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The C + E Model

®Data = Center + Error: Y=} +¢§

® The response value Y is equal to unknown constant
(), but because of normal variability we almost
never observe [ exactly.

® Example Speed of light (SOL), [l =2.998 x 10° m/s.

However, 100 measurements of the SOL are all
going to be slightly different.

® Model (population) parameter — a quantity describing
the model that can take on many values. Ex., J.

Estimation of model parameter(s) — A

® | cast-Absolute-Error-Estimate(m) — Suppose, U =3.5
(unknown) and Y={Y = +e;, Y,= L +e,, ....Y (=H+e€,o}
are our observed data. Cost function = Sum-of-Absolute-
Errors = SAE = Z|Y, - m| 2 m = MinArg(SAE).

® | cast-Squares(m) (in the same setting). Cost function =
Sum-of-Squared-Errors = SSE = (Y, — m)> >

m = MinArg(SSE), least-squares-estimate.

® Solution (differentiate):

d SSE(m)/dm =-2 2(Y, —m) = 0, solve for m!

Inference & Estimation

® C + E model

® Types of Inference

® Sampling distributions

® CI'sforp & p

® Comparing 2 proportions

® How big should my study be?

® Paired vs. unpaired tests

Types of inference

©® Estimation of model parameters: Data-driven

estimates of the model parameters. Also, includes
how much uncertainty about those estimates is there.

® Prediction of new (future) observations: Uses past
and current data to predict the value of new
observations from the population.

® Tolerance level: a range of values that has user-
specified probability of containing a particular
proportion of the population.

| Estimation of model parameter(s) — | (Example)

® Data: ball-bearing diameter: | =? (unknown) given the
observed Y={Y ;= 0.1896, Y,= 0.1913 Y,,=0.1900}.

SAE=3|Y,-m| & SSE=3(Y,-m)

® Plot the Cost functions against

MinArg(Cost)

Cost Function

‘0‘186 0.188 0.190 0.192 0.194 m




Parameters, Estimators, Estimates ...

® A parameter is a characteristic of the data —
mean, 1% quartile, SD, etc.)

® An estimator is an abstract rule for calculating a
quantity (or parameter) from the sample data.

® An estimate is the value obtained when real data
are plugged-in the estimator rule.

20 replicated measurements to estimate the speed of light. Obtained by
Simon Newcomb in 1882, by using distant (3.721 km) rotating mirrors.
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(General) Confidence Interval (CI)

® A level L confidence interval for a parameter (0), is
an interval (6,~, 6,"), where 6, & 0,", are
estimators of 8, such that P(6,* <0 < 8,)=L.

® E.g., C+E model: Y = U+€ Where € [N(0, 02), then by CLT
we have Y_bar ~ N(lJ, o% n) Area=?
> n%(Y_bar - Wy/0 ~ N(O, &.

OL=P(z4y,, < wW(Y_bar-W/0 < z4,),),
where z, is the q™ quartile.

O E.g., 0.95=P(z)0s < n*(Y_bar-H)/0 < 2,455 ),

Parameters, Estimators, Estimates ...

® E.o., We are interested in the population mean
diameter (parameter) of washers the sample-
average formula represents an estimator we can
use, where as the value of the sample average
for a particular dataset is the estimate (for the
mean parameter).

parameter = {/,;  estimator =Y = ;}Z Y,
Data: ¥ ={0.1896, 0.1913, 0.190¢

estimate =y = %(0.1896+0.1913 +0.1900)

¥ =0.1903. How about ¥ = %(0.1896 +0.1913 + 0.1900

A 95% confidence interval

® A type of interval that contains the true value of a
parameter for 95% of samples taken is called a 95%
confidence interval for that parameter, the ends of
the CI are called confidence limits.

@ (For the situations we deal with) a confidence interval
(CI) for the true value of a parameter is given by

estimate * t standard errors (SE)

Value of the Multiplier, ¢, for a 95% CI

df: 7 8 9 10 11 12 13 14 15 16 17
t: 2365 2306 2262 2228 2201 2179 2.160 2.145 2.131 2120 2.110
df: 18 19 20 25 30 35 40 45 50 60
t: 2101 2.093 2.086 2.060 2.042 2.030 2.021 2.014 2.009 2.000

® (I are constructed using the sample X and s=SE. But different
samples yield different estimates and =» diff. CI’s?!?

® Below is a computer simulation showing how the process of
taking samples effects the estimates and the CI’s.
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Samples of size 10 from a Normal(u=24.83, 5=.005)
distribution and their 95% confidence intervals for .

CI for population mean

® E.g., SYSTAT - Data:
BirthdayDistribution_1978_systat.SYD

® Statistics = Descriptive Statistics = Stem-&-Leaf-Plot
® Statistics = Descriptive Statistics > CI_for_mean

CI - Interpretation

® Consider taking all possible samples from the population
with parameter of interest ().

® Suppose we construct the level L. confidence interval
for a parameter (0) for each sample. Then a proportion L
of all constructed CI’s will contain the value of 6.

® Note that this interpretation of CI’s is in terms of
repeated sampling from the same population ...

CI for population mean

Confidence Interval for the true (population) mean p

sample mean =+ t standard errors

or ¥ +¢se(x), where SE(X) = 2+ and df =n-1

Value of the Multiplier, ¢, for a 95% CI

df: 7 8 9 10 11 12 13 14 15 16 17
t: 2365 2306 2262 2228 2201 2179 2160 2.145 2131 2.120 2.110

df: 18 19 20 25 30 35 40 45 50 60 ©
t: 2101 2093 2.086 2060 2.042 2.030 2.021 2.014 2.009 2.000 1.960

CI for population mean - Example |

® E.g., Lab rats blood glucose levels: {266, 149, 161, 220}
Estimate |1, the mean population blood sugar level.
Assume the variance G2=2958, = 0=54.4, from prior

experience. Also assume data comes from N(LL, G?).
Sample-avg=199, Compute the 95% CI, L=0.95.

® (1-L)/2 = 0.025, (1+L)/2 = 0.975,

L Z(l-L)/Z =Zyps=-196 & Z(1+L)/2 =Zy975=1.96
OL=P(zyy, < n(Y_bar-W/0O < z4,,,),

® CI()= (Y_bar - 0%,y ),/n* ; Y_bar - Oz y,,/n%)
® CI([)= (199 — 54.4x1.96 / 47 ; 199 + 54.4x1.96 / 4" )
CI(p)=(145.7 : 252.3)

Effect of increasing the confidence level

99% CI, ¥=2.576 se(x)

95% CI, = 1.960 se(x)

90% CI, x=+1.645 se(x)

80% CI, = 1.282 se(x)

The greater the confidence level, the wider the interval

Tom Chance ¥ CT Wil and G A Scber, © John Wiley & Sons, 2000,



Effect of increasing the sample size
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Three random samples from a Normal(u=24.83, s =.005
distribution and their 95% confidence intervals for p.

rom Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000,

To double the precision we need four times as
many observations.

Student’s #-distribution

® For random samples from a Normal distribution,

. . . _ A ro
is exactly distributed as Student(df'=n - 1)« {PREONS

M but methods we shall base upon this distribution for 7 work
well even for small samples sampled from distributions
which are quite non-Normal.

B Jf'is number of observations —1, degrees of freedom.

Notation

® By ¢ ,(prob), we mean the number ¢ such that when
T ~ Student(df), P(T =) = prob; that is, the tail area
above 7 (that is to the right of ¢ on the graph) is prob.

Normal(0,1) density Student(df) density

prob prob

o o
z(prob) t, f(prob)
The z(prob) and t(prob) notations.

From Chance Encounters by C.J. Wild and G A.F. Scber, © John Wiley & Sons, 2000

Why ¢ in sample-size | CI?

Confidence Interval for the true (population) mean p:
sample mean * t standard errors

S)C

W

or X xtse(x), where se(x) = anddf =n—-1

Density curves for Student’s ¢

df = €0
[i.e., Normal(0,1)]

Student(df) density curves for various df.

t 0 t
-1 4r(0.05) 14r(0.05)
The central 90% of the Student(df) distribution.

Tom Chance Encouters by CJ. Wi s G AT Sebr, © Jobm Wik & S, 2000




Student(df) density

N
i z prob
0

t
td/ (prob) Desired
S ANNNNN upper-tail prob

Extracts from the Student's t-Di Table
prob

y

df 20 15 .10 .05 025 .01 2005 .001  .0005 .0001
6 10906 1.134 1440 1943 2447 3.143 3.707 5208 5959 8.025
7 10896 1119 1415 1895 2365 2998 3.499 4785 5408 7.063
8 0.889 1.108 1.397 1860 2306 2.896 3.355 4.501 5.041 6.442

Reading Student’s 7 table

Desired

daf

10 [0.879 1.093 1.372 1812 | 2.228 | 2.764 3.169 4.144 4.587  5.694

0.866 1.074 1341 1.753 21311 2.602 4073 4.880

0.842 1.036 1.282 1.645 1.960 |2.326 . 3.291

Comparison of the CI using T (unknown O) &
Z (known O) distributions

® CI(|), when 0 = 54.4 is known (Normal distr.)
CIW = (Ypar O 2(i1)n/m*5Yparm O iy, /%),
241y = 1.96
95% CI(1) = (199 — 54.4 x 1.96 /4% ; 199+54.4 x 1.96 / 4%)
CI ()= (145.7 : 252.3)
©® Comparison:
CI()=(112.4:285.6) € compare=>
CI ()= (145.7:252.3)
Which one is better?!? More appropriate?!?

| Prediction vs. Confidence intervals — Differences?

® Confidence Intervals (for the population mean p1):

o Oxt, .. < Oxt .
Y— n-l, (1+L) : Y R ORI o7
N Jn
g=0(Y)= =1 kzl(y y)z Which SD
bi 219
©® Prediction Intervals: Llsagre sy
(YANC1 d 2 tn 1,(1+L)2 5 YA + 0 2 tn il (|+L)/2 where Y - Y

0=0(Y.~1.)= 7Z(y y)QF

n=1p=

Comparison of the CI using T (unknown O) &
Z (known O) distributions

® For the old data: glucose levels :

{266, 149, 161, 220} d-m

® CI(1), when O is unknown (T-distr.), small-
sample-size, and data comes from (approx.)
Normal distribution. ¥ =199

0 =54.39
L="P (tx4, 1-0)2< 04(Yyr- W/ (O <tn.1, @+Ly2) 5

CI()=(Y par— oAtN-l, @+Ly2/M” Yoo GAtN-l,(HL)/Z /n*)
95% CI()=(199-54.39x3.18 /4”; 199+54.39x3.18 / 4%)

iz =t 0075318 & g g =, 0025318 P CIT(u)=(112-4:285-6)

| Prediction vs. Confidence intervals |

® Confidence Intervals (for the population mean p1):

O xt O xt
Y-~ mee oy

n-1,(14L)2 + n-1,(14L)2
2
1 1

® Prediction Intervals: L-level prediction interval (PI) for
a new value of the process Y is defined by:

( _O-Xt n-1,(1+L)/2 ; Y +0’ t

where the predicted value Y, =Y,is

n-1,(14L)2 )
new

obtained as an estimator of the
unknown process mean /.

Classical Prediction for the C+E model

{® Y =C+E. When why, how to use prediction?

® When: E ~ N(0, %) € = Y ~ N(Y, 0?), there are more
general situations, of course. Here we only consider this case.

©® Why: Future predictions are of paramount importance in
any area of science/engineering/medicine.

® How: H is mostly unknown, so we estimate it by: m”,
(the sample average).

If population proportion, p, is unknown we estimate it
by the sample-proportion, p*, etc.




Classical Prediction for the C+E model

® How: H is mostly unknown, so we estimate it by: m”,
HletY"
M Error made by using Y"

be the predicted value

new

news instead of observing a new value, Y, is:

(¢)) Ynew - Y/\new=(|‘l - Enew)' YAnew =(l1 - YAnew )+ Enew
M But if we use Y to predict a new value for Y, Y" ., = M.
B Var(i- Y'pe,) = Var(Y'ye,) = Var(W) = Var(SampleAv) = 0%/n.

ew

B The variance of the second term is just @2.
M Since the first-term in (1) is obtained from {Y, Y,,..., Y.}, and

Enew:

m Var(Y,

€,+1> We have two independent terms =» Variances add up! |

Y Var(l = Y o )FVar(€, )= 0%/ + 02

A
new ~ new)™ new new.

CI for a population proportion

Confidence Interval for the true (population) proportion p:
sample proportion t z standard errors

- N N p(1 = p
or p*zse(p), where se(p) = 2d=p)
n

Example — higher blood thiol concentrations
with rheumatoid arthritis

Rheumatoid o 8 [e)Ne} o
Normal 08» o

1.5 2.0 2.5 3.0 35 4.0 4.5
Thiol concentration (mmol)

Dot plot of Thiol concentration data.

statistical evidence

Classical Prediction for the C+E model

® How: Let Y",,, be the predicted value
M Error Ynew - YAnew=(|‘l - snew)- YAnew =(l1 - YAnew )+ €new
B Var(Y ey = Y new)=Var(l = Y oy )+ Var(€pey)= 0¥n + 02,
M Often 0 is unknown, and we estimate it by the sample SD, S =

BSD (Yen - Y pew) = [S2(1+1/m) 1%
® We can show that T_YMW—YMW—O ¢
0- [X!EW - .}’}I!EW ] n_l

® 2> The L-level prediction interval (PI(Y ) is:

LA: P(tn-l,(l-L)/Z < T < tn-1,(’£+L)/2 SOlVe for T
Tt O Xt 5 Ly 4O X1, | BY symmet
v .y ore,

Ynew 0- 2 tn-l,(1+L)/2 > Ynew + 0- 2 tn-l,(1+L)/2 ik

Example — higher blood thiol concentrations
associated with rheumatoid arthritis?!?

Thiol Concentration (mmol)

Normal Rheumatoid

1.84 2.81
1.92 4.06
1.94 3.62
1.92 3.27
1.85 3.27

Thiol-levels 1.91 3.76
rheumatoid arthritis 2.07

Sample size 7 6
Sample mean 1.92143 3.46500
Sample standard deviation 0.07559 0.44049

Difference between means

Confidence Interval for a difference between population
means (4, — 1):
Difference between sample means

* tstandard errors of the difference

X, — X, xtse(x, —Xx,)




Difference between proportions

Confidence Interval for a difference between population
proportions (7 ~P):
Difference between sample proportions

* zstandard errors of the difference

131 _132 * Zse(ﬁl _ﬁz)

Single sample, several response categories

Pre-election Polls Election Results
[State n |Clinton Doll Perot Other/Undecided [Clinton Doll Perot
ew Jersey 1,000 $ 33 8 8 53 36 9
ew York 1,000 25 7 9 59 31 8
[Connecticutt 1,000 | 51 29 11 9 52 35 10 |

Proportions from 2 independent samples

A occurs?

Example — 1996 US Presidential Election

Pre-election Polls Election Results

[S tate n_ [Clinton Doll Perot Other/Undecided |Clinton Doll Perot|
ew Jersey 1,000 |51 33 8 8 53 36 9
ew York 1,000 7 9 9 31 8

11

[Connecticutt 51 29 52 35 10

proportions
NJ

Y Clinton A D
Dole pl p2 * Z

independence-case SE formula

pre-election poll election results

Pre-election Polls Election Results

[State n |Clinton Doll Perot Other/Undecided [Clinton Doll Perot
ew Jersey 1,000 |51 3> 8 8 53 36 9
ew York 1,000 | 59 25 7 9 59 31 8

[Connecticutt 1,000 | 51 29 11 9 52 35 10 |




SE’s for the 2 cases of differences in proportion

(a) Proportions from two independent samples of sizes n | and n,, respectively

A=5) , h= )

n m

(b) One sample of size n, several response categories

P 2 Nl Vi D
Se(pl_pz)_ l_zn#

Sample size -- mean

® Sample size for a desired margin of error:
For a margin of error no greater than m, use a sample size of
approximately 2

zO *
m

n=

® o* is an estimate of the variability of individual observations

® : is the multiplier appropriate for the confidence level

Confidence intervals

® We construct an interval estimate of a parameter to summarize
our level of uncertainty about its true value.

® The uncertainty is a consequence of the sampling variation in
point estimates.

® If we use a method that produces intervals which contain the
true value of a parameter for 95% of samples taken, the
interval we have calculated from our data is called a 95%
confidence interval for the parameter.

® Our confidence in the particular interval comes from the fact
that the method works 95% of the time (for 95% CI’s).

Sample size - proportion

® For a95% CI, margin=1.96x./p(1-p)/n

® Sample size for a desired margin of error:
For a margin of error no greater than 7, use a sample size of
approximately

)2
n=(*) xp*(l=p*)
m

® p*is a guess at the value of the proportion -- err on the side of
being too close to 0.5

® : is the multiplier appropriate for the confidence level

® m is expressed as a proportion (between 0 and 1), not a
percentage (basically, What’s n, so that m >= margin?)

Paired vs. Unpaired comparisons

® We will discuss these later, when we get to the
hypothesis testing (cus nr paired indep Tests.pot)

Summary cont.

® For a great many situations,
an (approximate) confidence interval is given by

estimate + tstandard errors

The size of the multiplier, ¢, depends both on the desired
confidence level and the degrees of freedom (df).

[With proportions, we use the Normal distribution (i.e., df=co) and it is
conventional to use z rather than ¢ to denote the multiplier.]

® The margin of error is the quantity added to and subtracted
from the estimate to construct the interval (i.e. ¢ standard
errors).




Summary cont.

® If we want greater confidence that an interval
calculated from our data will contain the true value,
we have to use a wider interval.

® To double the precision of a 95% confidence interval
(i.e.halve the width of the confidence interval), we
need to take 4 times as many observations.




