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UCLA  STAT 110A
Applied Statistics

�Instructor:   Ivo Dinov, 
Asst. Prof. In Statistics and Neurology

�Teaching Assistant: Helen Hu,  UCLA Statistics

University of California, Los Angeles,  Spring 2002
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Examples – Birthday Paradox
� The Birthday Paradox: In a random group of N people, what is the 

change that at least two people have the same birthday?
� E.x., if N=23, P>0.5. Main confusion arises from the fact that in 

real life we rarely meet people having the same birthday as us, and 
we meet more than 23 people.

� The reason for such high probability is that any of the 23 people 
can compare their birthday with any other one, not just you 
comparing your birthday to anybody else’s.

� There are N-Choose-2 = 20*19/2 ways to select a pair or people. 
Assume there are 365 days in a year, P(one-particular-pair-same-
B-day)=1/365, and 

� P(one-particular-pair-failure)=1-1/365  ~  0.99726.
� For N=20, 20-Choose-2 = 190. E={No 2 people have the same 

birthday is the event all 190 pairs fail (have different birthdays)},
then P(E) = P(failure)190 = 0.99726190 = 0.59.

� Hence,  P(at-least-one-success)=1-0.59=0.41, quite high.
� Note: for N=42 � P>0.9 …
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Significance Testing --
Using Data to Test Hypotheses

�What do we test? Types of hypotheses
�Measuring the evidence against the Null
�Hypothesis testing as decision making tool
�Why tests should be supplemented by intervals?
�Test Statistics & P-values
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Was Cavendish’s experiment biased?

A number of famous early experiments of measuring 
physical constants have later been shown to be biased. 
Goal now is to test whether the Cavendish data below 
really supports the true mean density of the Earth.

Mean density of the earth: True value = 5.517

Cavendish’s data:
{ 5.36, 5.29, 5.58, 5.65, 5.57, 5.53, 5.62, 5.29, 5.44, 5.34,
5.79, 5.10, 5.27, 5.39, 5.42, 5.47, 5.63, 5.34, 5.46, 5.30, 5.75, 
5.68, 5.85 }

n = 23,  sample mean = 5.483,    sample SD = 0.1904
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Was Cavendish’s experiment biased?

SD=0.1904 SD=0.1904

5.45 5.50 5.55 5.60
True
value (5.517)

Cavendish
mean (5.483)

21.5% of the means were
smaller than this

.0335 .0335

Figure 9.1.2 Sample means from 400 sets of observations
                             from an unbiased experiment.

N(5.517,0.1904)

Simulate taking
400 sets of 23
measurements
from
N(5.517,0.1904).
Plotted are the
results of the
sample means.
Are the Cavendish
values unusually
diff. from true
mean?
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Cavendish: measuring distances in std errors

-3 -2 -1 0 1 2 3

20.5% of samples had t
values smaller than this

.844 .844

Cavendish t -value =    0.844

0

0

Figure  9.1.3 Sample t -values from 400 unbiased experiments
                             (each t -value is distance between sample mean and 5.517 in std errors).

0

0

Cavendish
data lies  within
the central 60% 
of the distribution
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-3 -2 -1 0 1 2 3

20.5% of samples had t
values smaller than this

.844 .844

Cavendish t -value =    0.844

0

0

-3 -2 -1 0 1 2 3

0.204 0.204

0.844 0.844

Student’s T(df=22)
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Another example – Carbon content in Steel

Percentage of C (Carbon) in 2 random samples taken from  
2 steel shipments are measured and summarized below. 
The question is to determine if there are statistically 
significant differences between the shipments. 

0.0823.1882

0.0863.62101

S2Y_barNShipment
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Another example – Carbon content in Steel

Percentage of C (Carbon) in 2 random samples taken from  
2 steel shipments are measured and summarized below. 
The question is to determine if there are statistically 
significant differences between the shipments. 

0.0823.1882

0.0863.62101

S2Y_N#
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Measuring the distance between the 
true-value and the estimate in terms of the SE’s

�Intuitive criterion: Estimate is credible if it’s 
not far-away from its hypothesized true-value!

�But how far is far-away?
�Compute the distance in standard-terms:

�Reason is that the distribution of T is known in 
some cases (Student’s t, or N(0,1)). 

�The estimator (obs-value) is typical/atypical if 
it is close to the center/tail of the distribution.

SE
terValueTrueParameEstimatorT −−−−====
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Comparing CI’s and significance tests

� These are different methods for coping with the 
uncertainty about the true value of a parameter 
caused by the sampling variation in estimates.

� Confidence interval: A fixed level of confidence is 
chosen. We determine a range of possible values for the 
parameter that are consistent with the data (at the chosen 
confidence level).

� Significance test: Only one possible value for the 
parameter, called the hypothesized value, is tested against the 
data. We determine the strength of the evidence (confidence) 
provided by the data against the proposition that the 
hypothesized value is the true value.
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Review

�Why was it that the true mean-density of the 
Earth, µ = 5.517, was credible in terms of the 
Cavendish data of 23 observations with sample 
mean = 5.483?

�Since, the two values are only ~0.84 SD’s
away from each other!
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Review

�Are the carbon contents in the two steel 
shipments any different?

0.0823.1882
0.0863.62101

S2Y_N#

3646.2
~7.3

12.0
44.0

082.0086.0
18.362.3
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Guiding principles

We cannot rule in a hypothesized value for a 
parameter, we can only determine whether there is 
evidence, provided by the data,  to rule out a 
hypothesized value.

The null hypothesis tested is typically a skeptical 
reaction to a research hypothesis

Hypotheses
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Comments

�Why can't we (rule-in) prove that a 
hypothesized value of a parameter is 
exactly true?

�Because when constructing estimates based on 
data, there’s always sampling and may be non-
sampling errors, which are normal, and will 
effect the resulting estimate. Even if we do 
60,000 ESP tests, as we saw earlier, repeatedly 
we are likely to get estimates like 0.2 and 
0.200001, and 0.199999, etc. – non of which 
may be exactly the theoretically correct, 0.2.)
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Comments

�Why use the rule-out principle? (Since, we 
can’t use the rule-in method, we try to find 
compelling evidence against the observed/data-
constructed estimate – to reject it.)

�Why is the null hypothesis & significance 
testing typically used? (Ho: skeptical reaction 
to a research hypothesis; ST is used to check if 
differences or effects seen in the data can be 
explained simply in terms of sampling 
variation!)

STAT 110A, UCLA, Ivo DinovSlide 18

Comments

� How can researchers try to demonstrate that effects 
or differences seen in their data are real? (Reject the 
hypothesis that there are no effects)

� How does the alternative hypothesis typically relate 
to a belief, hunch, or research hypothesis that initiates 
a study? (H1=Ha: specifies the type of departure from the null-
hypothesis, H0 (skeptical reaction), which we are expecting (research 
hypothesis itself).

� In the Cavendish’s mean Earth density data, null 
hypothesis was H0 : µ =5.517. We suspected bias, but 
not bias in any specific direction, hence Ha:µ!=5.517.
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Comments

� Typically, the null (skeptical) hypothesis is:

H0 : µ = µ0. And the alternative is Ha:µ>0.2.

� Other commonly encountered situations are:
�H0 : µ1− µ2 =0 � Ha : µ1− µ2 >0
�H0 : µrest− µactivation =0 � Ha : µrest− µactivation !=0
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STEP 1  Calculate the test statistic ,

estimate - hypothesized value
standard error

[This  te lls  us  ho w many s tandard e rro rs  the  es tima te is  abo ve the  hypo thes ized 

va lue  (t0  po s itive )  o r  be lo w  the  hypo thes ized  va lue (t0  nega tive).]

STEP 2  Calculate the P -value using the following table.

STEP 3  Interpret the P -value in the context of the data.

Using       to test H 0: θθθθ  = θθθθ 0 versus some alternative H 1.ˆ  θ  

t0 =
ˆ θ  −θ0

se( ˆ θ  )
=

The t-test
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Alternative Evidence against H0: θθθθ  > θθθθ 0

hypothesis provided by P -value

H 1: θ > θ0     too much bigger than θ0 P  = pr(T   t 0)
(i.e.,    - θ0 too large)

H 1: θ < θ0      too much smaller than θ0 P  = pr(T     t 0)
(i.e.,    - θ0 too negative)

H 1: θ    θ0        too far from θ0 P  = 2 pr(T   |t 0|)
(i.e., |    - θ0| too large)

where T  ~ Student(df )

≠

ˆ  θ 

ˆ  θ 

ˆ  θ 

≤

≥

≥ˆ θ 

ˆ  θ 

ˆ θ 

The t-test
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Interpretation of the p-value

TABLE 9.3.2 Interpreting the S ize of a P -Value

Translation
> 0.12 (12%) No evidence against H0

0.10 (10%) Weak evidence against H0

0.05 (5%) Some evidence against H0

0.01 (1%) Strong evidence against H0

0.001 (0.1%) Very Strong evidence against H0

Approximate size
of P -Value
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P-value

^
0

t00

-scale t-scale
(# of std errors)

ersion of Table 9.1.1)
t   =

se(    )0

^
0

^
^

H :      >
1 0

too much bigger than^
0

Hypothesis
Evidence against

provided byH :      =
0 0

Alternative Pictorial
representation
of the T-test
H0: θ = θθ = θθ = θθ = θ0000
H1: θ > θθ > θθ > θθ > θ0000
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t0 0

P-value

^
0 (t   is negative)0

Hypothesis
Evidence against

provided byH :      =
0 0

Alternative

too much smaller thanH :      <
1 0

^
0

Pictorial
representation
of the T-test
Ho: θ = θθ = θθ = θθ = θ0000

vs.
H1: θ < θθ < θθ < θθ < θ0000
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Pictorial
representation
of the T-test
Ho: θ = θθ = θθ = θθ = θ0000

vs.
H1: θ != θθ != θθ != θθ != θ0000

H :      ≠
1 0 too far from 0

^
(either direction)

(2-sided)

Hypothesis
Evidence against

provided byH :      =
0 0

Alternative

^
0

^
0

t00t0

t00t0
(t   is negative)0

P-value  =  Shaded  Area
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• The P-value is the probability that, if the 
hypothesis was true, sampling variation would 
produce an estimate that is further away from  the 
hypothesized  value than our data-estimate.  

• The P-value measures the strength of the 
evidence  against H0. 

• The smaller the P-value, the stronger the 
evidence  against H0 .

P-values from t-tests
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Review

� What does the t-statistic tell us?

The T-statistics,                       tells us (in std. units) if

the observed value/estimate is typical/consistent and 
can be explained by the variation in the sampling 
distribution.

� When do we use a 2-tailed rather than a 1-tailed test?

We use two-sided/two-tailed test, unless there is a 
prior (knowledge available before data was collected) 
or a strong reason to believe that the result should go 
in one particular direction (� µ �).

t0 =
ˆ θ  −θ0

se( ˆ θ  )
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Review

� What were the 3 types of alternative hypothesis 
involving the parameter θ and the hypothesized 
value θ0? Write them down!

� Let’s go through and construct our own t-Test Table.
� For each alternative, think through what would constitute 

evidence against the hypothesis and in favor of the 
alternative.

�Then write down the corresponding P-values in terms of  t0
and represent these P-values on hand-drawn curves. 

� [ P=Pr(T>=t0), P=Pr(T<=t0), P=2Pr(T>=|t0| ) .]

t0 0

P-value

gative)

P-value

t00 t00t0
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Review

� What does the P-value measure? (If H0 was true, sampling 
variation alone would produce an estimate farther then the hypothesized value.)

� What do very small P-values tell us? What do large 
P-values tell us? (strength of evidence against H0 .)

� Pair the phrases: “the ......... the P-value, the .......... 
the evidence    ..........     the null hypothesis.”

� Do large values of t0 correspond to large or small     
P-values? Why?

� What is the relationship between the Student (df) 
distribution and Normal(0,1) distribution? (identical as     )

↓↓↓↓↑↑↑↑  | ↓↓↓↓↑↑↑↑  | 
for/against

∞∞∞∞→→→→n
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Is a second child gender influenced by the 
gender of the first child, in families with >1 kid?

� Research hypothesis needs to be formulated first before 
collecting/looking/interpreting the data that will be used 
to address it. Mothers whose 1st child is a girl are 
more likely to have a girl, as a second child, 
compared to mothers with boys as 1st children.

� Data: 20 yrs of birth records of 1 Hospital in Auckland, NZ.

Male Female Total 
Male 3,202 2,776 5,978
Female 2,620 2,792 5,412
Total 5,822 5,568 11,3901st

C
hi

ld

Second Child Gender
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Group Number of births Number of girls
1 (Previous child was girl) 5412 2792 (approx. 51.6%)
2 (Previous child was boy) 5978 2776 (approx. 46.4%)

Second Child

Analysis of the birth-gender data –
data summary

� Let p1=true proportion of girls in mothers with girl as 
first child. And p2=true proportion of girls in mothers 
with boy as first child. Parameter of interest is p1- p2.

� H0: p1- p2=0 (skeptical reaction). Ha: p1- p2>0
(research hypothesis)
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Decision made H0 is true H0 is false
Accept H 0 as true OK Type II error
Reject H0 as false Type I error OK

Actual situation

Hypothesis testing as decision making

� Sample sizes: n1=5412, n2=5978, Sample proportions 
(estimates) 

� H0: p1- p2=0 (skeptical reaction). Ha: p1- p2>0
(research hypothesis)

,4644.05978/2776
2

ˆ,5159.05412/2792
1

ˆ ≈≈≈≈====≈≈≈≈==== pp
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Analysis of the birth-gender data

� Samples are large enough to use Normal-approx. 
Since the two proportions come from totally diff. 
mothers they are independent � use formula 8.5.5.a

8109.1)
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Analysis of the birth-gender data

� We have strong evidence to reject the H0, and hence 
conclude mothers with first child a girl a more likely to 
have a girl as a second child.

� Practical vs. Statistical significance:
� How much more likely? A 95% CI:

CI (p1- p2) =[0.033; 0.070]. And computed by:
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� Percentage of C (Carbon) in 2 random samples taken 
from  2 steel shipments are measured and 
summarized below. The question is to determine if 
there are statistically significant differences 
between the shipments.

Analysis of Carbon in Steel Data

12.3
8

082.0
10

086.0
44.0

)
2ˆ1ˆ

(
18.362.3

0-Est_2-Est_1
0

t

=
+

=
−

−
==

µµSE

SE
0.0823.1882
0.0863.62101

S2Y_N#
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Comparing two means for independent samples

Suppose we have 2 samples/means/distributions as 
follows: {                  } and {                    }. We’ve 
seen before that to make inference about              we 
can use a T-test for H0: with 

And CI(        ) =

If the 2 samples are independent we use the SE formula

with                                .
This gives a conservative approach for hand calculation of an 

approximation to the what is known as the Welch procedure, 
which has a complicated exact formula.
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Means for independent samples –
equal or unequal variances?

Pooled T-test is used for samples with assumed equal 
variances. Under data Normal assumptions and equal 
variances of   

is exactly Student’s t distributed with

Here sp is called the pooled estimate of the variance, 
since it pools info from the 2 samples to form a 
combined estimate of the single variance σ1

2= σ2
2 =σ2.

)2
21
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Comparing two means for independent samples

1. How sensitive is the two-sample t-test to non-Normality 
in the data? (The 2-sample T-tests and CI’s are even 
more robust than the 1-sample tests, against non-
Normality, particularly when the shapes of the 2 
distributions are similar and n1=n2=n, even for small n, 
remember df= n1+n2-2.

3. Are there nonparametric alternatives to the two-sample 
t-test? (Wilcoxon rank-sum-test, Mann-Witney test, equivalent tests, same P-
values.)

4. What difference is there between the quantities tested 
and estimated by the two-sample t-procedures and the 
nonparametric equivalent? (Non-parametric tests are based on 
ordering, not size, of the data and hence use median, not mean, for 
the average. The equality of 2 means is tested and CI(µ1

~- µ1
~).
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Paired Comparisons

� Sometimes we have two data sets, which are not 
independent, but rather observations matched in pairs.

� Ex: Kaufman & Rock study of the Moon size illusion. 
Does the moon size appear different with eyes level  
and with eyes raised? Does eye position make a 
difference? Eyes elevated refers to raising the eye from 
horizontal to zenith position. [10 Subjects are tested under 
eye-level (control) condition, by physically moving the subject’s 
body from level to zenith position with fixed eye direction –
horizontal. Ratios of the Moon size in level and zenith positions, 
for the two paradigms are given below.]
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Moon illusion Data

TABLE 10.1.1 The Moon Illusion
Difference

Subject Eyes Elevated  Eyes Level (Elevated - Level) 

1 2.03 2.03 0.00
2 1.65 1.73 -0.08
3 1.00 1.06 -0.06
4 1.25 1.40 -0.15
5 1.05 0.95 0.10
6 1.02 1.13 -0.11
7 1.67 1.41 0.26
8 1.86 1.73 0.13
9 1.56 1.63 -0.07
10 1.73 1.56 0.17

So urce :  Kaufman and Ro ck [1962].
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Plotting Eyes elevated rations vs. eyes level rations

1.0 1.2 1.4 1.6 1.8 2.0
Eyes level

1.0

1.4

1.8

2.0

1.2

1.6
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For paired data, analyze the differences.

Looking for an effect due to elevating eyes

Differences (Elev. - Level)
0.30.1-0.1-0.2 0.20.0

Figure 10.1.7 Dot plot of differences for the moon illusion data
                            (with a 95% CI for the mean difference).
Te s t  o f  m u  =  0 . 0 0 0 0  v s  m u  >  0 . 0 0 0 0
Va r i a b l e      N       M e a n     S t D e v    S E  M e a n    t - s t a t   P - v a l u e
D i f f e r e n c e   1 0     0 . 0 1 9 0    0 . 1 3 7 1     0 . 0 4 3 4     0 . 4 4      0 . 3 4
                                   9 5 %  C I  (  - 0 . 0 7 9 1 ,   0 . 1 1 7 1 )

H0:µdiff = 0
Can’t reject H0, no
evidence eye position
causes illusion
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Review

� For fixed-level hypothesis tests, why are low 
significance levels chosen? (Large levels would imply we 
falsely reject the skeptical null hypothesis too often and 
commit Type I error! On the contrary, if our significance level 
is too low, preventing to reject H0, we may end up being 
unlikely to reject important false hypotheses – Type II error.)

� If you wanted to perform a fixed-level hypothesis
test, for what values of the P-value would you   
“reject the null hypothesis at the 1% level” ? (P<0.01)

� Give another name for the significance level. (Probability 
of making Type I error)
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Review

� If 120 researchers each independently investigated a 
it true/ hypothesis, how many researchers would you 
expect to obtain a result that was significant at the 
5% level (just by chance)? (Type I,  false-positive; 120*5%=6)

� What was the other type of error described? What 
was it called? When is the idea useful? (Type II, false-
negative)

� Power of statistical test = 1-β, where 

β =P(Type II error) = P(Accepting Ho as true, when its truly false)

STAT 110A, UCLA, Ivo DinovSlide 47

Review

� Why is the expression “accept the null hypothesis” 
dangerous? (Data can not really provide all the evidence that 
a hypothesis is true, however, it can provide support that it is
false. That’s why better lingo is “we can’t reject H0”)

� What is meant by the word non-significant in many 
research literatures? (P-value > fixed-level of significance)

� In fixed-level testing, what is a Type I error? What is 
a Type II error? (Type I, false-positive, reject H0 as false, 
when it’s true in reality; Type II, false-negative, accepting H0
as true, when its truly false)
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A two-sided test of H0: θ = θ0 is significant at the 5% 
level if and only if θ0 lies outside a 95% confidence 
interval for θ. 

Tests and confidence intervals

A two-sided test of H0: θ = θ0 gives a result that is 
significant at the 5% level if the P-value=2Pr(T >=|t0|) < 
0.05. Where t0 =(estimate-Hypoth’dValue)/SE(θ ) �
t0 =(θ^ −θ0)/SE(θ ). Let t be a threshold chosen so that 
Pr(T>= t ) = 0.025. Now |t0| tells us now many SE’s θ^

and θ are apart (without direction in their diff.) If |t0|> t, 
then θ0 is more than t SE’s away from θ^ and hence lies 
outside the 95% CI for θ. 
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“Significance”

� Statistical significance relates to the strength of the 
evidence of existence of an effect.

� The practical significance of an effect depends on its 
size – how large is the effect. 

� A small P-value provides evidence that the effect 
exists but says nothing at all about the size of the 
effect.

� To estimate the size of an effect (its practical 
significance), compute a confidence interval. 
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A non-significant test does not imply that the 
null hypothesis is true (or that we accept H0).

It simply means we do not have (this data does 
not provide) the evidence to reject the skeptical 
reaction, H0 .

“Significance” cont.

To prevent people from misinterpreting your 
report: Never quote a P-value about the existence 
of an effect without also providing a confidence 
interval estimating the size of the effect.
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Review

� What is the relationship between a 95% confidence 
interval for a parameter θ and the results of a two-
sided test of H0: θ = θ0? (θ0 is inside the 95% CI(θ) ,�
� P-value for the test is >0.025,. Conversely, the test is 
significan, at 5%-level, �� θ0 is outside the 95% CI(θ)).

� If you read, “research shows that ......... is
significantly ....... than ....…”, what is a likely 
explanation? (there is evidence that a real effect exists to make the two 
values different).

� If you read, “research says that ..... makes no 
difference to ..……..”, what is a likely explanation?
(the data does not have the evidence to reject the skeptical reaction, H0, or no 
effects).

θ

bigger θ0

drug

disease treatment
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Review

� Is a “significant difference” necessarily large or 
practically important? Why? (No, significant difference indicates the 
existence of an effect, practical importance depends on the effect-size.)

� What is the difference between statistical significance 
and practical significance? (stat-significance relates to the strength of the 
evidence that a real effect exists (e.g., that true difference is not exact;y 0); practical 
significance indicates how important the observed difference is in practice, how large is the 
effect.)

� What does a P-value tell us about the size of an 
effect? (P-value says whether the effect is significant, but says nothing about its size.)

� What tool do we use to gauge the size of an effect?
(CI(parameter) provides clues to the size of the effect.)
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Review

�If we read that a difference between two 
proportions is non-significant, what does this 
tell us? What does it not tells us? (Do not have 
evidence proportions are different, based on this data. Doesn’t mean accept 
H0).

�What is the closest you can get to showing that 
a hypothesized value is true and how could 
you go about it? (Suppose, H0: θ = θ0 ,  and our test is not-
significant. To show θ = θ0 we need to show that all values in the CI(θ0) are 
essentially equal to θ0 , this is a practical subjective matter decision, not a 
statistical one.)
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A test statistic is a measure of discrepancy between 
what we see in data and what we would expect to see
if H0 was true.

General ideas of “test statistic” and “p-value”

The P-value is the probability, calculated assuming that 
the null hypothesis is true, that sampling variation alone 
would produce data which is more discrepant than our 
data set.
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Example – Roulette  wheels (cont.)

• Roulette has 38 slots 18 red, 18 black, 2 neutralneutral
� 100 random wheel spins � Red=58. Is there evidence of 

wheel bias? P(Red>=58) =?  Where Y=Red 
~Binomial(100, 0.47)
�Before we showed P(Y>=58) = 0.177, using SOCR

� NOW: we use hypothesis testing:
�Ho: p= 0.47   vs.   H1: p > 0.47 
�Test statistic is sample proportion of Reds: p^ = 0.58
�Under Ho � p= 0.47, the P-value that P(p >= p^ = 0.58)  is: 

( ) 0177.047.0147.0  
100 100

100

58
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Summary
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Significance Tests vs. Confidence Intervals

� The main use of significance testing is to check whether 
apparent differences or effects seen in data can be explained 
away simply in terms of sampling variation.  The essential 
difference  between confidence intervals and significance 
tests is as follows:
�Confidence interval : A range  of possible values for the 

parameter are determined that are consistent with the data 
at a specified confidence level.

� Significance test : Only one possible  value for the 
parameter, called the hypothesized value, is tested. We 
determine the strength of the evidence provided by the data 
against the proposition that the hypothesized value is the 
true value.
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Hypotheses

� The null hypothesis, denoted by H0, is the (skeptical 
reaction) hypothesis tested by the statistical test.  

� Principle guiding the formulation of null hypotheses: 
We cannot rule a hypothesized value in; we can only 
determine whether there is enough evidence to rule it 
out.  Why is that?

� Research (alternative) hypotheses lay out the 
conjectures that the research is designed to 
investigate and, if the researchers hunches prove 
correct, establish as being true.
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Example: Is there racial profiling or 
are there confounding explanatory effects?!?

� The book by Best (Damned Lies and Statistics: Untangling 
Numbers from the Media, Politicians and Activists, Joel Best) 
shows how we can test for racial bias in police arrests. Suppose
we find that among 100 white and 100 black youths, 10 and 17, 
respectively, have experienced arrest. This may look plainly 
discriminatory. But suppose we then find that of the 80 middle-
class white youths 4 have been arrested, and of the 50 middle-
class black youths 2 arrested, whereas the corresponding 
numbers of lower-class white and black youths arrested are, 
respectively, 6 of 20 and 15 of 50. These arrest rates correspond 
to 5 per 100 for white and 4 per 100 for black middle-class
youths, and 30 per 100 for both white and black lower-class
youths. Now, better analyzed, the data suggest effects of social 
class, not race as such.
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Hypotheses cont.

� The null hypothesis tested is typically a skeptical 
reaction to the research hypothesis.

� The most commonly tested null hypotheses are of the 
“it makes no difference” variety.

� Researchers try to demonstrate the existence of real 
treatment or group differences by showing that the 
idea that there are no real differences is implausible.

� The alternative hypothesis , denoted by H1, specifies 
the type of departure from the null hypothesis, H0, 
that we expect to detect.
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� The alternative hypothesis, typically corresponds to 
the research hypothesis.

� We use one-sided alternatives (using either :             
H1: θ  >θ0 or H1: θ  <θ0) when the research 
hypothesis specifies the direction of the effect, or 
more generally, when the investigators had good 
grounds for believing the true value of θ was on one 
particular side of θ0 before the study began. 
Otherwise a two-sided alternative,                  , is 
used.

H1 : θ ≠ θ0

Hypotheses cont.
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P-values

� Differences or effects seen in data that are easily 
explainable in terms of sampling variation do not 
provide convincing evidence that real differences or 
effects exist.

� The P-value is the probability that, if the hypothesis 
was true, sampling variation would produce an 
estimate that is further away from the hypothesized 
value than the estimate we got from our data.

� The P-value measures the strength of the evidence 
against  H0.
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P-values cont.

� The smaller the P-value, the stronger  the evidence 
against H0.

� A large P-value provides no evidence against the null 
hypothesis.

� A large P-value does not imply that the null hypothesis 
is true.

� A small P-value provides evidence that the effect exists 
but says nothing at all about the size of the effect.

� To estimate the size of an effect, compute a confidence 
interval.
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� Never quote a P-value about the existence of an 
effect without also  providing a confidence interval 
estimating the size of the effect.

� Computation of P-values : Computation of P-values 
for situations in which the sampling distribution of            

, is well approximated by a Student(df) 
distribution or a Normal(0,1) The t-test statistic tells 
us how many standard errors the estimate is from the 
hypothesized value.

(ˆ θ −θ0)/se( ˆ θ )

P-values cont.
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P-values

� Examples given in this chapter concerned means and 
differences between means, proportions and 
differences between proportions.

� In general, a test statistic is a measure of discrepancy 
between what we see in the data and what we would 
have expected to see if H0 was true.
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� If, whenever we obtain a P-value less than or equal to 
5%, we make a decision  to reject the null hypothesis, 
this procedure is called testing at the 5% level of 
significance.
�The significance level of such a test is 5%.

� If the P-value     α , the effect is said to be significant 
at the α-level.

� If you always test at the 5% level, you will reject one 
true null hypothesis in 20 over the long run.

≤

Significance
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≤

Significance cont.

� A two-sided  test of H0 : θ = θ0 is significant at the 
5% level if and only if  θ0 lies outside  a 95% 
confidence interval for θ.

� In reports on research, the word “significant” used 
alone often means “significant at the 5% level” (i.e. P-
value     0.05). “Non-significant”,  “does not differ 
significantly” and even “is no different” often mean
P-value > 0.05.

� A non-significant result does not  imply that H0 is 
true.

≤
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Significance cont.

� A Type I error  (false-positive) is made when one 
concludes that a true null hypothesis is false. 

� The significance level  is the probability of making a 
Type I error.

� Statistical significance relates to having evidence of 
the existence of an effect.

� The practical significance of an effect depends on 
its size.


