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UCLA  STAT XL 10
Introduction to Statistical Reasoning

�Instructor:   Ivo Dinov, 
Asst. Prof. In Statistics and Neurology

University of California, Los Angeles,  Spring 2002
http://www.stat.ucla.edu/~dinov/

STAT  XL 10, UCLA, Ivo Dinov Slide 2

Chapter 21:  Confidence Intervals

�Introduction
�Means
�Proportions
�Comparing 2 means
�Comparing 2 proportions
�How big should my study be?
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20 replicated measurements to estimate the speed of light. Obtained by 
Simon Newcomb in 1882, by using distant (3.721 km) rotating mirrors.

Passage time (10-6 seconds)

Using only 8
Of the 20
observations

Using all 20
observations

Estimates of 
the speed of 
light

95% Confidence
Interval  shrinks?!?

95%Confidence 
Interval
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A 95% confidence interval

� A type of interval that contains the true value of a 
parameter for 95% of samples taken is called a 95%
confidence interval for that parameter, ends of the CI 
are called confidence limits.

� (For the situations we deal with) a confidence interval (CI) for 
the true value of a parameter is given by

estimate       z standard errors±

STAT  XL 10, UCLA, Ivo DinovSlide 5

� CI are constructed using the sample     and s=SE. But diff. samples 
yield diff. estimates and � diff. CI’s?!?

� Below is a computer simulation showing how process of taking 
samples effects the estimates and the CI’s.

� 1000 samples of size 10 obs’s from a Normal(m=24.83, s=0.005) 
distributions with their 95% CI’s.
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True mean almost always
captured in the CI.
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The Z and the T scores/values

� Remember Z = (X – mean)/SD  ~  std. Normal (0, 1)
� We know how to read the Standard Normal (Z ) tables
� How about if the SD is unknown?
� We estimate it from the data, using the sample-SD
� Then we’d like to do the same we did for normal 

standardization –

T = (X – mean) / sample_SD
� But is T standard normally distributed? Almost!

�T = (X–mean)/sample_SD ~ Student’s T (df=n-1)
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The Z and the T scores/values

�T = (X–mean)/sample_SD ~ Student’s T (df=n-1)

0 2 4- 2- 4

df  =  ×
[i.e., Normal(0,1)]

df  =  5
df  =  2
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Confidence Interval for the true (population)  mean µ:
sample mean       t standard errors

or

±

x ± t se(x ),  where se(x ) =
sx

n
 and df = n −1

Summary - CI for population mean

TABLE 8.1.1  Value of the Multiplier, t ,  for a 95% CI

df  : 7 8 9 10 11 12 13 14 15 16 17
t  : 2.365 2.306 2.262 2.228 2.201 2.179 2.160 2.145 2.131 2.120 2.110

df  : 18 19 20 25 30 35 40 45 50 60  
t  : 2.101 2.093 2.086 2.060 2.042 2.030 2.021 2.014 2.009 2.000 1.960

∞
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80%   CI,   x ± 1.282 se(x)

90%   CI,   x ± 1.645 se(x)

95%   CI,   x ± 1.960 se(x)

99%   CI,   x ± 2.576 se(x)

Effect of increasing the confidence level

Confidence
Level

Increase

Increases 
the size

of the CI

Why?
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Effect of increasing the sample size

To double the precision we need  four times as 
many observations. 

Passage time

n = 90  data points

n = 40  data points

n = 10  data points

24.83 24.8424.82

Figure 8.1.4 Three random samples from a Normal(µ=24.83, s =.005)
                            distribution and their 95% confidence intervals for µ.

Increase
Sample

Size

Decreases 
the size

of the CI
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Why in sample-size CI?

Confidence Interval for the true (population)  mean µ:
sample mean       t standard errors

or

±

x ± t se(x ),  where se(x ) =
sx

n
 and df = n −1

↑↑↑↑ ↓↓↓↓
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Confidence Interval for the true (population) proportion p:
sample proportion       z standard errors±

or    ˆ p ± z se( ˆ p ),  where se( ˆ p ) =
ˆ p (1 − ˆ p )

n

CI for a population proportion
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Example – higher blood thiol concentrations
with rheumatoid arthritis

TABLE 8.4.1  Thiol Concentration (mmol)

Normal Rheumatoid 
1.84 2.81
1.92 4.06
1.94 3.62
1.92 3.27
1.85 3.27
1.91 3.76
2.07

Sample size 7 6
Sample mean 1.92143 3.46500
Sample standard deviation 0.07559 0.44049

Research question:
Is the change in the Thiol status
in the lysate of packed blood 
cells substantial to be indicative
of a non trivial relationship 
between Thiol-levels and 
rheumatoid arthritis?
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Thiol concentration (mmol)
1.5 2.0 2.5 3.0 3.5 4.0 4.5

Normal

Rheumatoid

Figure 8.4.1 Dot plot of Thiol concentration data.

Example – higher blood thiol concentrations
with rheumatoid arthritis

Two groups of subjects are studied: 1. NC (normal controls)
2. RA (rheumatoid arthritis).

Observations: 1. The avg. levels of thiol seem diff. in NC & RA
2. NC and RA groups are separated completely.

Question: Is there statistical evidence that thiol-level correlates with
the disease?
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CI’s for difference between means

Confidence Interval for a difference between population 
means ( ):

Difference between sample means       
t standard errors of the difference

or

±

x 1 − x 2 ± t se(x 1 − x 2 )

21 µ−µ
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CI’s for difference between proportions

Confidence Interval for a difference between population 
proportions ( ):

Difference between sample proportions       
z standard errors of the difference

or

±

ˆ p 1 − ˆ p 2 ± z se( ˆ p 1 − ˆ p 2)

21 pp −

But how do we compute the SE(             ) for different cases?2
ˆ

1
ˆ pp −−−−
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Sample size - proportion

� For a 95% CI, 

� Sample size for a desired margin of error:
For a margin of error no greater than  m, use a sample size of 
approximately

� p* is a guess at the value of the proportion -- err on the side of 
being too close to 0.5

� z is the multiplier appropriate for the confidence level

� m is expressed as a proportion (between 0 and 1), not a 
percentage

*)1(*
2

pp
m
zn −−−−××××����
����

����
����
����

����====

npp /)ˆ1(ˆ96.1margin −−−−××××====
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Sample size -- mean

� Sample size for a desired margin of error:
For a margin of error no greater than m, use a sample size of 
approximately

� σ* is an estimate of the variability of individual observations

� z is the multiplier appropriate for the confidence level

2*
����
����

����
����
����

����====
m

zn σσσσ
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Summary
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Confidence intervals

� We construct an interval estimate of a parameter to summarize 
our level of uncertainty about its true value.

� The uncertainty is a consequence of the sampling variation in 
point estimates.

� If we use a method that produces intervals which contain the 
true value of a parameter for 95% of samples taken, the 
interval we have calculated from our data is called a 95% 
confidence interval for the parameter.

� Our confidence in the particular interval comes from the fact 
that the method works 95% of the time (for 95% CI’s).
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Standard Errors and Degrees of Freedom

Standard error 
Parameter Estimate of estimate df

Mean, µ n-1

Proportion, p

Difference in means, µ 1−µ 2 Min(n 1-1,n 2-1)

Difference in proportions, p 1-p 2 (see Table 8.5.5)

x  

ˆ p 

x 1 − x 2

ˆ p 1 − ˆ p 2

sx

n

ˆ  p (1− ˆ p )
n

s1
2

n1

+
s2

2

n2

∞

∞
Different
Situations
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� For a great many situations,

an (approximate) confidence interval is given by

estimate       t standard errors
The size of the multiplier, t, depends both on the desired 
confidence level and the degrees of freedom (df).

[With proportions, we use the Normal distribution (i.e.,        ) and it is 
conventional to use z rather than t to denote the multiplier.]

� The margin of error is the quantity added to and subtracted 
from the estimate to construct the interval (i.e. t standard 
errors).

±

df =∞

Summary cont.

±
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Summary cont.

� If we want greater confidence that an interval 
calculated from our data will contain the true value, 
we have to use a wider interval.

� To double the precision of a 95% confidence interval 
(i.e.halve the width of the confidence interval), we 
need to take  4  times as many observations.
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� If I ask 30 of you the question “Is 5 credit hour a reasonable 
load for Stat10?”, and say, 15 (50%) said no. Should we 
change the format of the class?

� Not really – the 2SE interval is about [0.32 ; 0.68]. So, we 
have little concrete evidence of the proportion of students who 
think we need a change in Stat 10 format, 

� If I ask all 300 Stat 10 students and 150 say no (still 50%), 
then 2SE interval around 50% is: [0.44 ; 0.56].

� So, large sample is much more useful and this is due to 
CLT effects, without which, we have no clue how useful 
our estimate actually is …

CLT Example – CI shrinks by half by 
quadrupling the sample size!

-0.180.5)p̂-(1p̂20.5)p̂SE(2p̂ ±±±±====××××±±±±====××××±±±±
n


