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UCLA  STAT XL 10
Introduction to Statistical Reasoning

�Instructor:   Ivo Dinov, 
Asst. Prof. In Statistics and Neurology

University of California, Los Angeles,  Spring 2002
http://www.stat.ucla.edu/~dinov/
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Chapter 26:  Significance Testing --
Using Data to Test Hypotheses

�Getting Started

�What do we test? Types of hypotheses

�Measuring the evidence against the null

�Hypothesis testing as decision making

�Why tests should be supplemented by intervals
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ESP (extra sensory perception) or just guessing?

0.198 0.200 0.202 0.204 0.206 0.208

True value for
just guessing (0.200)

Pratt & Woodruff’s
proportion (0.2082)

Deck of equal
number of 
Zener/Rhine
cards

n=60,000 
random draws
resulting in 
12,489 
correct guesses

Can sampling variations alone account for Pratt & Woodruff’s 
success rate = 20.82% correct vs. 20% expected.

Sample proportions
From 7 just-guessing games

Different?

STAT  XL 10, UCLA, Ivo DinovSlide 4

ESP or just guessing?

0.196 0.198 0.200 0.202 0.204 0.206 0.2080.194

True value for just guessing

Pratt & Woodruff’s
proportion

Sample proportions from 400
“just-guessing”   experiments
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Was Cavendish’s experiment biased?

A number of famous early experiments of measuring physical 
constants have later been shown to be biased.

Mean density of the earth

True value = 5.517

Cavendish’s data: (from previous Example)

5.36, 5.29, 5.58, 5.65, 5.57, 5.53, 5.62, 5.29, 5.44, 
5.34, 5.79, 5.10, 5.27, 5.39, 5.42, 5.47, 5.63, 5.34, 
5.46, 5.30, 5.75, 5.68, 5.85

n = 23, sample mean = 5.483,    sample SD = 0.1904
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Was Cavendish’s experiment biased?

5.45 5.50 5.55 5.60
True
value (5.517)

Cavendish
mean (5.483)

21.5% of the means were
smaller than this

.0335 .0335

SD=0.1904 SD=0.1904
N(5.517,0.1904)

Simulate taking
400 sets of 23
measurements
from
N(5.517,0.1904).
Plotted are the
results of the
sample means.
Are the Cavendish
values unusually
diff. From true
mean?
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Cavendish: measuring distances in std errors

-3 -2 -1 0 1 2 3

20.5% of samples had t
values smaller than this

.844 .844

Cavendish t -value =    0.844

0

0

9.1.3 Sample t -values from 400 unbiased experiments
              (each t -value is distance between sample mean and 5.517 in std errors).

0

0

Cavendish
data lies  within
the central 60% 
of the distribution
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-3 -2 -1 0 1 2 3

0.204 0.204

0.844 0.844
Figure 9.1.4 Student(df=22) density.
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Measuring the distance between the 
true-value and the estimate in terms of the SE

� Intuitive criterion: Estimate is credible if it’s not far 
away from its hypothesized true-value!

� But how far is far-away?
� Compute the distance in standard-terms:

� Reason is that the distribution of T is known in some 
cases (Student’s t, or N(0,1)). The estimator (obs-value) 
is typical/atypical if it is close to the center/tail of the 
distribution.

SE
terValueTrueParameEstimatorT −−−−====
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Comparing CI’s and significance tests

� These are different methods for coping with the 
uncertainty about the true value of a parameter 
caused by the sampling variation in estimates.

� Confidence interval: A fixed level of confidence is 
chosen. We determine a range of possible values for the 
parameter that are consistent with the data (at the chosen 
confidence level).

� Significance test: Only one possible value for the 
parameter, called the hypothesized value, is tested. We 
determine the strength of the evidence (confidence) provided 
by the data against the proposition that the hypothesized value 
is the true value.
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Review

�What intuitive criterion did we use to determine 
whether the hypothesized parameter value (p=0.2 in the 

ESP Example, and µ = 5.517 in Earth density ex.) was credible in the 
light of the data? (Determine if the data-driven parameter estimate is 
consistent with the pattern of variation we’d expect get if hypothesis was true. If 
hypothesized value is correct, our estimate should not be far from its 
hypothesized true value.)

�Why was it that µ = 5.517 was credible in Ex. 2, 
whereas p=0.2 was not credible in Ex. 1?
(The first estimate is consistent, and the second one is not, with the pattern of 
variation of the hypothesized true process.)
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Review

�What do t0-values tell us? (Our estimate is 
typical/atypical, consistent or inconsistent with our hypothesis.)

�What is the essential difference between the 
information provided by a confidence interval 
(CI) and by a significance test (ST)? (Both are 
uncertainty quantifiers. CI’s use a fixed level of confidence to
determine possible range of values. ST’s one possible value is 
fixed and level of confidence is determined.)
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Guiding principles

We cannot rule in a hypothesized value for a parameter, we 
can only determine whether there is evidence to rule out a 
hypothesized value.

The null hypothesis tested is typically a skeptical reaction
to a research hypothesis

Hypotheses
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Comments

� Why can't we (rule-in) prove that a hypothesized value of a 
parameter is exactly true? (Because when constructing estimates 
based on data, there’s always sampling and may be non-sampling errors, 
which are normal, and will effect the resulting estimate. Even if we do 
60,000 ESP tests, as we saw earlier, repeatedly we are likely to get 
estimates like 0.2 and 0.200001, and 0.199999, etc. – non of which may be 
exactly the theoretically correct, 0.2.)

� Why use the rule-out principle? (Since, we can’t use the rule-in 
method, we try to find compelling evidence against the observed/data-
constructed estimate – to reject it.)

� Why is the null hypothesis & significance testing typically 
used? (Ho: skeptical reaction to a research hypothesis; ST is used to check 
if differences or effects seen in the data can be explained simply in terms 
of sampling variation!)
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Comments

� How can researchers try to demonstrate that effects 
or differences seen in their data are real? (Reject the 
hypothesis that there are no effects)

� How does the alternative hypothesis typically relate 
to a belief, hunch, or research hypothesis that initiates 
a study? (H1=Ha: specifies the type of departure from the null-
hypothesis, H0 (skeptical reaction), which we are expecting (research 
hypothesis itself).

� In the Cavendish’s mean Earth density data, null 
hypothesis was H0 : µ =5.517. We suspected bias, but 
not bias in any specific direction, hence Ha:µ!=5.517.
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Comments

� In the ESP Pratt & Woodruff data, (skeptical 
reaction) null hypothesis was H0 : µ =0.2 (pure-
guessing). We suspected bias, toward success rate 
being higher than that, hence the (research 
hypothesis) Ha:µ>0.2.

� Other commonly encountered situations are:
�H0 : µ1− µ2 =0 � Ha : µ1− µ2 >0
�H0 : µrest− µactivation =0 � Ha : µrest− µactivation !=0
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The t-test

� Step 1:  Calculate the test-statistic (this tells us how many 
SD’s the estimate is above/below the hypothesized value 
of the parameter of interest

� Step 2: Calculate the P-value from tables or using online 
resources (e.g., the SOCR, we have online at the class 
page)

� Step 3: Interpret the P-value in context of the data

Error  Standard
Value edHypothesiz    Estimate

)ˆ(

ˆ −=−=
θ
θοθ

SE
to
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Alternative Evidence against H0: θθθθ  > θθθθ 0

hypothesis provided by P -value

H 1: θ > θ0     too much bigger than θ0 P  = pr(T   t 0)
(i.e.,    - θ0 too large)

H 1: θ < θ0      too much smaller than θ0 P  = pr(T     t 0)
(i.e.,    - θ0 too negative)

H 1: θ    θ0        too far from θ0 P  = 2 pr(T   |t 0|)
(i.e., |    - θ0| too large)

where T  ~ Student(df )

≠

ˆ  θ 

ˆ  θ 

ˆ  θ 

≤

≥

≥ˆ θ 

ˆ  θ 

ˆ θ 

The t-test
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Translation
> 0.12 (12%) No evidence against H0

0.10 (10%) Weak evidence against H0

0.05 (5%) Some evidence against H0

0.01 (1%) Strong evidence against H0

0.001 (0.1%) Very Strong evidence against H0

Approximate size
of P -Value

Interpretation of the size of the p-value
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Paired Comparisons

� Sometimes we have two data sets, which are not 
independent, but rather observations matched in pairs.

� When are paired data are significantly different?

� Does the moon size appear different with eyes level  
and with eyes raised? Does eye position make a 
difference? Eyes elevated refers to raising the eye from 
horizontal to zenith position. 10 Subjects are tested under eye-
level (control) condition, by physically moving the subject’s body from level 
to zenith position with fixed eye direction – horizontal. Ratios of the Moon 
size in level and zenith positions, for the two paradigms (physically moving 
subject’s body) are given in Table: 
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Difference
Subject Eyes Elevated  Eyes Level (Elevated - Level) 

1 2.03 2.03 0.00
2 1.65 1.73 -0.08
3 1.00 1.06 -0.06
4 1.25 1.40 -0.15
5 1.05 0.95 0.10
6 1.02 1.13 -0.11
7 1.67 1.41 0.26
8 1.86 1.73 0.13
9 1.56 1.63 -0.07
10 1.73 1.56 0.17

So urce :  Kaufm an and Ro ck [1962].

Moon illusion Data
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Plotting Eyes elevated ratios vs. eyes level ratios

1.0 1.2 1.4 1.6 1.8 2.0
Eyes level

1.0

1.4

1.8

2.0

1.2

1.6
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For paired data, analyze the differences.

Looking for an effect due to elevating eyes

H0:µdiff = 0

Te s t  o f  m u  =  0 . 0 0 0 0  v s  m u  >  0 . 0 0 0 0
Va r i a b l e      N       M e a n     S t D e v    S E  M e a n    t - s t a t   P - v a l u e
D i f f e r e n c e   1 0     0 . 0 1 9 0    0 . 1 3 7 1     0 . 0 4 3 4     0 . 4 4      0 . 3 4
                                   9 5 %  C I  (  - 0 . 0 7 9 1 ,   0 . 1 1 7 1 )

Differences (Elev. - Level)
0.30.1-0.1-0.2 0.20.0

Figure 10.1.7 Dot plot of differences for the moon illusion data
                            (with a 95% CI for the mean difference).
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Comparing two means for independent samples

Suppose we have 2 samples/means/distributions as 
follows: {                  } and {                    }. We’ve 
seen before that to make inference about              we 
can use a T-test for H0: with 

And CI(        ) =

If the 2 samples are independent we use the SE formula

with                                     .

)
1

,
1

(,
1

σσσσµµµµNx )
2

,
2

(,
2

σσσσµµµµNx

21
µµµµµµµµ −−−−

0
21

====−−−− µµµµµµµµ

21
µµµµµµµµ −−−−

)(
0)(

21

21
0

xxSE
xxt
−−−−

−−−−−−−−====

)( 2121 xxSEtxx −−−−××××±±±±−−−−

2
/2

21
/2

1
nsnsSE ++++==== )1

2
;1

1
( −−−−−−−−==== nnMindf
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Means for independent samples –
equal or unequal variances?

Pooled T-test is used for samples with assumed equal 
variances. Under data Normal assumptions and equal 
variances of   

is exactly Student’s t distributed with

Here sp is called the pooled estimate of the variance, 
since it pools info from the 2 samples to form a 
combined estimate of the single variance σ1

2= σ2
2 =σ2.

(((( )))) (((( )))) where,/0 2121 xxSExx −−−−−−−−−−−−

)2
21

( −−−−++++==== nndf

221

2
2)12(2

1)11(2;2/11/1
−−−−++++

−−−−++++−−−−
====++++====

nn
snsn

psnnsSE p
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Comparing two means for independent samples

1. How sensitive is the two-sample t-test to non-
Normality in the data? (The 2-sample T-tests and 
CI’s are even more robust than the 1-sample 
tests, against non-Normality, particularly when 
the shapes of the 2 distributions are similar and 
n1=n2=n, even for small n, remember df= n1+n2-2.
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P-value

^
0

t00

-scale t-scale
(# of std errors)

ersion of Table 9.1.1)
t   =

se(    )0

^
0

^
^

H :      >
1 0 too much bigger than^

0

Hypothesis
Evidence against

provided byH :      =
0 0

Alternative Pictorial
representation
of the T-test
H1: θ > θθ > θθ > θθ > θ0000

Back to Hypothesis testing
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Hypothesis
Evidence against

provided byH :      =
0 0

Alternative

Pictorial
representation
of the T-test
H1: θ < θθ < θθ < θθ < θ0000

t0 0

P-value

^
0 (t   is negative)0

too much smaller thanH :      <
1 0

^
0
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Hypothesis
Evidence against

provided byH :      =
0 0

Alternative

H :      ≠
1 0 too far from 0

^
(either direction)

(2-sided)

^
0

^
0

t00t0

t00t0
(t   is negative)0

P-value  =  Shaded  Area

Pictorial
representation
of the T-test
Ho: θ = θθ = θθ = θθ = θ0000
H1: θ != θθ != θθ != θθ != θ0000
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• The P-value is the probability that, if the hypothesis 
was true, sampling variation would produce an 
estimate that is further away from  the hypothesized  
value than our data-estimate.  

• The P-value measures the strength of the evidence    
against H0. 

• The smaller the P-value, the stronger the evidence  
against H0 .
(The second and third points are true for significance tests 
generally, and not just for t-tests.)

P-values from t-tests
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Review

� What does the t-statistic tell us?

The T-statistics,                       tells us (in std. units) if

the observed value/estimate is typical/consistent and 
can be explained by the variation in the sampling 
distribution.

� When do we use a 2-tailed rather than a 1-tailed test?

We use two-sided/two-tailed test, unless there is a 
prior (knowledge available before data was collected) 
or a strong reason to believe that the result should go 
in one particular direction (� µ �).

t0 =
ˆ θ  −θ0

se( ˆ θ  )
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Review
� What were the 3 types of alternative hypothesis 

involving the parameter θ and the hypothesized 
value θ0? Write them down!

� Let’s go through and construct our own t-Test Table.
� For each alternative, think through what would constitute 

evidence against the hypothesis and in favor of the 
alternative.

�Then write down the corresponding P-values in terms of  t0
and represent these P-values on hand-drawn curves
[ P=Pr(T>=t0),        P=Pr(T<=t0),       P=2Pr(T>=|t0| ) .]

t0 0

P-value

gative)

P-value

t00 t00t0
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Review

� What does the P-value measure? (If H0 was true, sampling 
variation alone would produce an estimate farther then the hypothesized value.)

� What do very small P-values tell us? What do large 
P-values tell us? (strength of evidence against H0 .)

� Pair the phrases: “the ......... the P-value, the .......... 
the evidence    ..........     the null hypothesis.”

� Do large values of t0 correspond to large or small     
P-values? Why?

� What is the relationship between the Student (df) 
distribution and Normal(0,1) distribution? (identical as     )

↓↓↓↓↑↑↑↑  | ↓↓↓↓↑↑↑↑  | 
for/against

∞∞∞∞→→→→n
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� Research hypothesis needs to be formulated first 
before collecting/looking/interpreting the data that 
will be used to address it. Mothers whose 1st child is 
a girl are more likely to have a girl, as a second child, 
compared to mothers with boys as 1st children.

� Data: 20 yrs of birth records of 1 Hospital in Auckland, NZ.

Is a second child gender influenced by the 
gender of the first child, in families with >1 kid?

TABLE 9.3.4  First and Second Births by Sex

Second Child

Male Female Total 
First Child Male 3,202 2,776 5,978       

Female 2,620 2,792 5,412       
Total 5,822 5,568 11,390     
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Group Number of births Number of girls
1 (Previous child was girl) 5412 2792 (approx. 51.6%)
2 (Previous child was boy) 5978 2776 (approx. 46.4%)

Second Child

Analysis of the birth-gender data –
data summary

� Let p1=true proportion of girls in mothers with girl as 
first child, p2=true proportion of girls in mothers with 
boy as first child. Parameter of interest is p1- p2.

� H0: p1- p2=0 (skeptical reaction). Ha: p1- p2>0
(research hypothesis)
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Hypothesis testing as decision making

� Sample sizes: n1=5412, n2=5978, Sample proportions 
(estimates) 

� H0: p1- p2=0 (skeptical reaction). Ha: p1- p2>0
(research hypothesis)

,4644.05978/2776
2

ˆ,5159.05412/2792
1

ˆ ≈≈≈≈====≈≈≈≈==== pp

TABLE 9.4.1 Decision Making

Decision made H0 is true H0 is false
Accept H0 as true OK Type II error
Reject H0 as false Type I error OK

Actual situation
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Analysis of the birth-gender data

� Samples are large enough to use Normal-approx. 
Since the two proportions come from totally diff. 
mothers they are independent � use formula 8.5.5.a

8109.1)
0

tPr( 

2

)
2

ˆ1(
2

ˆ

1

)
1

ˆ1(
1

ˆ
2

ˆ
1

ˆ

2
ˆ

1
ˆ

0
2

ˆ
1

ˆ

49986.5edValueHypothesiz-Estimate
0

t

−−−−××××====≥≥≥≥====−−−−

====
−−−−

++++
−−−−

−−−−
====

����
����
����

����
����
���� −−−−

−−−−−−−−

============

TvalueP

n

pp

n

pp

pp

ppSE

pp
SE
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Analysis of the birth-gender data

� We have strong evidence to reject the H0, and hence 
conclude mothers with first child a girl a more likely
to have a girl as a second child.

� How much more likely? A 95% CI:

CI (p1- p2) =[0.033; 0.070]. And computed by:

%]7; %3[0093677.096.10515.0
2

)
2

ˆ1(
2

ˆ

1

)
1

ˆ1(
1

ˆ
96.1

2
ˆ

1
ˆ

2
ˆ

1
ˆ96.1

2
ˆ

1
ˆSEestimate

====××××±±±±

====
−−−−

++++
−−−−

××××±±±±−−−−

====����
����

����
����
����

���� −−−−××××±±±±−−−−====××××±±±±

n

pp

n

pp
pp

ppSEppz
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Review

� Why is the expression “accept the null hypothesis” 
dangerous? (Data can not really provide all the evidence that 
a hypothesis is true, however, it can provide support that it is
false. That’s why better lingo is “we can’t reject H0”)

� What is meant by the word non-significant in many 
research literatures? (P-value > fixed-level of significance)

� In fixed-level testing, what is a Type I error? What is 
a Type II error? (Type I, false-positive, reject H0 as false, 
when it’s true in reality; Type II, false-negative, accepting H0
as true, when its truly false)
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A two-sided test of H0: θ = θ0 is significant at the 5% 
level if and only if θ0 lies outside a 95% confidence 
interval for θ. 

Tests and confidence intervals
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“Significance”

� Statistical significance relates to the strength of the 
evidence of existence of an effect.

� The practical significance of an effect depends on its 
size – how large is the effect. 

� A small P-value provides evidence that the effect 
exists but says nothing at all about the size of the 
effect.

� To estimate the size of an effect (its practical 
significance), compute a confidence interval. 
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“Significance”

� Statistical significance relates to the strength of the 
evidence of existence of an effect, Recall Child-birth 
example, p ~ 2 x 10-8.

� The practical significance of an effect depends on its 
size – how large is the effect.  To estimate the size of 
an effect (its practical significance), compute a 
confidence interval. [3%, 7%] more likely to have a 
girl as a second child, given the first child is a girl.
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A non-significant test does not imply that the 
null hypothesis is true (or that we accept H0).

It simply means we do not have (this data does 
not provide) the evidence to reject the skeptical 
reaction, H0 .

“Significance” cont.

To prevent people from misinterpreting your 
report: Never quote a P-value about the existence 
of an effect without also providing a confidence 
interval estimating the size of the effect.
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Review

� What is the relationship between a 95% confidence 
interval for a parameter θ and the results of a two-
sided test of H0: θ = θ0? (θ0 is inside the 95% CI(θ) ,�
� P-value for the test is >0.025,. Conversely, the test is 
significan, at 5%-level, �� θ0 is outside the 95% CI(θ)).

� If you read, “research shows that ......... is
significantly ....... than ....…”, what is a likely 
explanation? (there is evidence that a real effect exists to make the two 
values different).

� If you read, “research says that ..... makes no 
difference to ..……..”, what is a likely explanation?
(the data does not have the evidence to reject the skeptical reaction, H0 ).

θ

bigger θ0

drug

disease treatment
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Review

� Is a “significant difference” necessarily large or 
practically important? Why? (No, significant difference indicates the 
existence of an effect, practical importance depends on the effect-size.)

� What is the difference between statistical significance 
and practical significance? (stat-significance relates to the strength of the 
evidence that a real effect exists (e.g., that true difference is not exact;y 0); practical 
significance indicates how important the observed difference is in practice, how large is the 
effect.)

� What does a P-value tell us about the size of an 
effect? (P-value says whether the effect is significant, but says nothing about its size.)

� What tool do we use to gauge the size of an effect?
(CI(parameter) provides clues to the size of the effect.)
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Review

� If we read that a difference between two proportions 
is non-significant, what does this tell us? What does 
it not tells us? (Do not have evidence proportions are different, based on 
this data. Doesn’t mean accept H0).

� What general strategy can we use to help prevent 
misconceptions about the meanings of significance
and non-significance? (No, significant difference indicates the existence of 
an effect, practical importance depends on the effect-size.)

� What is the closest you can get to showing that a 
hypothesized value is true and how could you go 
about it? (Suppose, H0: θ = θ0 ,  and our test is not-significant. To show θ = θ0
we need to show that all values in the CI(θ0) are essentially equal to θ0 , this is a practical 
subjective matter decision, not a statistical one.)
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A test statistic is a measure of discrepancy between 
what we see in data and what we would expect to see
if H0 was true.

General ideas of “test statistic” and “p-value”

The P-value is the probability, calculated assuming that 
the null hypothesis is true, that sampling variation alone 
would produce data which is more discrepant than our 
data set.
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Course Material Review

� ==============Part I=================

� Experiments vs. Observational studies, causality.

� Histograms, dot-plots, stem-and-leaf plot, density 
curves.

� Numerical summaries of data (5-#-summary)

� The Normal Curve and Normal Approximation

� Percentiles, quartile and linear transformations
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Course Material Review – cont.

� Correlation and Regression

� Least squares – best-linear-fit, Linear models

� ==============Part II ==============

� Probability and proportions (Binomial distribution)

� Confidence Intervals (mean, prop’s, & differences)

� Central Limit Theorem

� Hypothesis testing

� Paired vs. Independent samples
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Chapter 26 – Summary
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Significance Tests vs. Confidence Intervals

� The chief use of significance testing is to check whether 
apparent differences or effects seen in data can be explained 
away simply in terms of sampling variation.  The essential 
difference  between confidence intervals and significance 
tests is as follows:
�Confidence interval : A range  of possible values for the 

parameter are determined that are consistent with the data 
at a specified confidence level.

� Significance test : Only one possible  value for the 
parameter, called the hypothesized value, is tested. We 
determine the strength of the evidence provided by the data 
against the proposition that the hypothesized value is the 
true value.
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Hypotheses

� The null hypothesis, denoted by H0, is the (skeptical 
reaction) hypothesis tested by the statistical test.  

� Principle guiding the formulation of null hypotheses: 
We cannot rule a hypothesized value in; we can only 
determine whether there is enough evidence to rule it 
out.  Why is that?

� Research (alternative) hypotheses lay out the 
conjectures that the research is designed to 
investigate and, if the researchers hunches prove 
correct, establish as being true.
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Hypotheses cont.

� The null hypothesis tested is typically a skeptical 
reaction to the research hypothesis.

� The most commonly tested null hypotheses are of the 
“it makes no difference” variety.

� Researchers try to demonstrate the existence of real 
treatment or group differences by showing that the 
idea that there are no real differences is implausible.

� The alternative hypothesis , denoted by H1, specifies 
the type of departure from the null hypothesis, H0, 
that we expect to detect.
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� The alternative hypothesis, typically corresponds to 
the research hypothesis.

� We use one-sided alternatives (using either :             
H1: θ  >θ0 or H1: θ  <θ0) when the research 
hypothesis specifies the direction of the effect, or 
more generally, when the investigators had good 
grounds for believing the true value of θ was on one 
particular side of θ0 before the study began. 
Otherwise a two-sided alternative,                  , is 
used.

H1 : θ ≠ θ0

Hypotheses cont.
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P-values

� Differences or effects seen in data that are easily 
explainable in terms of sampling variation do not 
provide convincing evidence that real differences or 
effects exist.

� The P-value is the probability that, if the hypothesis 
was true, sampling variation would produce an 
estimate that is further away from the hypothesized 
value than the estimate we got from our data.

� The P-value measures the strength of the evidence 
against  H0.
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P-values cont.

� The smaller the P-value, the stronger  the evidence 
against H0.

� A large P-value provides no evidence against the null 
hypothesis.

� A large P-value does not imply that the null hypothesis 
is true.

� A small P-value provides evidence that the effect exists 
but says nothing at all about the size of the effect.

� To estimate the size of an effect, compute a confidence 
interval.
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� Never quote a P-value about the existence of an effect without 
also  providing a confidence interval estimating the size of the
effect.

� Suggestions for verbal translation of P-values are given in 
Table 9.3.2.

� Computation of P-values : Computation of P-values for 
situations in which the sampling distribution of                

, is well approximated by a Student(df) 
distribution or a Normal(0,1) distribution is laid out in Table 
9.3.1.

� The t-test statistic tells us how many standard errors the 
estimate is from the hypothesized value.

( ˆ θ −θ0 ) / se( ˆ θ )

P-values cont.
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P-values

� Examples given in this chapter concerned means and 
differences between means, proportions and 
differences between proportions.

� In general, a test statistic is a measure of discrepancy 
between what we see in the data and what we would 
have expected to see if H0 was true.
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� If, whenever we obtain a P-value less than or equal to 
5%, we make a decision  to reject the null hypothesis, 
this procedure is called testing at the 5% level of 
significance.
�The significance level of such a test is 5%.

� If the P-value     α , the effect is said to be significant 
at the α-level.

� If you always test at the 5% level, you will reject one 
true null hypothesis in 20 over the long run.

≤

Significance
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≤

Significance cont.

� A two-sided  test of H0 : θ = θ0 is significant at the 
5% level if and only if  θ0 lies outside  a 95% 
confidence interval for θ.

� In reports on research, the word “significant” used 
alone often means “significant at the 5% level” (i.e. P-
value     0.05). “Non-significant”,  “does not differ 
significantly” and even “is no different” often mean
P-value > 0.05.

� A non-significant result does not  imply that H0 is 
true.

≤
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Significance cont.

� A Type I error  (false-positive) is made when one 
concludes that a true null hypothesis is false. 

� The significance level  is the probability of making a 
Type I error.

� Statistical significance relates to having evidence of 
the existence of an effect.

� The practical significance of an effect depends on 
its size.


