
1

PIC 20A, UCLA, Ivo Dinov Slide 1

UCLA PIC 20A
Java Programming

�Instructor: Ivo Dinov,
Asst. Prof. In Statistics, Neurology and

Program in Computing

�Teaching Assistant: Yon Seo Kim, PIC

University of California, Los Angeles, Summer 2002
http://www.stat.ucla.edu/~dinov/

PIC 20A, UCLA, Ivo DinovSlide 2

Chapter 7 – Runtime Errors
Exception Handling

�What Is an Exception?
�Catching and Handling Exceptions
�The try-catch-finally Block
�Exceptions Thrown by a Method
�Creating Your Own Exception Classes
�Why Use Exceptions?
�Examples

PIC 20A, UCLA, Ivo DinovSlide 3

What are Exceptions?
�An exception is an exceptional event that

disrupts the normal flow of instructions during
the execution of a program.

�When a runtime error occurs within a method,
the method creates an object and hands it off to
the runtime system. The object, called an
exception object, contains information about
the error, including its type and state of the
program, when the error occurred. Creating
an exception object and handing it to the JVM
is called throwing an exception.

PIC 20A, UCLA, Ivo DinovSlide 4

What are Exceptions?

�A method throws an exception �

Runtime system attempts to find
something to handle it.

�The set of possible “somethings” to
handle the exception is the ordered list of
methods that had been called to get to the
method where the error occurred.

�The list of methods is known as the
call stack.

PIC 20A, UCLA, Ivo DinovSlide 5

The Call Stack

main()

method_1()

method_2()

method_3()

method_4()

Function
call Seq.

Recursive
search for
handler

main() starts the
method calls

method1 has an
exception handler

method2 has no
Exception handler

method3 has no
exception handler

method4 generates
the exception!!!

PIC 20A, UCLA, Ivo DinovSlide 6

Exception catch-or-specify requirement

�The Java VM requires that a method must
either catch or specify all checked
exceptions that can be thrown by that
method.

�What are: “catch,” “specify,” “checked
exceptions,” and “exceptions that can be
thrown by that method”?

2

PIC 20A, UCLA, Ivo DinovSlide 7

Exception catch-or-specify requirement

�Catch – A method can catch an exception
by providing an exception handler for that
type of exception.

�Specify – A method specifies that it can
throw exceptions by using the throws
clause in the method declaration.

�Checked exceptions – There are two
kinds of exceptions:
� runtime exceptions and
� non-runtime exceptions.

PIC 20A, UCLA, Ivo DinovSlide 8

Exception catch-or-specify requirement

�Runtime exceptions occur within the
Java runtime system: arithmetic
exceptions (e.g., 1/0), pointer exceptions
(e.g., null.member), and indexing
exceptions (e.g., a = array[-1][Max+1];).

�A method does not have to catch or
specify runtime exceptions, although it
may.

PIC 20A, UCLA, Ivo DinovSlide 9

Exception catch-or-specify requirement

�Non-runtime exceptions are exceptions
that occur in code outside of the Java
runtime system. For example, exceptions
that occur during I/O are non-runtime
exceptions.

�The compiler requires that non-runtime
exceptions are caught or specified; hence
checked exceptions.

PIC 20A, UCLA, Ivo DinovSlide 10

Exception catch-or-specify requirement

�Exceptions that can be thrown by a
method include:
�Any exception thrown directly by the

method with the throw statement
�Any exception thrown indirectly by

calling another method that throws an
exception

PIC 20A, UCLA, Ivo DinovSlide 11

Exception catching and handling

�Exception handling mechanism — the
try, catch, and finally blocks

�The following example defines and
implements a class named
ListOfNumbers. Which creates a Vector
that contains ten Integer elements
numbered 0-9.

�The ListOfNumbers class also defines a
method named writeList that writes the
list of numbers into a text file called
OutFile.txt.

PIC 20A, UCLA, Ivo DinovSlide 12

Exception catching and handling – Ex.
public class ListOfNumbers {

private Vector vec;
private static final int SIZE =10;

public ListOfNumbers ()
{ vec = new Vector(SIZE);

for (int i =0; i <SIZE; i++)
vec.addElement(new Integer(i));

}

3

PIC 20A, UCLA, Ivo DinovSlide 13

Exception catching and handling – Ex.
public class ListOfNumbers {

….
public void writeList()
{ PrintWriter out =new PrintWriter(new

FileWriter("OutFile.txt"));
for (int i =0; i < SIZE; i++)

out.println("Value at:“ + i + "=“ +
vec.elementAt(i));

out.close();
}

}
PIC 20A, UCLA, Ivo DinovSlide 14

Exception catching and handling – Ex.
�The call to PrintWriter constructor initializes

an output stream on a file. If the file cannot be
opened, the constructor throws an
IOException .

�The Vector class’s elementAt method, which
throws an
ArrayIndexOutOfBoundsException if the
value of its argument is too small (<0) or too
large (>Max).

�Trying to compile ListOfNumbers class
generates 1 error message about the exception
thrown by the FileWriter constructor –

PIC 20A, UCLA, Ivo DinovSlide 15

Exception catching and handling – Ex.

�However, it does not display an error
message about the exception thrown by
elementAt , runtime exception
(ArrayIndexOutOfBoundsException).
Whereas the exception thrown by the
constructor, (IOException), is a checked
exception.

PIC 20A, UCLA, Ivo DinovSlide 16

Exception handling – try block
�Exception handling is:

�Enclose the statements that might throw an
exception within a try block. In general:

try {
statements

}
statements may throw an exception, itself.

�There is many ways to do this. Putting each
statement that might throw an exception within its
own try block and provide separate exception
handlers for each. Or, putting all the writeList
statements within a single try block.

PIC 20A, UCLA, Ivo DinovSlide 17

Exception handling – try block
PrintWriter out =null;

try {
System.out.println("Entered try statement");
out =new PrintWriter(new

FileWriter("OutFile.txt"));
for (int i =0; i < size; i++)
out.println("Value at:“ +i + "=“ + vec.elementAt(i));

}
If an exception occurs within the try block, that

exception is handled by an exception handler
associated with it. To associate an exception handler
with a try block, put a catch statement after it.

PIC 20A, UCLA, Ivo DinovSlide 18

Exception handling – catch block
You associate exception handlers with a try block by

providing one or more catch blocks directly after the
try .
try {

...
} catch (ExceptionType name) {

...
} catch (ExceptionType name) {

...
} ...

Each catch block is an exception handler and handles
the type of exception indicated by its argument.

4

PIC 20A, UCLA, Ivo DinovSlide 19

Exception handling – catch block
Two exception handlers for writeList method

try {
...

} catch (ArrayIndexOutOfBoundsException e) {
System.err.println("Caught

ArrayIndexOutOfBoundsException:“
+ e.getMessage());

} catch (IOException e) {
System.err.println("Caught

IOException:“ + e.getMessage());
}

PIC 20A, UCLA, Ivo DinovSlide 20

Exception handling – catch block
�The handlers shown print an error message.

Although simple, this might be the behavior
you want.

�The exception gets caught, the user is notified,
and the program continues to execute.

�However, exception handlers can do more.
They can do error recovery, prompt the user to
make a decision, or decide to exit the program.

PIC 20A, UCLA, Ivo DinovSlide 21

Format for HW Project 6
�Open-ended:

�You pick a (practical but simple) project that you
write the Java package to solves the problem

�E.g.’s,
�Get a list of *.gif files from the user and animate them as a movie

500 milliseconds apart
�Graphics Package – draw an object of interest (circle, rectangle,

line, cube, star, etc.) with pre-defined parameters (center, size, line-
width, etc.) with a desired color

�Bouncing-ball application
�Scientific Calculator
�EmployeeRecordDatabase with file I/O

�Completely structured:
�I select one problem that everyone works on!

Either way we’ll want to use OOP design, exception
handling, GUI widgets, packaging, etc.

PIC 20A, UCLA, Ivo DinovSlide 22

Exception handling – finally block
�Last step in setting up an exception handler is

to clean up before allowing control to be
passed to a different part of the program. This
is done by a finally block.

�The finally block is optional and provides a
mechanism to clean up regardless of what
happens within the try block.

�Ex., in exception occurring in the call to
PrintWriter. The program should close that
stream before exiting the writeList method.

PIC 20A, UCLA, Ivo DinovSlide 23

Exception handling – finally block
�This poses a somewhat complicated problem

because writeList’s try block can exit in one
of three ways.
�The new FileWriter statement fails and

throws an IOException .
�The vec.elementAt(i) statement fails and

throws an
ArrayIndexOutOfBoundsException.

�Everything succeeds and the try block exits
normally.

PIC 20A, UCLA, Ivo DinovSlide 24

Exception handling – finally block
� The runtime system always executes the statements

within the finally block regardless of what happens
within the try block.
finally {

if (out !=null){
System.out.println("Closing

PrintWriter");
out.close();

} else
System.out.println("PrintWriter

not open");
}

5

PIC 20A, UCLA, Ivo DinovSlide 25

Exception handling
�The try block in this method has three exit

possibilities.
�The new FileWriter statement fails and throws

an IOException .
�The vec.elementAt(i) statement fails and throws

an ArrayIndexOutOfBoundsException.
�Everything succeeds and the try statement exits

normally.
�Let’s look at what happens in the writeList

method during each of these exit possibilities.

PIC 20A, UCLA, Ivo DinovSlide 26

Specifying Exceptions thrown by methods

public void writeList() {
PrintWriter out =new PrintWriter(new

FileWriter("OutFile.txt"));
for (int i =0; i <size; i++)

out.println("Value at:"+i
+"="+vec.elementAt(i));

out.close();
}
To specify that writeList can throw two

exceptions, you add a throws clause to the
method declaration for the writeList method.

PIC 20A, UCLA, Ivo DinovSlide 27

Specifying Exceptions thrown by methods

� The throws clause comprises the throws keyword
followed by a comma-separated list of all the
exceptions thrown by that method.

� The clause goes after the method name and argument
list and before the brace that defines the scope of the
method.
public void writeList() throws IOException,

ArrayIndexOutOfBoundsException {
…

}
Remember that ArrayIndexOutOfBoundsException is

a runtime exception, so you don’t have to
specify it in the throws clause.

PIC 20A, UCLA, Ivo DinovSlide 28

Throwing Exceptions
� Sometimes, it’s appropriate for your code to

catch exceptions that can occur within it. In
other cases, however, it’s better to let a method
farther up the call stack handle the exception.

�For example, if you were providing the
ListOfNumbers class as part of a package of
classes, you probably couldn’t anticipate the
needs of all the users of your package.

�In this case, it’s better to not catch the
exception and to allow a method farther up the
call stack to handle it.

PIC 20A, UCLA, Ivo DinovSlide 29

Throwing Exceptions
public void writeList() throws IOException,

ArrayIndexOutOfBoundsException {
PrintWriter out =new PrintWriter(new

FileWriter("OutFile.txt"));
for (int i = 0; i < size; i++)

out.println("Value at:"+i
+"="+vec.elementAt(i));

out.close();
}
writeList() thows two exceptions (IOE, AIOBE).

PIC 20A, UCLA, Ivo DinovSlide 30

The throw clause
� The throw statement requires a single argument: a

throwable object, instance of any subclass of the
Throwable class.

� Ex. The method removes the top element from the
stack and returns the object:

public Object pop() throws EmptyStackException {
Object obj;
if (size == 0)

throw new EmptyStackException();
obj =objectAt(size -1); setObjectAt(size -1,null);
size--; return obj;

}

6

PIC 20A, UCLA, Ivo DinovSlide 31

The throw clause
�The objects that inherit from the Throwable

class include direct descendants and indirect
descendants (objects that inherit from children
or grandchildren of the Throwable class).

�Most significant subclasses.
Object

Throwable

…

Error Exception

RuntimeException…
…

…
…

PIC 20A, UCLA, Ivo DinovSlide 32

Exceptions vs. Errors
� When a dynamic linking failure or other “hard”

failure in the Java VM occurs, the Java VM throws an
Error . Typical programs should not catch Errors.
Also, typical programs never throw Errors.

� Most programs throw and catch objects that derive
from the Exception class. An Exception indicates that
a non serious system problem occurred.

� The Exception class has many descendants defined in
the Java platform. E.g., IllegalAccessException
signals that a particular method could not be found,
and NegativeArraySizeException indicates an
attempted to create an array with a negative size.

PIC 20A, UCLA, Ivo DinovSlide 33

Extending the Exception class
�You may use other’s Exception classes, but

consider writing your own exception classes if:
�Do you need an exception type that isn’t

represented by those in the Java platform?
�Would it help your users if they could differentiate

your exceptions from those thrown by classes
written by others?

�Does your code throw many related exceptions?
�Will your users have access to those exceptions if

you’re using others Exceptions?
�Should your package be independent and self-

contained?

PIC 20A, UCLA, Ivo DinovSlide 34

Why use Exceptions?
� 1. To separate the details of what to do when

something out of the ordinary happens. E.g.,
readFile {

open the file;
determine its size;
allocate that much memory;
read the file into memory;
close the file;

}
�Are there any Potential errors?

� What happens if the file can’t be opened?
� What happens if the length of the file can’t be determined?
� What happens if enough memory can’t be allocated?
� What happens if the read fails?
� What happens if the file can’t be closed?

PIC 20A, UCLA, Ivo DinovSlide 35

Why use Exceptions?
1. To separate the details of what to do when something

out of the ordinary happens. E.g.,
readFile { try { open the file;

determine its size;
allocate that much memory;
read the file into memory;
close the file;

} catch (fileOpenFailed) doSomething1;
catch (sizeDeterminationFailed)

doSomething2;
catch (memoryAllocFailed) doSomething3;
catch (readFailed) doSomething4;
catch (fileCloseFailed) doSomething5;

}
PIC 20A, UCLA, Ivo DinovSlide 36

Why use Exceptions?
2. To allow error propagation up the call-stack. E.g.,

method1 {
try { call method2;
} catch (Exception e) doErrorProcessing;

}
method2 throws Exception {

call method3;
}
method3 throws Exception {

call readFile;
}

7

PIC 20A, UCLA, Ivo DinovSlide 37

Why use Exceptions?
3. To allow grouping / differentiating error types. E.g.,

This handler will catch all I/O exceptions,
including FileNotFoundException,
EOFException, and so on.

catch (IOException e) {
e.printStackTrace(); //output goes to System.err
e.printStackTrace(System.out);//send trace to stdout

}
This handler handles any Exception
catch (Exception e){ // a (too) general exception handler

...
}

PIC 20A, UCLA, Ivo DinovSlide 38

Why use Exceptions?
3. To allow grouping / differentiating error types. E.g.,

This handler will catch all I/O exceptions,
including FileNotFoundException,
EOFException, and so on.

catch (IOException e) {
e.printStackTrace(); //output goes to System.err
e.printStackTrace(System.out);//send trace to stdout

}
This handler handles any Exception
catch (Exception e){ // a (too) general exception handler

...
}

PIC 20A, UCLA, Ivo DinovSlide 39

An Exception Handling Example: Divide by Zero

� Example program
�User enters two integers to be divided
�We want to catch division by zero errors
�Exceptions

�Objects derived from class Exception

�Look in Exception classes in java.lang
�Nothing appropriate for divide by zero
�Closest is ArithmeticException
�Extend and create our own exception class

PIC 20A, UCLA, Ivo DinovSlide 40

An Exception Handling Example: Divide by Zero

�Two constructors for most exception classes
�One with no arguments (default), with default message
�One that receives exception message
�Call to superclass constructor

�Code that may throw exception in try block
�Covered in more detail in following sections

�Error handling code in catch block
� If no exception thrown, catch blocks skipped

5 public class DivideByZeroException

6 extends ArithmeticException {

7 public DivideByZeroException()

12 public DivideByZeroException(String message)

PIC 20A, UCLA, Ivo Dinov Slide 41

1 // DivideByZeroException.java

2 // Definition of class DivideByZeroException.

3 // Used to throw an exception when a

4 // divide-by-zero is attempted.

55 public class DivideByZeroException

6 extends ArithmeticException {

7 public DivideByZeroException()

8 {

9 super("Attempted to divide by zero");

10 }

11

12 public DivideByZeroException(String message)

13 {

14 super(message);

15 }

16 }

Define our own exception class
(exceptions are thrown objects).

Default constructor (default message)
and customizable message
constructor.

�1. Class DivideByZero Exception
(extends Arithmetic Exception)
�1.2 Constructors
�1.3 super

PIC 20A, UCLA, Ivo Dinov Slide 42

�1. Set up GUI

18 // DivideByZeroTest.java
19 // A simple exception handling example.
20 // Checking for a divide-by-zero-error.
21 import java.text.DecimalFormat;
22 import javax.swing.*;
23 import java.awt.*;
24 import java.awt.event.*;
25
26 public class DivideByZeroTest extends JFrame
27 implements ActionListener {
28 private JTextField input1, input2, output;
29 private int number1, number2;
30 private double result;
31
32 // Initialization
33 public DivideByZeroTest()
34 {
35 super("Demonstrating Exceptions");
36
37 Container c = getContentPane();
38 c.setLayout(new GridLayout(3, 2));
39
40 c.add(new JLabel("Enter numerator ",
41 SwingConstants.RIGHT));
42 input1 = new JTextField(10);
43 c.add(input1);
44
45 c.add(
46 new JLabel("Enter denominator and press Enter ",
47 SwingConstants.RIGHT));

8

PIC 20A, UCLA, Ivo Dinov Slide 43

�2. Process GUI events

�2.1 try block

48 input2 = new JTextField(10);
49 c.add(input2);
50 input2.addActionListener(this);
51
52
53
54 c.add(new JLabel("RESULT ",
SwingConstants.RIGHT));55 output = new JTextField();
56 c.add(output);
57
58 setSize(425, 100);
59 show();
60 }
61
62 // Process GUI events
63 public void actionPerformed(ActionEvent e)
64 {
65 DecimalFormat precision3 = new DecimalFormat(
"0.000");66
67 output.setText(""); // empty the output
JTextField68
6969 try {
70 number1 = Integer.parseInt(input1.getText()
);71 number2 = Integer.parseInt(input2.getText()
);72
73 result = quotient(number1, number2);
74 output.setText(precision3.format(result)
);75 }

Notice enclosing try block. If an exception is
thrown in the block (even from a method call),
the entire block is terminated.

PIC 20A, UCLA, Ivo Dinov Slide 44

�2.2 catch blocks

�3. quotient

�4. main

7676 catch (NumberFormatException nfe) {
77 JOptionPane.showMessageDialog(this,
78 "You must enter two integers",
79 "Invalid Number Format",
80 JOptionPane.ERROR_MESSAGE);
81 }
82 catch (DivideByZeroException dbze) {
83 JOptionPane.showMessageDialog(this,
dbze.toString(),84 "Attempted to Divide by Zero",
85 JOptionPane.ERROR_MESSAGE);
86 }
87 }
88
89 // Definition of method quotient. Used to
demonstrate90 // throwing an exception when a divide-by-zero
error91 // is encountered.
92 public double quotient(int numerator, int
denominator)93 throws DivideByZeroException
94 {
9595 if (denominator == 0)
96 throw new DivideByZeroException();
97
98 return (double) numerator / denominator;
99 }
100
101 public static void main(String args[])
102 {
103 DivideByZeroTest app = new
DivideByZeroTest();104
105

catch blocks have error handling
code. Control resumes after the
catch blocks.

The first block makes sure the
inputs are of the correct type.

Method quotient throws an
DivideByZeroException
exception (object) if
denominator == 0.

PIC 20A, UCLA, Ivo Dinov Slide 45

106 app.addWindowListener(

107 new WindowAdapter() {

108 public void windowClosing(WindowEvent e)

109 {

110 e.getWindow().dispose();

111 System.exit(0);

112 }

113 }

114);

115 }

116 }

PIC 20A, UCLA, Ivo Dinov Slide 46

Outcome

PIC 20A, UCLA, Ivo DinovSlide 47

Try Blocks

� Exceptions that occurs in a try block
�Usually caught by handler specified by following catch

block

�Can have any number of catch blocks

� If no exceptions thrown, catch blocks skipped

try{
code that may throw exceptions

}

catch (ExceptionType ref) {
exception handling code

}

PIC 20A, UCLA, Ivo DinovSlide 48

Throwing an Exception
� throw

� Indicates exception has occurred (throwing an exception)
�Operand

�Object of any class derived from Throwable

�Derived from Throwable:
�Exception - most programmers deal with
�Error - serious, should not be caught

� When exception thrown
�Control exits current try block
� Proceeds to catch handler (if exists)

95 if (denominator == 0)

96 throw new DivideByZeroException();

9

PIC 20A, UCLA, Ivo DinovSlide 49

Throwing an Exception
� Exceptions

�Can still throw exceptions without explicit throw
statement

�ArrayIndexOutOfBoundsException

�Terminates block that threw exception
�Not required to terminate program

PIC 20A, UCLA, Ivo DinovSlide 50

Catching an Exception
� catch blocks

�Contain exception handlers
� Format:

�To catch all exceptions, catch an exception object:
catch(Exception e)

catch(ExceptionType ref) {
error handling code

}

82 catch (DivideByZeroException dbze) {

83 JOptionPane.showMessageDialog(this,
dbze.toString(),84 "Attempted to Divide by Zero",

85 JOptionPane.ERROR_MESSAGE);

86 }

PIC 20A, UCLA, Ivo DinovSlide 51

Catching an Exception
� Catching exceptions

� First handler to catch exception does
�All other handlers skipped

� If exception not caught
�Searches enclosing try blocks for appropriate handler

� If still not caught, non-GUI based applications terminate

try{
try{

throw Exception2
}
catch (Exception1){...}

}
catch(Exception2){...}

PIC 20A, UCLA, Ivo DinovSlide 52

Catching an Exception
� Information

� Information can be passed in the thrown object
�Data in instance variables

� If a catch block throws an exception
�Exception must be processed in enclosing try block

� Usage of exception handlers
�Rethrow exception (next section)

�Convert exception to different type
� Perform recovery and resume execution
�Look at situation, fix error, and call method that generated

exception
�Return a status variable to environment

PIC 20A, UCLA, Ivo DinovSlide 53

Rethrowing an Exception
� Rethrowing exceptions

�Use if handler cannot process exception
�Rethrow exception with the statement:

throw e;

�Detected by next enclosing try block

�Handler can always rethrow exception, even if it performed
some processing

PIC 20A, UCLA, Ivo DinovSlide 54

Throws Clause

� Throws clause
�Lists exceptions that can be thrown by a method

� Method can throw listed exceptions or derived types

int g(float h) throws a, b, c
{

// method body
}

92 public double quotient(int numerator, int denominator)

93 throws DivideByZeroException

10

PIC 20A, UCLA, Ivo DinovSlide 55

Throws Clause
� Run-time exceptions

�Derive from RunTimeException
� Some exceptions can occur at any point

�ArrayIndexOutOfBoundsException

�NullPointerException

�Create object reference without attaching object to reference
�ClassCastException

� Invalid casts

�Most avoidable by writing proper code

PIC 20A, UCLA, Ivo DinovSlide 56

Throws Clause

� Checked exceptions
�Must be listed in throws clause of method
�All non-RuntimeExceptions

� Unchecked exceptions
�Can be thrown from almost any method

�Tedious to write throws clause every time
�No throws clause needed

�Errors and RunTimeExceptions

PIC 20A, UCLA, Ivo DinovSlide 57

Throws Clause
� Catch-or-declare requirement

� If method calls another method that explicitly throws
checked exceptions
�Exceptions must be in original method's throws clause

�Otherwise, original method must catch exception
�Method must either catch exception or declare it in the
throw clause

PIC 20A, UCLA, Ivo DinovSlide 58

Constructors, Finalizers and Exception Handling

� What to do with an error in constructor?
�Constructor cannot return value
�How do we inform program of error?
� Possible solutions

�Hope someone tests defective object
�Set some variable outside constructor

�Thrown exception informs program of a failed constructor

� Exceptions thrown in constructors
�Object marked for garbage collection

�finalize

�No particular order

PIC 20A, UCLA, Ivo DinovSlide 59

Exceptions and Inheritance
� Inheritance

�Exception classes can have a common superclass
�catch (Superclass ref)

�Catches subclasses
�"Is a" relationship

� Polymorphic processing
�Easier to catch superclass than catching every subclass

PIC 20A, UCLA, Ivo DinovSlide 60

finally Block
� Resource leaks

� Programs obtain and do not return resources
�Automatic garbage collection avoids most memory leaks

�Other leaks can still occur

� finally block
� Placed after last catch block
�Can be used to returns resources allocated in try block
�Always executed, irregardless whether exceptions thrown

or caught
� If exception thrown in finally block, processed by

enclosing try block
�If there was an original exception, it is lost

11

PIC 20A, UCLA, Ivo Dinov Slide 61

�1. main

�1.1 throwException

�1.2 catch

1 // UsingExceptions.java
2 // Demonstration of stack unwinding.
3 public class UsingExceptions {
4 public static void main(String args[])
5 {
6 try {
77 throwException();
8 }
9 catch (Exception e) {
10 System.err.println("Exception handled in main"
);11 }
12 }
13
14 public static void throwException() throws Exception
15 {
16 // Throw an exception and catch it in main.
17 try {
18 System.out.println("Method throwException");
1919 throw new Exception(); // generate
exception20 }
21 catch(RuntimeException e) { // nothing caught
here22 System.err.println("Exception handled in " +
23 "method throwException");
24 }
25 finally {
26 System.err.println("Finally is always
executed");27 }
28 }
29 }

Call method throwException
(enclosed in a try block).

Throw an Exception. The catch block
cannot handle it, but the finally block
executes irregardless.

PIC 20A, UCLA, Ivo DinovSlide 62

Using printStackTrace and getMessage

� Class Throwable
� Superclass of all exceptions
�Method printStackTrace

�Prints method call stack for caught Exception object
�Most recent method on top of stack

�Helpful for testing/debugging

�Constructors
�Exception()

�Exception(String informationString)

�informationString may be accessed with method
getMessage

PIC 20A, UCLA, Ivo Dinov Slide 63

�1. main

�1.1 try

�1.2 getMessage

1 // UsingExceptions.java
2 // Demonstrating the getMessage and printStackTrace
3 // methods inherited into all exception classes.
4 public class UsingExceptions {
5 public static void main(String args[])
6 {
7 try {
88 method1();
9 }
10 catch (Exception e) {
1111 System.err.println(e.getMessage() + "\n");
12
1313 e.printStackTrace();
14 }
15 }
16
17 public static void method1() throws Exception
18 {
19 method2();
20 }
21
22 public static void method2() throws Exception
23 {
24 method3();
25 }
26
27 public static void method3() throws Exception
28 {
29 throw new Exception("Exception thrown in
method3");30 }
31 }

Call method1, which calls
method2, which calls method3,
which throws an exception.

getMessage prints the String the
Exception was initialized with.

printStackTrace prints the methods in this
order:

method3
method2
method1
main

(order they were called when exception occurred)

PIC 20A, UCLA, Ivo Dinov Slide 64

�Program Output

Exception thrown in method3
java.lang.Exception: Exception thrown in method3

at UsingExceptions.method3(UsingExceptions.java:28)
at UsingExceptions.method2(UsingExceptions.java:23)
at UsingExceptions.method1(UsingExceptions.java:18)
at UsingExceptions.main(UsingExceptions.java:8)

