distribution 
with parameter  λλλλ.

� By CLT the distribution of the standardized variable 
(Yk − kλλλλ) / (kλλλλ)1/2 ���� N(0, 1), as k increases to infinity.

� So, for  kλλλλ >= 100,  Zk = {(Yk − kλλλλ) / (kλλλλ)1/2 }  ~  N(0,1).
����� Yk ~  N(kλλλλ, (kλλλλ)1/2).
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Poisson or Normal approximation to Binomial?

� Poisson Approximation (Binomial(n, pn) � Poisson(λλλλ) ):

�n>=100  &  p<=0.01  &   λλλλ =n p <=20
� Normal Approximation

(Binomial(n, p) � N ( np, (np(1-p))1/2) )
�np >=10   &   n(1-p)>10
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Exponential family and arrival numbers/times

� First, let Tk denote the time of the k'th arrival for k = 
1, 2, ... The gamma experiment is to run the process 
until the k'th arrival occurs and note the time of this 
arrival. 

� Next, let Nt denote the number of arrivals in the time 
interval (0, t] for t ≥ 0. The Poisson experiment is to run 
the process until time t and note the number of 
arrivals. 

� How are Tk &  Nt related?

�Nt ≥ k ���� ���� Tk ≤ t

density function of the k'th arrival time is
fk(t) = (rt)k − 1re−rt / (k − 1)!, t > 0.
This distribution is the gamma

distribution with shape parameter k
and rate parameter r. Again, 1/r

is knows as the scale parameter. A more general
version of the gamma distribution,

allowing non-integer k,
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Independence  of continuous RVs

� The RV’s {Y1, Y2, Y3, …, Yn} are independent if for any 
n-tuple {y1, y2, y3, …, yn}

( )
( ) ( ) ( ) ( )nn

nn

yYPyYPyYPyYP
yYyYyYyYP
≤××≤×≤×≤=
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Percent 1% 5% 10% 20% 30% 70% 80% 90% 95% 99%
Propn 0.01 0.05 0.1 0.2 0.3 0.7 0.8 0.9 0.95 0.99
Percentile

(cm) 148.3 152.5 154.8 157.5 159.4 166.0 167.9 170.6 172.9 177.1
(ft'in") 4'10" 5'0" 5'0" 5'2" 5'2" 5'5" 5'6" 5'7" 5'8” 5'9"

 (+ frac) 3/8" 7/8" 3/4" 3/8" 1/8" 1/8" 1/8" 3/4"

(c)  Further percentiles of women’s heights

prob = 0.8

=162.7

prob = p

(a)  p-Quantile

x  = ??p

(b)  80th percentile (0.8-quantile)
of women’s heights

Programs supply  x p

Program returns 167.9.
Thus 80% lie below 167.9.

Normal(   = 162.7,    = 6.2)

(or quantile)

x   = ??0.8

x-value for which  pr(X    x  ) = pp

The inverse problem – Percentiles/quantiles

80% of people have 
height below the 
80th percentile. 
This is EQ to 
saying there’s 
80% chance that a 
random 
observation from 
the distribution 
will fall below the 
80th percentile.

The inverse problem is what is the height for the 80th percentile/quantile? So 
far we studied given the height value what’s the corresponding percentile?

STAT 110A, UCLA, Ivo DinovSlide 113

Standard Normal Curve 

� The standard normal curve is described by the equation:

π2

2

2x

ey
−

=

Where remember, the natural number e ~ 2.7182…
We say: X~Normal(µ, σµ, σµ, σµ, σ), or simply X~N(µ, σµ, σµ, σµ, σ)
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Standard Normal Approximation 

� The standard normal curve can be used to estimate the percentage of 
entries in an interval for any process. Here is the protocol for this 
approximation:
� Convert the interval (we need the assess the percentage of entries in) to 

standard units. We saw the algorithm already.
� Find the corresponding area under the normal curve (from tables or online 

databases);

12         18        22

Data

What percentage of the 
density scale histogram
is shown on this graph?

Transform to Std.Units

Compute %

Report back %
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General Normal Curve 

� The general normal curve is defined by:
� Where µ is the average of (the symmetric) 

normal curve, and σ is the standard
deviation (spread of the distribution).

� Why worry about a standard and general normal curves?
� How to convert between the two curves? 

2

22

2)(

2πσ

σ
µ−−

=

x

ey
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Areas under Standard Normal Curve –
Normal Approximation

� Protocol: 
� Convert the interval (we need to assess the percentage of entries in) 

to Standard units. Actually convert the end points in Standard units.
�In general, the transformation  X  � (X-µ)/σ, standardizes the 

observed value X, where µ and σ are the average and the 
standard deviation of the distribution X is drawn from.

� Find the corresponding area under the normal curve (from tables or 
online databases);
�Sketch the normal curve and shade the area of interest
�Separate your area into individually computable sections
�Check the Normal Table and extract the areas of every sub-

section
�Add/compute the areas of all 

sub-sections to get the total area.
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Areas under Standard Normal Curve – Example 

� Many histograms are similar in shape to the standard normal curve. For 
example, persons height. The height of all incoming female army 
recruits is measured for custom training and assignment purposes (e.g., 
very tall people are inappropriate for constricted space positions, and 
very short people may be disadvantages in certain other situations). The 
mean height is computed to be 64 in and the standard deviation is 2 in. 
Only recruits shorter than 65.5 in will be trained for tank operation and 
recruits within ½ standard deviations of the mean will have no 
restrictions on duties.
� What percentage of the incoming recruits will be trained to operate 

armored combat vehicles (tanks)?

� About what percentage of the recruits will have no restrictions on 
training/duties?
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Areas under Standard Normal Curve - Example 
� The mean height is 64 in and the standard deviation is 2 in. 

� Only recruits shorter than 65.5 in will be trained for tank operation.
What percentage of the incoming recruits will be trained to operate 
armored combat vehicles (tanks)?

� Recruits within ½ standard deviations of the mean will have no 
restrictions on duties. About what percentage of the recruits will 
have no restrictions on training/duties?

60     62     64    65.5 66   68

X ���� (X-64)/2
65.5 ���� (65.5-64)/2 = ¾
Percentage is   77.34%

X ���� (X-64)/2
65 ���� (65-64)/2 = ½
63 ���� (63-64)/2 = -½

Percentage is   38.30%60     62  63   64  65  66   68
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Identifying Common Distributions – QQ plots

� Plots are useful for identifying candidate distribution model(s) 
in approximating a population (data) distribution.

� Histograms, can reveal much of the features of the data 
distribution.

� Quantile-Quantile plots indicate how well the model 
distribution agrees with the data.

� q-th quantile, for 0<q<1, is the (data-space) value, Vq, at or 
below which lies a proportion q of the data.

� E.g., q=0.80, Y={1,2,3,4,5,6,7,8,9,10}. The q-th quantile Vq= 8, 
since 80% of the data is at or below 8.
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Identifying Common Distributions – QQ plots

� Quantile-Quantile plots indicate how well the model 
distribution agrees with the data.

� q-th quantile, for 0<q<1, is the (data-space) value, Vq, at or 
below which lies a proportion q of the data.

1 Graph of the CDF, FY(y)=P(Y<=Vq)=q

0

q

Vq
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Constructing QQ plots

� Start off with data {y1, y2, y3, …, yn}

� Order the data observations y(1) <= y(2) <= y(3) <=…<= y(n)

� Compute quantile rank, q(k), for each observation, y(k),

P(Y<= q(k)) = (k-0.375) / (n+0.250), where

Y is a RV from the (target) model distribution.

� Finally, plot the points (y(k), q(k)) in 2D plane, 1<=k<=n.

� Note: Different statistical packages use slightly different 
formulas for the computation of q(k). However, the results are 
quite similar. This is the formulas employed in SAS.

� Basic idea: Probability that: (model)Y<=(data)y1 ~ 1/n;

Y<=y2 ~ 2/n;   Y<=y3 ~ 3/n;  …
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Example - Constructing QQ plots

� Start off with data {y1, y2, y3, …, yn}.

� Plot the points (y(k), q(k)) in 2D plane, 1<=k<=n.
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Data transformations

� In practice oftentimes observed data does not directly fit any of 
the models we have available. In these cases transforming the raw data 
may provide/satisfy the requirements for using the distribution models we know.

� Common transformations:  Y=T(X), X=raw data, Y=new
�Data positively skewed to right use T(X)=Sqrt(X) or 

T(X)=log(X)
�If data varies by more than 2 orders of magnitude 

� For X>0, use T(X)=log(X)
� For any X, use T(X)= –1/X.
� If X are counts (categorical var’s), T(X)=Sqrt(X)
� X=proportions & largest/ smallest Proportions >=2, use 

Logit transform: T(X) = log[X/(1-X)].
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Data transformations - Example

� For the BirthDay data:
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Data transformations - Example

� BirthDay data: C:\Ivo.dir\UCLA_Classes\Winter2002\AdditionalInstructorAids
BirthdayDistribution_1978_systat.SYD
SYSTAT, Graph� Probability Plot, Var4, Normal Distribution

-3
-2
-1
0
1
2
3
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Data transformations - Example

� BirthDay data: C:\Ivo.dir\UCLA_Classes\Winter2002\AdditionalInstructorAids
BirthdayDistribution_1978_systat.SYD
SYSTAT, Graph� Probability Plot, COS(Var2), Normal Distribution

T(X)=COS(X)
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� For the sample mean calculated from a random sample, 
E(    )  = µ and SD(      ) =          , provided 

= (X1+X2+ … + Xn)/n, and Xk~N(µ, σµ, σµ, σµ, σ). Then

� ~ N(µ,      ). And variability from sample to sample 
in the sample-means is given by the variability of the 
individual observations divided by the square root of 
the sample-size. In a way, averaging decreases variability.

X n
σ

Recall we looked at the sampling distribution of

n
σσσσ

X 

X 
X 
X 
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Central Limit Effect –
Histograms of sample means

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

n = 1

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

n = 2

Triangular
Distribution

Sample means from sample size
n=1, n=2, 

500 samples

Area = 1

2

1

0

2

1

0

2

1

0

Y=2 X
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Central Limit Effect -- Histograms of sample means

0.0 0.2 0.4 0.6 0.8 1.0

n = 4

0.0 0.2 0.4 0.6 0.8 1.0

n = 10

Triangular Distribution
Sample sizes n=4, n=10
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Central Limit Effect –
Histograms of sample means

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

n = 1

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

n = 2

0
0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

Area = 1

Uniform Distribution

Sample means from sample size
n=1, n=2, 

500 samples

Y = X

STAT 110A, UCLA, Ivo DinovSlide 132

Central Limit Effect -- Histograms of sample means

n = 4

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

n = 10

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

Uniform Distribution
Sample sizes n=4, n=10
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Central Limit Effect –
Histograms of sample means

Sample means from sample size
n=1, n=2, 

500 samples

0 1 2 3 4 5 6
0.0
0.2
0.4
0.6
0.8
1.0

n = 1

0 1 2 3 4 5 6
0.0
0.2
0.4
0.6
0.8
1.0

n = 2

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

Area = 1

Exponential Distribution

),0[  , ∞∞∞∞∈∈∈∈−−−− xxe
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Central Limit Effect -- Histograms of sample means

n = 4

0 1 2 3
0.0
0.2
0.4
0.6
0.8
1.0

n = 10

0 1 2
0.0

0.4

0.8

1.2

Exponential Distribution
Sample sizes n=4, n=10
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Central Limit Effect –
Histograms of sample means

Sample means from sample size
n=1, n=2, 

500 samples

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

n = 1

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

n = 2

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

Quadratic U Distribution

Area = 1

(((( )))) ]1,0[  , 12
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2
1 ∈∈∈∈−−−−==== xxY
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Central Limit Effect -- Histograms of sample means

n = 4

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

n = 10

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

Quadratic U Distribution
Sample sizes n=4, n=10
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Central Limit Theorem:
When sampling from almost any distribution,

is approximately Normally distributed in large samples.X 

Central Limit Theorem – heuristic formulation

Show Sampling Distribution Simulation Applet:
file:///C:/Ivo.dir/UCLA_Classes/Winter2002/AdditionalInstructorAids/
SamplingDistributionApplet.html
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Let                              be a sequence of independent
observations from one specific random process. Let    
and                      and                        and both be 
finite (                           ). If                    , sample-avg,

Then      has a distribution which approaches 
N(µ, σ2/n), as            .

Central Limit Theorem –
theoretical formulation

{{{{ }}}},...,...,X,XX
k21

µµµµ====)(XE σσσσ====)(XSD
∞∞∞∞<<<<∞∞∞∞<<<<<<<< ||  ;0 µµµµσσσσ ����

====
====

n

k k
X

nn
X

1

1

X
∞∞∞∞→→→→n
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Review

� What does the central limit theorem say? Why is it 
useful? (If the sample sizes are large, the mean in Normally distributed, as a RV)

� In what way might you expect the central limit effect 
to differ between samples from a symmetric
distribution and samples from a very skewed 
distribution? (Larger samples for non-symmetric distributions to see CLT effects)

� What other important factor, apart from skewness, 
slows down the action of the central limit effect?

(Heavyness in the tails of the original distribution.)
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Review

� When you have data from a moderate to small sample 
and want to use a normal approximation to the 
distribution of in a calculation, what would you 
want to do before having any faith in the results? (30 or 
more for the sample-size, depending on the skewness of the distribution of X. Plot 
the data - non-symmetry and heavyness in the tails slows down the CLT effects).

� Take-home message: CLT is an application of 
statistics of paramount importance. Often, we are not 
sure of the distribution of an observable process. 
However, the CLT gives us a theoretical description 
of the distribution of the sample means as the sample-
size increases (N(µ, σ2/n)).

X 
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� For the sample mean calculated from a random 
sample, SD(      ) =      . This implies that the 
variability from sample to sample in the sample-
means is given by the variability of the individual 
observations divided by the square root of the 
sample-size. In a way, averaging decreases variability.

� Recall that for known SD(X)=σ, we can express the 
SD(     ) =       .  How about if SD(X) is unknown?!?X 

X n
σσσσ

The standard error of the mean – remember …

n
σσσσ
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The standard error of the mean

The standard error of the sample mean is an 
estimate of the SD of the sample mean

� i.e. a measure of the precision of the sample 
mean as an estimate of the population mean

�given by   SE(   )
size Sample
deviation standard Sample =

n
s

xS x =)E(

x 

� Note similarity with

� SD(     ) =       . X 
n

σσσσ
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TABLE 7.2.1 Cavendish's Determinations of the Mean Density 
of the Earth (g/cm3)

5.50 5.61 4.88 5.07 5.26 5.55 5.36 5.29 5.58 5.65
5.57 5.53 5.62 5.29 5.44 5.34 5.79 5.10 5.27 5.39
5.42 5.47 5.63 5.34 5.46 5.30 5.75 5.68 5.85

So urce : C avendis h [1798].

5.0 5.2 5.4 5.6 5.8

Two-standard-error interval
for true value

x

Measured density (g/cm  )3

Newton’s law of gravitation: F = G m1 m2 /r2, the attraction force
F is the ratio of the product (Gravitational const, mass of body1, mass
body2) and the distance between them, r. Goal is to estimate G!

Cavendish’s 1798 data on mean density of the 
Earth, g/cm3, relative to that of H2O

Total of 29 measurements obtained by 
measuring Earth’s attraction to masses
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TABLE 7.2.1 Cavendish's Determinations of the Mean Density 
of the Earth (g/cm3)

5.50 5.61 4.88 5.07 5.26 5.55 5.36 5.29 5.58 5.65
5.57 5.53 5.62 5.29 5.44 5.34 5.79 5.10 5.27 5.39
5.42 5.47 5.63 5.34 5.46 5.30 5.75 5.68 5.85

So urce : C avendis h [1798].

Cavendish’s 1798 data on mean density of the 
Earth, g/cm3, relative to that of H2O

Sample mean 

and sample SD =

Then the standard error for these data is:

3/  447931.5 cmgx ====

3/  2209457.0 cmg
X

S ====

04102858.0
29

2209457.0)( ============
n

S
XSE X
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� For random samples from a Normal distribution, 

is exactly distributed as Student(df = n - 1)
� but methods we shall base upon this distribution for T work 

well even for small samples sampled from distributions 
which are quite non-Normal.

� df is number of observations –1, degrees of freedom.

)(
)(

XSE
XT µµµµ−−−−====

Student’s t-distribution

Recall that for samples 
from N( µ , σ )

)1,0(~
/

)(
)(
)( N

n
X

XSD
XZ

σσσσ
µµµµµµµµ −−−−====−−−−====

Approx/Exact
Distributions
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Density curves for Student’s t

∞∞∞∞

0 2 4- 2- 4

df  =  ×
[i.e., Normal(0,1)]

df  =  5
df  =  2

Figure 7.6.1 Student(df) density curves for various df.
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� By     (prob), we mean the number t such that when  
T ~ Student(df), P(T ) = prob; that is, the tail area 
above t (that is to the right of  t on the graph) is prob.

≥

Notation

dft
dft

(prob)tdf

0

prob

z(prob)
0

prob

Normal(0,1) density Student(df) density

Figure 7.6.2 The z(prob) and t(prob) notations.
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(0.05)- t tdf df(0.05)
0

0.05 0.050.90

ure 7.6.3The central 90% of the Student(df) distribution.
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TABLE 7.6.1  Extracts from the Student's t-Distribution Table
prob

df .20 .15 .10 .05  .025 .01 .005 .001 .0005 .0001
6 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.208 5.959 8.025
7 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.785 5.408 7.063
8 0.889 1.108 1.397 1.860 2.306 2.896 3.355 4.501 5.041 6.442
… … … … … … … … … … …
10 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.144 4.587 5.694

 … … … … … … … … … … …
15 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.733 4.073 4.880
… … … … … … … … … … …

0.842 1.036 1.282 1.645 1.960 2.326 2.576 3.090 3.291 3.719∞

Reading Student’s t table

t-value

Desired
df

Desired
upper-tail prob

(prob)tdf

0

prob

Student(df) density

Do we need an simulation of T and Z
scores? Use the Online compute-engine …


