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UCLA  STAT 110A
Applied Statistics

�Instructor:   Ivo Dinov, 
Asst. Prof. In Statistics and Neurology

�Teaching Assistant: Helen Hu,  UCLA Statistics

University of California, Los Angeles,  Spring 2002
http://www.stat.ucla.edu/~dinov/
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Inference & Estimation

� C + E model
� Types of Inference
� Sampling distributions
� CI’s for µ & p
� Comparing 2 proportions
� How big should my study be?
� Paired vs. unpaired tests
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The  C + E Model

�Data  =  Center + Error :  Y = µ + εµ + εµ + εµ + ε; 

� The response value Y is equal to unknown constant 
(µµµµ), but because of normal variability we almost 
never observe µµµµ exactly. 

� Example Speed of light (SOL), µµµµ =2.998 x 109 m/s. 
However, 100 measurements of the SOL are all 
going to be slightly different.

� Model (population) parameter – a quantity describing 
the model that can take on many values. Ex., µ.µ.µ.µ.
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Types of inference

� Estimation of model parameters:  Data-driven 
estimates of the model parameters. Also, includes 
how much uncertainty about those estimates is there.

� Prediction of new (future) observations: Uses past 
and current data to predict the value of new 
observations from the population.

� Tolerance level: a range of values that has user-
specified probability of containing a particular 
proportion of the population.
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Estimation of model parameter(s) – µ

� Least-Absolute-Error-Estimate(m) – Suppose,  µµµµ =3.5
(unknown) and Y={Y1= µµµµ +e1, Y2= µµµµ +e2 , …,Y10=µµµµ+e10} 
are our observed data. Cost function = Sum-of-Absolute-
Errors = SAE = Σ|Yk - m| � m = MinArg(SAE).

� Least-Squares(m)  (in the same setting). Cost function = 
Sum-of-Squared-Errors = SSE = Σ(Yk – m)2 �

m = MinArg(SSE), least-squares-estimate.

� Solution (differentiate): 

d SSE(m) / d m  = -2 Σ(Yk – m) = 0, solve for m!
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Estimation of model parameter(s) – µ (Example)

� Data:  ball-bearing diameter:  µµµµ =? (unknown) given the 
observed Y={Y1= 0.1896, Y2= 0.19130.19130.19130.1913, , , , Y10=0.1900}. 
SAE = ΣΣΣΣ|Yk - m|    &  SSE = ΣΣΣΣ(Yk – m)2

� Plot the Cost functions against µµµµ:
MinArg(Cost)
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Parameters, Estimators, Estimates …

�A parameter is a characteristic of the data –
mean, 1st quartile, SD, etc.)

�An estimator is an abstract rule for calculating a 
quantity (or parameter) from the sample data.

�An estimate is the value obtained when real data 
are plugged-in the estimator rule.
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Parameters, Estimators, Estimates …

�E.g., We are interested in the population mean 
diameter (parameter) of washers the sample-
average formula represents an estimator we can 
use, where as the value of the sample average
for a particular dataset is the estimate (for the 
mean parameter).
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(95% confiden

24.820 24.825 24.830 24.835

x ± 2 se’s
x ± 2.36 se’s

24.820 24.825 24.830 24.835

(95% confidenx ± 2.09 se’s
x ± 2 se’s

20 replicated measurements to estimate the speed of light. Obtained by 
Simon Newcomb in 1882, by using distant (3.721 km) rotating mirrors.

Passage time (10-6 seconds)

Using only 8
Of the 20
observations

Using all 20
observations

Estimates of 
the speed of 
light

95% Confidence
Interval  shrinks?!?

95%Confidence 
Interval
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A 95% confidence interval

� A type of interval that contains the true value of a 
parameter for 95% of samples taken is called a 95%
confidence interval for that parameter, the ends of 
the CI are called confidence limits.

� (For the situations we deal with) a confidence interval 
(CI) for the true value of a parameter is given by

estimate       t standard errors (SE)±

TABLE 8.1.1  Value of the Multiplier, t ,  for a 95% CI

df  : 7 8 9 10 11 12 13 14 15 16 17
t  : 2.365 2.306 2.262 2.228 2.201 2.179 2.160 2.145 2.131 2.120 2.110

df  : 18 19 20 25 30 35 40 45 50 60  
t  : 2.101 2.093 2.086 2.060 2.042 2.030 2.021 2.014 2.009 2.000 1.960

∞
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(General)  Confidence Interval  (CI)

� A level L confidence interval for a parameter (θ), is  
an interval (θ1^ ,  θ2^), where θ1^  &  θ2^, are 
estimators of θ, such that  P(θθθθ1111^  < θ <θ <θ <θ < θθθθ2222^) = L. 

� E.g., C+E model: Y = µ+ε. Where ε ∼ Ν(0, σε ∼ Ν(0, σε ∼ Ν(0, σε ∼ Ν(0, σ 2222)))), then by CLT 
we have Y_bar ~ Ν(µ, σΝ(µ, σΝ(µ, σΝ(µ, σ2222/n) 

� n½(Y_bar - µµµµ)/σ σ σ σ ~  Ν(0, σΝ(0, σΝ(0, σΝ(0, σ2222)))).
� L = P ( z(1-L)/2 <   n½(Y_bar - µµµµ)/σ σ σ σ <  z(1+L)/2  ),

where zq is the qth quartile.

� E.g.,  0.95 = P ( z0.025 <   n½(Y_bar - µµµµ)/σσσσ <  z0.975  ),

Area=?
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� CI are constructed using the sample     and s=SE. But different 
samples yield different estimates and � diff. CI’s?!?

� Below is a computer simulation showing how the process of 
taking samples effects the estimates and the CI’s.

x

24.83

3rd
2nd
1st

100%
100%
100%

Sample
Coverage

to date

True mean

24.83

o1000th
999th

95.2%
95.2%

True mean

24.8424.82

Figure 8.1.2 Samples of size 10 from a Normal(µ=24.83, s=.005)
                            distribution and their 95% confidence intervals for µ..
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True mean almost always captured in the CI.
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Most of

the table

24.83

o

24.83

500th

100th

10th
9th
8th
7th
6th
5th
4th
3rd
2nd
1st

1000th
999th
998th
997th
996th
995th
994th
993rd
992nd
991st

502nd
501st

96.0%

94.0%

90.0%
88.9%
100%
100%
100%
100%
100%
100%
100%
100%

95.2%
95.2%
95.2%
95.2%
95.2%
95.2%
95.2%
95.2%
95.2%
95.2%

96.0%
96.0%

..........

..........

.......... ..........

..........

..........

Sample
Coverage

to date

True mean

True mean

24.8424.82

Figure 8.1.2 Samples of size 10 from a Normal(µ=24.83, s=.005)
                            distribution and their 95% confidence intervals for µ..

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 1999.

How many of the 
previous 
samples 
contained the 
true mean?
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Confidence Interval for the true (population)  mean µ:
sample mean       t standard errors

or

±

1 and )SE(    where),se( −==± ndf
n

sxxtx x

CI for population mean

TABLE 8.1.1  Value of the Multiplier, t ,  for a 95% CI

df  : 7 8 9 10 11 12 13 14 15 16 17
t  : 2.365 2.306 2.262 2.228 2.201 2.179 2.160 2.145 2.131 2.120 2.110

df  : 18 19 20 25 30 35 40 45 50 60  
t  : 2.101 2.093 2.086 2.060 2.042 2.030 2.021 2.014 2.009 2.000 1.960

∞
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CI for population mean

� E.g., SYSTAT � Data: 
BirthdayDistribution_1978_systat.SYD

� Statistics � Descriptive Statistics � Stem-&-Leaf-Plot
� Statistics � Descriptive Statistics �CI_for_mean
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CI for population mean - Example

� E.g., Lab rats blood glucose levels:{266, 149, 161, 220} 
Estimate µµµµ, the mean population blood sugar level. 
Assume the variance σσσσ2222 =2958, � σσσσ=54.4, from prior 
experience. Also assume data comes from Ν(µ, σΝ(µ, σΝ(µ, σΝ(µ, σ2222). 
Sample-avg=199, Compute the 95% CI, L=0.95.

� (1-L)/2 = 0.025, (1+L)/2 = 0.975, 
� Z(1-L)/2 = Z0.025 = -1.96    & Z(1+L)/2 = Z0.975 = 1.96 

� L = P ( z(1-L)/2 <   n½(Y_bar - µµµµ)/σ σ σ σ <  z(1+L)/2  ),

� CI(µµµµ)= (Y_bar - σσσσz(1+L)/2/n½ ; Y_bar - σσσσz(1-L)/2/n½)

� CI(µµµµ)= (199 – 54.4x1.96 / 4½ ; 199 + 54.4x1.96 / 4½ )
CI(µµµµ)= ( 145.7  :  252.3 )
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CI - Interpretation

� Consider taking all possible samples from the population
with parameter of interest (θ). 

� Suppose we construct the level L confidence interval
for a parameter (θ) for each sample. Then a proportion L 
of all constructed CI’s will contain the value of θ.

� Note that this interpretation of CI’s is in terms of 
repeated sampling from the same population …

Sam
ple 

1

Sam
ple_

N    

Pop
ulat

ion
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Effect of increasing the confidence level

80%   CI,   x ± 1.282 se(x)

90%   CI,   x ± 1.645 se(x)

95%   CI,   x ± 1.960 se(x)

99%   CI,   x ± 2.576 se(x)

Figure 8.1.3 The greater the confidence level, the wider the interval

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

80%   CI,   x ± 1.282 se(x)

90%   CI,   x ± 1.645 se(x)

99%   CI,   x ± 2.576 se(x)

95%   CI,   x ± 1.960 se(x)

Confidence
Level

Increase

Increases 
the size

of the CI

Why?
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Effect of increasing the sample size

Passage time

n = 90  data points

n = 40  data points

n = 10  data points

24.83 24.8424.82

Figure 8.1.4 Three random samples from a Normal(µ=24.83, s =.005)
                            distribution and their 95% confidence intervals for µ.

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000,

To double the precision we need  four times as 
many observations. 

Increase
Sample

Size

Decreases 
the size

of the CI
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Why in sample-size CI?

Confidence Interval for the true (population)  mean µ:
sample mean       t standard errors

or

±

x ± t se(x ),  where se(x ) =
sx

n
 and df = n −1

↑↑↑↑ ↓↓↓↓
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� For random samples from a Normal distribution, 

is exactly distributed as Student(df = n - 1)
� but methods we shall base upon this distribution for T work 

well even for small samples sampled from distributions 
which are quite non-Normal.

� df is number of observations –1, degrees of freedom.

)(
)(

XSE
XT µµµµ−−−−====

Student’s t-distribution

Recall that for samples 
from N( µ , σ )

)1,0(~
/

)(
)(
)( N

n
X

XSD
XZ

σσσσ
µµµµµµµµ −−−−====−−−−====

Approx/Exact
Distributions
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Density curves for Student’s t

0 2 4- 2- 4

df  =  ×
[i.e., Normal(0,1)]

df  =  5
df  =  2

Figure 7.6.1 Student(df) density curves for various df.

∞∞∞∞
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� By     (prob), we mean the number t such that when  
T ~ Student(df), P(T ) = prob; that is, the tail area 
above t (that is to the right of  t on the graph) is prob.

≥

Notation

dft
dft

(prob)tdf

0

prob

z(prob)
0

prob

Normal(0,1) density Student(df) density

Figure 7.6.2 The z(prob) and t(prob) notations.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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(0.05)- t tdf df(0.05)
0

0.05 0.050.90

Figure 7.6.3 The central 90% of the Student(df) distribution.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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TABLE 7.6.1  Extracts from the Student's t-Distribution Table
prob

df .20 .15 .10 .05  .025 .01 .005 .001 .0005 .0001
6 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.208 5.959 8.025
7 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.785 5.408 7.063
8 0.889 1.108 1.397 1.860 2.306 2.896 3.355 4.501 5.041 6.442
… … … … … … … … … … …
10 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.144 4.587 5.694

 … … … … … … … … … … …
15 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.733 4.073 4.880
… … … … … … … … … … …

0.842 1.036 1.282 1.645 1.960 2.326 2.576 3.090 3.291 3.719∞

Reading Student’s t table

t-value

Desired
df

Desired
upper-tail prob

(prob)tdf

0

prob

Student(df) density
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Comparison of the CI using T (unknown σ) & 
Z  (known σ) distributions

�For the old data: glucose levels :    
{266, 149, 161, 220}

�CI(µµµµ), when σσσσ is unknown (T-distr.), small-
sample-size, and data comes from (approx.) 
Normal distribution.

L= P (tN-1, (1-L)/2< n½(Ybar- µµµµ)/σσσσ^ <tN-1, (1+L)/2) ,

CI(µµµµ)=(Ybar– σσσσ^tN-1, (1+L)/2/n½; Ybar- σσσσ^tN-1, (1+L)/2 /n½)
95% CI(µµµµ)=(199–54.39x3.18 /4½; 199+54.39x3.18 / 4½)

tN-1, (1+L)/2 = t3, 0.975=3.18  & tN-1, (1-L)/2 = t3, 0.025=-3.18 ���� CIT(µµµµ)=(112.4:285.6)

( )�
=

−
−

=
N

k
k yy

N 1

2

1
1σ̂

199=x
39.54ˆ =σ
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Comparison of the CI using T (unknown σ) & 
Z  (known σ) distributions

�CI(µµµµ), when σ = σ = σ = σ = 54.4 is known (Normal distr.)
CI(µµµµ)  =    (Ybar– σσσσ z(1+L)/2/n½;Ybar- σσσσ z(1+L)/2 /n½),

z(1+L)/2 = 1.96
95% CI(µµµµ) = (199 – 54.4 x 1.96 /4½ ; 199+54.4 x 1.96 / 4½)

CIZ(µµµµ)= (145.7  :   252.3)
�Comparison:

CIT(µµµµ)=(112.4:285.6)  ���� compare����
CIZ(µµµµ)= (145.7:252.3)
Which one is better?!? More appropriate?!?
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Prediction  vs. Confidence intervals

� Confidence Intervals (for the population mean µµµµ):

� Prediction Intervals: L-level prediction interval (PI) for 
a new value of the process Y is defined by:

( )

.mean  processunknown 
 theofestimator an  as obtained

 is ,ˆ   valuepredicted  thewhere
L)/2(1 1,-nL)/2(1 1,-n tˆ   ;    tˆ ˆˆ

µ

σσ
YnewY

newnew YY
=

++ ×+×−

�
�
�

�
�
�
�

� ×
+

× ++

n
t

 Y   ;   
n

t
– Y L)/2(1 1,-nL)/2(1 1,-n ˆˆ σσ
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Prediction  vs. Confidence intervals – Differences?

� Confidence Intervals (for the population mean µµµµ):

� Prediction Intervals:
( )

( )
n

n

k
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Y newnew
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σσ

Which SD
is bigger?!?
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Classical Prediction for the C+E model

� Y = C + E.  When why, how to use prediction?

� When: E ~ N(0, σσσσ2) ���� ���� Y ~ N(µµµµ,  σσσσ2), there are more 
general situations, of course. Here we only consider this case.

� Why: Future predictions are of paramount importance in 
any area of science/engineering/medicine.

� How: µ µ µ µ is mostly unknown, so we estimate it by: m^, 
(the sample average). 

If population proportion, p, is unknown we estimate it 
by the sample-proportion, p^, etc.
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Classical Prediction  for the C+E model

� How: µ µ µ µ is mostly unknown, so we estimate it by: m^, 
�Let Y^

new be the predicted value
�Error made by using Y^

new, instead of observing a new value, Ynew is:

(1)    Ynew - Y^
new=(µµµµ - εεεεnew)- Y^

new =(µµµµ - Y^
new )+ εεεεnew

�But if we use µµµµ^ to predict a new value for Y, Y^
new= µ= µ= µ= µ^....

�Var(µµµµ - Y^
new) = Var(Y^

new) = Var(µµµµ^) = Var(SampleAvg) = σσσσ2/n.

�The variance of the second term is just σσσσ2.
� Since the first-term in (1) is obtained from {Y1, Y2,…, Yn}, and

εεεεnew= εεεεn+1, we have two independent terms � Variances add up!

�Var(Ynew - Y^
new)=Var(µµµµ - Y^

new )+Var(εεεεnew)= σσσσ2/n +  σσσσ2.
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Classical Prediction  for the C+E model

� How: Let Y^
new be the predicted value

�Error Ynew - Y^
new=(µµµµ - εεεεnew)- Y^

new =(µµµµ - Y^
new )+ εεεεnew

�Var(Ynew - Y^
new)=Var(µµµµ - Y^

new )+Var(εεεεnew)= σσσσ2/n +  σσσσ2.
�Often σ σ σ σ is unknown, and we estimate it by the sample SD, S �
� SD (Ynew - Y^

new) =  [S2(1+1/n) ]½ 

� We can show that 

�� The L-level prediction interval (PI(Ynew)) is:
( ) 1~ˆ

0ˆ
−−

−−= ntnewnew

newnew

YY
YYT σ

( )
( )L)/2(1 1,-nL)/2(1 1,-n

L)/2(1 1,-nL)/2-(1 1,-n

L)/2(1 1,-nL)/2-(1 1,-n

tˆ   ;    tˆ
tˆ   ;    tˆ

  )tTP(tL

ˆˆ
ˆˆ

++

+

+

×+×−
×+×+

→<<=

σσ
σσ

newnew

newnew

YY
YY

Solve for T
By symmetry

of tn-1.
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Confidence Interval for the true (population) proportion p:
sample proportion       z standard errors±

or    ˆ p ± z se( ˆ p ),  where se( ˆ p ) =
ˆ p (1 − ˆ p )

n

CI for a population proportion
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Example – higher blood thiol concentrations
associated with rheumatoid arthritis?!?

TABLE 8.4.1  Thiol Concentration (mmol)

Normal Rheumatoid 
1.84 2.81
1.92 4.06
1.94 3.62
1.92 3.27
1.85 3.27
1.91 3.76
2.07

Sample size 7 6
Sample mean 1.92143 3.46500
Sample standard deviation 0.07559 0.44049

Research question:
Is the change in the Thiol status
in the lysate of packed blood 
cells substantial to be indicative
of a non trivial relationship 
between Thiol-levels and 
rheumatoid arthritis?
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Example – higher blood thiol concentrations
with rheumatoid arthritis

Two groups of subjects are studied: 1. NC (normal controls)
2. RA (rheumatoid arthritis).

Observations: 1. The avg. levels of thiol seem diff. in NC & RA
2. NC and RA groups are separated completely.

Question: Is there statistical evidence that thiol-level correlates with
the disease?

Thiol concentration (mmol)
1.5 2.0 2.5 3.0 3.5 4.0 4.5

Normal

Rheumatoid

Figure 8.4.1 Dot plot of Thiol concentration data.
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Difference between means

Confidence Interval for a difference between population 
means ( ):

Difference between sample means       
t standard errors of the difference

or

±

x 1 − x 2 ± t se(x 1 − x 2 )

21 µ−µ
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Difference between proportions

Confidence Interval for a difference between population 
proportions ( ):

Difference between sample proportions       
z standard errors of the difference

or

±

ˆ p 1 − ˆ p 2 ± z se( ˆ p 1 − ˆ p 2)

21 pp −

How do we compute the SE(             ) for different cases?
2

ˆ
1

ˆ pp −−−−

Big
Question

???
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Proportions from 2 independent samples

Yes NoSample 2

A   occurs?

Compare the proportions from
the two independent samples

Yes NoSample 1

A   occurs?

1

)
2

ˆ1(
2

ˆ

1

)
1

ˆ1(
1

ˆ

2
ˆ

1
ˆ

n

pp

n

pp
ppSE

−−−−
++++

−−−−
====����

����

����
����
����

���� −−−−
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Single sample, several response categories

Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5 Cat. 6Single
l

Single
Sample

Compare different proportions
from the same sample

n

pppp
ppSE

2

2
ˆ

1
ˆ

2
ˆ

1
ˆ

2
ˆ

1
ˆ

����
����

����
����
����

���� −−−−−−−−++++
====����

����

����
����
����

���� −−−−
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Example – 1996 US Presidential Election

Note the independence-case SE formula is only applicable for
the cases when the samples are independent. In this case, the 
pre-election poll and the election results are not independent
(obviously these are highly correlated observations).

±

ˆ p 1 − ˆ p 2 ± z se( ˆ p 1 − ˆ p 2)

21 pp −State n Clinton Doll Perot Other/Undecided Clinton Doll Perot  
New Jersey 1,000 51 33 8 8 53 36 9
New York 1,000 59 25 7 9 59 31 8
Connecticutt 1,000 51 29 11 9 52 35 10

Pre-election Polls  Election Results

Compare proportions
of NJ and NY voters
supporting Clinton
and Dole, pre- and post
election
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Example – 1996 US Presidential Election

±

ˆ p 1 − ˆ p 2 ± z se( ˆ p 1 − ˆ p 2)

21 pp −State n Clinton Doll Perot Other/Undecided Clinton Doll Perot  
New Jersey 1,000 51 33 8 8 53 36 9
New York 1,000 59 25 7 9 59 31 8
Connecticutt 1,000 51 29 11 9 52 35 10

Pre-election Polls  Election Results
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Proportions from 2 independent samples
How far
is Clinton
ahead In NY
Compared to NJ?
Diff.proportions=
59-51%=8%
CI: [4% : 12%]
Actual diff 59-53=6 STAT 110A, UCLA, Ivo DinovSlide 43

Example – 1996 US Presidential Election

±

ˆ p 1 − ˆ p 2 ± z se( ˆ p 1 − ˆ p 2)

21 pp −State n Clinton Doll Perot Other/Undecided Clinton Doll Perot  
New Jersey 1,000 51 33 8 8 53 36 9
New York 1,000 59 25 7 9 59 31 8
Connecticutt 1,000 51 29 11 9 52 35 10

Pre-election Polls  Election Results
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Single sample, several response categories
How far
is Clinton
ahead of
Dole in NJ?
Diff.proportions=
18%
CI: [12% : 24%]
Actual diff 53-36=17
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TABLE 8.5.5Standard Errors for Differences in Proportions
(These correspond to the situations depicted in Fig. 8.5.1)

(a) Proportions from two independent samples of sizes n 1 and n 2, respectively

(b) One sample of size n, several response categories

se( ˆ p 1 − ˆ p 2 ) =
ˆ p 1(1− ˆ p 1)

n1

+
ˆ p 2 (1 − ˆ p 2 )

n2

se( ˆ p 1 − ˆ p 2 ) =
ˆ p 1 + ˆ p 2 − ( ˆ p 1 − ˆ p 2 )2

n

SE’s for the 2 cases of differences in proportion
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Sample size - proportion

� For a 95% CI, 

� Sample size for a desired margin of error:
For a margin of error no greater than m, use a sample size of 
approximately

� p* is a guess at the value of the proportion -- err on the side of 
being too close to 0.5

� z is the multiplier appropriate for the confidence level
� m is expressed as a proportion (between 0 and 1), not a 

percentage (basically, What’s n, so that m >= margin?)

*)1(*
2

pp
m
zn −−−−××××����
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����====

npp /)ˆ1(ˆ96.1margin −−−−××××====
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Sample size -- mean

� Sample size for a desired margin of error:
For a margin of error no greater than m, use a sample size of 
approximately

� σ* is an estimate of the variability of individual observations

� z is the multiplier appropriate for the confidence level

2*
����
����

����
����
����

����====
m

zn σσσσ
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Paired vs. Unpaired comparisons

� We will discuss these later, when we get to the 
hypothesis testing (ch6_HT_Paired_Indep_Tests.ppt)
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Confidence intervals

� We construct an interval estimate of a parameter to summarize 
our level of uncertainty about its true value.

� The uncertainty is a consequence of the sampling variation in 
point estimates.

� If we use a method that produces intervals which contain the 
true value of a parameter for 95% of samples taken, the 
interval we have calculated from our data is called a 95% 
confidence interval for the parameter.

� Our confidence in the particular interval comes from the fact 
that the method works 95% of the time (for 95% CI’s).
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� For a great many situations,

an (approximate) confidence interval is given by

estimate       t standard errors
The size of the multiplier, t, depends both on the desired 
confidence level and the degrees of freedom (df).

[With proportions, we use the Normal distribution (i.e.,        ) and it is 
conventional to use z rather than t to denote the multiplier.]

� The margin of error is the quantity added to and subtracted 
from the estimate to construct the interval (i.e. t standard 
errors).

±

df =∞

Summary cont.

±
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Summary cont.

� If we want greater confidence that an interval 
calculated from our data will contain the true value, 
we have to use a wider interval.

� To double the precision of a 95% confidence interval 
(i.e.halve the width of the confidence interval), we 
need to take  4  times as many observations.


