UCLA PIC 20A
Java Programming

elnstructor: Ivo Dinov,
Asst. Prof. In Statistics, Neurology and
Program in Computing

eTeaching Assistant: Yon Seo Kim, Pic

University of California, Los Angeles, Summer 2002
http://www.stat.ucla.edu/~dinov/

What are Exceptions?

An exception is an exceptional event that
disrupts the normal flow of instructions during
the execution of a program.

® When a runtime error occurs within a method,
the method creates an object and hands it off to
the runtime system. The object, called an
exception object, contains information about
the error, including its type and state of the
program, when the error occurred. Creating

an exception object and handing it to the JIVM

is called throwing an exception.

The Call Stack

main() starts the
method calls

Function method1 has an
exception handler
call Seq.

method2 has no

Recursive Exception handler

search for method3 has no
handler exception handler

method4 generates
the exception!!!

Chapter 7 — Runtime Errors
Exception Handling

®What [s an Exception?

®Catching and Handling Exceptions
®The try-catch-finally Block
®Exceptions Thrown by a Method
®(Creating Your Own Exception Classes
®Why Use Exceptions?

®Examples

What are Exceptions?

A method throws an exception =»
Runtime system attempts to find
something to handle it.

®The set of possible “somethings” to
handle the exception is the ordered list of
methods that had been called to get to the
method where the error occurred.

®The list of methods is known as the
call stack.

The Java VM requires that a method must
either catch or specify all checked
exceptions that can be thrown by that
method.

®What are: “catch,” “specify,” “checked
exceptions,” and “exceptions that can be
thrown by that method”™?

Exception catch-or-specify requirement

®Catch — A method can catch an exception
by providing an exception handler for that
type of exception.

®Specify — A method specifies that it can
throw exceptions by using the throws
clause in the method declaration.

®Checked exceptions — There are two
kinds of exceptions:
B runtime exceptions and
B non-runtime exceptions.

Exception catch-or-specify requirement

Exception catch-or-specify requirement

®Runtime exceptions occur within the
Java runtime system: arithmetic
exceptions (e.g., 1/0), pointer exceptions
(e.g., null.member), and indexing
exceptions (e.g., a = array[-1][Max+1];).

® A method does not have to catch or
specify runtime exceptions, although it
may.

®Non-runtime exceptions are exceptions
that occur in code outside of the Java
runtime system. For example, exceptions
that occur during I/O are non-runtime
exceptions.

®The compiler requires that non-runtime
exceptions are caught or specified; hence
checked exceptions.

Exception catching and handling

®Exception handling mechanism — the
try, catch, and finally blocks

®The following example defines and
implements a class named
ListOfNumbers. Which creates a Vector
that contains ten Integer elements
numbered 0-9.

®The ListOfNumbers class also defines a
method named writeList that writes the
list of numbers into a text file called
OutFile.txt.

Exception catch-or-specify requirement

®Exceptions that can be thrown by a
method include:

M Any exception thrown directly by the
method with the throw statement

M Any exception thrown 1ndirectly by
calling another method that throws an
exception

Exception catching and handling — Ex.

public class ListOfNumbers {

private Vector vec;
private static final int SIZE =10;

public ListOfNumbers ()
{ vec = new Vector(SIZE);
for (int 1 =0; i <SIZE; i++)
vec.addElement(new Integer(i));

Exception catching and handling — Ex.

puic class ListOfNumbers {

public void writeList()
{ PrintWriter out =new PrintWriter(new
FileWriter(" OutFile.txt'"));
for (inti=0; 1 <SIZE; it++)
out.println("Value at:“ + i+ "="+
vec.elementAt(i));
out.close();

Exception catching and handling — Ex.

®However, it does not display an error
message about the exception thrown by
elementAt , runtime exception
(ArraylndexOutOfBoundsException).
Whereas the exception thrown by the
constructor, (IOException), is a checked

exception.

Exception handling — try block

PrintWriter out =null;
try {
System.out.println("'Entered try statement");
out =new PrintWriter(new
FileWriter(" OutFile.txt"));
for (inti=0;i <size; it++)
out.println(""Value at:* +i + "=“ + vec.elementAt(i));

}

If an exception occurs within the try block, that
exception is handled by an exception handler
associated with it. To associate an exception handler
with a try block, put a catch statement after it.

Exception catching and handling — Ex.

® The call to PrintWriter constructor initializes
an output stream on a file. If the file cannot be
opened, the constructor throws an
IOException .

® The Vector class’s elementAt method, which
throws an
ArrayIndexOutOfBoundsException if the
value of its argument is too small (<0) or too
large (>Max).

® Trying to compile ListOfNumbers class

generates 1 error message about the exception

thrown by the FileWriter constructor —

Exception handling — try block

® Exception handling is:
BEnclose the statements that might throw an
exception within a try block. In general:
try {
statements
}
statements may throw an exception, itself.

B There is many ways to do this. Putting each
statement that might throw an exception within its
own try block and provide separate exception
handlers for each. Or, putting all the writeList
statements within a single try block.

Exception handling — catch block

associate exception handlers with a try block by
providing one or more catch blocks directly after the

} catch (ExceptionType name) {
} catch (ExceptionType name) {

} 5

Each catch block is an exception handler and handles
the type of exception indicated by its argument.

Exception handling — catch block

try {

} catch (ArrayIndexOutOfBoundsException e) {

System.err.println(" Caught
ArrayIndexOutOfBoundsException:*

+ e.getMessage());
} catch (IOException e) {

System.err.println("' Caught
IOException:*“ + e.getMessage());

Format for HW Project 6

® Open-ended:
HYou pick a (practical but simple) project that you
write the Java package to solves the problem
HE.g’s,
OGet a list of *.gif files from the user and animate them as a movie
500 milliseconds apart
HGraphics Package — draw an object of interest (circle, rectangle.

line, cube, star, etc.) with pre-defined parameters (center, size, Tine-
width, etc.) with a desired color

UBouncing-ball application
QScientific Calculator
HEmployeeRecordDatabase with file I/O
©® Completely structured:
M select one problem that everyone works on!
Either way we’ll want to use OOP design, exception
handling, GUT widgets, packaging, efc.

Exception handling — finally block

® This poses a somewhat complicated problem
because writeList’s try block can exit in one
of three ways.

BThe new FileWriter statement fails and
throws an IOException .

BThe vec.elementAt(i) statement fails and
throws an
ArrayIndexOutOfBoundsException.

BEverything succeeds and the try block exits
normally.

Exception handling — catch block

Although simple, this might be the behavior
you want.

® The exception gets caught, the user is notified,
and the program continues to execute.

® However, exception handlers can do more.
They can do error recovery, prompt the user to
make a decision, or decide to exit the program.

Exception handling — finally block

to clean up before allowing control to be
passed to a different part of the program. This
1s done by a finally block.

® The finally block is optional and provides a
mechanism to clean up regardless of what
happens within the try block.

® Ex., in exception occurring in the call to

PrintWriter. The program should close that
stream before exiting the writeList method.

Exception handling — finally block

within the finally block regardless of what happens
within the try block.

finally {
if (out !=null){

System.out.println("' Closing
PrintWriter");

out.close();
} else

System.out.println(" PrintWriter
not open'");

Exception handling

® The try block in this method has three exit

possibilities.

B The new FileWriter statement fails and throws
an IOException .

EThe vec.elementAt(i) statement fails and throws
an ArrayIndexOutOfBoundsException.
B Everything succeeds and the try statement exits
normally.
® [ct’s look at what happens in the writeList
method during each of these exit possibilities.

Specifying Exceptions thrown by methods

The throws clause comprises the throws keyword
followed by a comma-separated list of all the
exceptions thrown by that method.

® The clause goes after the method name and argument
list and before the brace that defines the scope of the
method.

public void writeList() throws IOException,
ArrayIndexOutOfBoundsException {

§

Remember that ArraylndexOutOfBoundsException is
a runtime exception, so you don’t have to
specify it in the throws clause.

Throwing Exceptions

p void writeList() throws IOException,
ArrayIndexOutOfBoundsException {

PrintWriter out =new PrintWriter(new
FileWriter("OutFile.txt"));

for (inti=0;1i <size; itt)
out.println("Value at:"+i
+"="+vec.elementAt(i));
out.close();

h

writeList() thows two exceptions (I0E, AIOBE).

Specifying Exceptions thrown by methods

public void writeList() {
PrintWriter out =new PrintWriter(new
FileWriter(" OutFile.txt'"));
for (int i =0; i <size; i++)
out.println("Value at:"+i
+"="+vec.elementAt(i));
out.close();

}

To specify that writeList can throw two
exceptions, you add a throws clause to the
method declaration for the writeList method.

Throwing Exceptions

Sometimes, it’s appropriate for your code to
catch exceptions that can occur within it. In
other cases, however, it’s better to let a method
farther up the call stack handle the exception.

® For example, if you were providing the
ListOfNumbers class as part of a package of
classes, you probably couldn’t anticipate the
needs of all the users of your package.

® In this case, it’s better to not catch the
exception and to allow a method farther up the
call stack to handle it.

The throw clause

® The throw statement requires a single argument: a

throwable object, instance of any subclass of the
Throwable class.

® Ex. The method removes the top element from the
stack and returns the object:

public Object pop() throws EmptyStackException {
Object obj;
if (size == 0)

throw new EmptyStackException();
obj =objectAt(size -1); setObjectAt(size -1,null);
size--; return obj;

The throw clause

® The objects that inherit from the Throwable
class include direct descendants and indirect
descendants (objects that inherit from children
or grandchildren of the Throwable class).

® Most significant subclasses.

Throwable

consider writing your own exception classes if:

B Do you need an exception type that isn’t
represented by those in the Java platform?

BWould it help your users if they could differentiate
your exceptions from those thrown by classes
written by others?

M Does your code throw many related exceptions?

BWill your users have access to those exceptions if
you’re using others Exceptions?

W Should your package be independent and self-
contained?

Why use Exceptions?

1. To sepate the details of what to do when something
out of the ordinary happens. E.g.,

readFile { try { open the file;
determine its size;
allocate that much memory;
read the file into memory;
close the file;
} catch (fileOpenFailed) doSomethingl;

catch (sizeDeterminationFailed)
doSomething?2;

catch (memoryAllocFailed) doSomething3;
catch (readFailed) doSomething4;
catch (fileCloseFailed) doSomething5;

Exceptions vs. Errors

® When a dynamic linking failure or other “hard”
failure in the Java VM occurs, the Java VM throws an
Error . Typical programs should not catch Errors.
Also, typical programs never throw Errors.

® Most programs throw and catch objects that derive
from the Exception class. An Exception indicates that
a non serious system problem occurred.

® The Exception class has many descendants defined in
the Java platform. E.g., IllegalAccessException
signals that a particular method could not be found,
and NegativeArraySizeException indicates an
attempted to create an array with a negative size.

Why use Exceptions?

® 1. To scarate the details of what to do when
something out of the ordinary happens. E.g.,

readFile {
open the file;
determine its size;
allocate that much memory;
read the file into memory;
close the file;

M Are there any Potential errors?
O What happens if the file can’t be opened?

O What happens if the length of the file can’t be determined?
O What happens if enough memory can’t be allocated?

O What happens if the read fails?

O What happens if the file can’t be closed?

Why use Exceptions?

2. To allow error propagation up the call-stack. E.g.,
method1 {
try { call method2;
} catch (Exception e¢) doErrorProcessing;

method2 throws Exception {
call method3;

method3 throws Exception {
call readFile;
}

Why use Exceptions?

3. llow grouping / differentiating error types. E.g.,

This handler will catch all I/O exceptions,
including FileNotFoundException,
EOFException, and so on.

catch (IOException e) {
e.printStackTrace(); /output goes to System.err
e.printStackTrace(System.out);send trace to staout

This handler handles any Exception
catch (Exception e){ /1 a (too) general exception handler

}

An Exception Handling Example: Divide by Zero

® Example program

B User enters two integers to be divided

B We want to catch division by zero errors

M Exceptions

OObjects derived from class Except i on

B ook in Except i on classes inj ava. | ang
UNothing appropriate for divide by zero
UClosestis Ar i t hmet i cExcepti on
UExtend and create our own exception class

1 // DivideByZeroException.java

2 /1 Definition of class DivideByZeroException.

3 /] Used to throw an exception when a

4 [/ divide-by-zero is attenpted.

5 public class DivideByZeroException

6 extends ArithneticException { | Define our own exception class

7 publ i ¢ Divi deByZer oExcepti on() (exceptions are thrown objects).

8 { Default constructor (default message)
and customizable message

9 super("Attenpted to divide by zero" | constructor.

10}

11

12 public DivideByZer oException(String nessage)

Bt ®].Class Di vi deByZer o Exception
Mo swerCresst oyt ends Ari t hmeti c Excepti on)

16} ® 1.2 Constructors
®1.3 super

Why use Exceptions?

3. llow grouping / differentiating error types. E.g.,
This handler will catch all I/O exceptions,
including FileNotFoundException,
EOFException, and so on.

catch (IOException e) {
e.printStackTrace(); /output goes to System.err
e.printStackTrace(System.out);send trace to staout

This handler handles any Exception
catch (Exception e){ /1 a (too) general exception handler

}

An Exception Handling Example: Divide by Zero

5 public class DivideByZer oException

6 extends ArithmeticException {

7 public DivideByZeroException()

12 public Divi deByZer oException(String nessage)

B Two constructors for most exception classes
OOne with no arguments (default), with default message
HOne that receives exception message
QCall to superclass constructor

B Code that may throw exception in t r y block
QCovered in more detail in following sections

M Error handling code in cat ch block

M If no exception thrown, cat ch blocks skipped

| 18 // DivideByZeroTest.java

| 19// A sinple exception handling example.

. 20 /] Checking for a divide-by-zero-error.

21 inport iava.text.Decimal For mat;

22 inport javax.sw ng.*;

23 inport java.awt.*;

24 inport iava.awt.event.*;

25

26 public class DivideByZeroTest extends JFrame
27 inmpl enents ActionLi stener {
28 private JTextField inputl, input2, output;
29 private int nunmberl, nunber2;

30 private double result;

31 JR—

32 /1 Initialization
33 public DivideByZeroTest ()

34

35 super("Denpnstrating Exceptions”);

36

37 Contai ner ¢ = get Cont ent Pane() ;

38 c.setLayout(new GridLayout(3, 2));

39

40 c.add(new JLabel ("Enter numerator "

41 Swi ngConst ants. RIGHT));
42 inputl = new JTextField(10):

c.add(inputl);

c. add(
new JLabel ("Enter denominator and press Enter "
Swi ngConst ant s. RI GHT H

" " 76 catch (Nunber For mat Excention nfe) { cat ch blocks have error handling
48 input2 = new JTextField(10); 77 Joti onPane. showMessaaeDi al oa(t hi's. code. Control resumes after the
49 c.add(input2); 78 “You nust enter two integers”, cat ch blocks.
50 i nput 2. addActi onLi stener(this); 79 "I nval id Nunber Format".
51 80 Jot i onPane. ERROR MESSAGE) ; The first block makes sure the
52 81 ¥ inputs are of the correct type.
53 T 82 catch (DivideBvZer oException dbze) {
54 c.add(new JLabel ("RESULT ", 83 Joti onPane. showMessaaeDi al oa(this.
55 output = new JTextField(); 84 “Anfem:l ed to Divide by Zero".
56 c.add(output); 22 " JOnt i onPane. ERROR MESSAGE) :
57
58 setSize(425, 100); R :; ' R
Zg) Shcatl 89 /1 Definition of method auotient. Used to —_—
90 /1 throwi na an exception when a divide-bv-zero
Gl 91 Il i's encountered.
62 /] Process GU events Notice enclosing t r'y block. If an exception is 92 public double quotient(int numerator. int
63 public void actionPerfornmed(Actiq thrown in the block (even from a method call), 93 throws Divi deByZer oException
X . the entire block is terminated. 94
65 Deci nal For mat pr eci si on. T 95 if (denominator == 0) =
96 throw new Di vi deBvZer oExcent i onf) Method quot i ent throws an
out put . set Tex| "); Il enpty the output 97 Di vi deByZer oExcept i on
98 return (double) nunerator / denominator: exception (object) if
try 9 1 denoni nator ==
70 nunber1 = | nteger.parselnt(inputl.getText() ey
nunber2 = | nteger.parselnt(input2.getText() 13; ?Ubl 16 sieiie veid mind vl arasl
result = quotient(numberl, number2); e I ICEIPEESE 65D S e
out put . set Text (precision3.format(result)

106 app. addW ndowLi st ener ([T ——
107 new W ndowAdapt er () { ‘mmn e e e fnn
108 publ i ¢ voi d wi ndowd osi ng(W ndowEvent e) P Outcome
109 {
110 e.get Wndow() . di spose();
111 Systemexit(0);
112 }
113 }
114)
e b Erdii pasisiadod |10
me) ey hymr s e
Eidid dmsesd slad | 1771
I'mim danaspraies ard proee [pim
rt5:,|_|.ll|:ﬁ'\-

Try Blocks

Throwing an Exception

® Exceptions that occurs inat ry block ®t hrow

M Usually caught by handler specified by following cat ch M Indicates exception has occurred (throwing an exception)
block B Operand
QObject of any class derived from Thr owabl e

try{

i 95 i i =
code that may throw exceptions 17 ¢ CEwmazte o)
96 throw new Di vi deByZer oException();

} .
) M Derived from Thr owabl e:
catch (ExceptionType ref) {

. Sy fidtoior W LExcept i on - most programmers deal with
} P 9 QError - serious, should not be caught

® When exception thrown
B Control exits current t 1y block
M Proceeds to cat ch handler (if exists)

QCan have any number of cat ch blocks
M If no exceptions thrown, cat ch blocks skipped

Throwing an Exception

® Exceptions
M Can still throw exceptions without explicit t hr ow
statement
B Arrayl ndexQut Of BoundsExcepti on
M Terminates block that threw exception
UNot required to terminate program

Catching an Exception

® Catching exceptions
B First handler to catch exception does
DAl other handlers skipped
B If exception not caught
QSearches enclosing t ry blocks for appropriate handler

try{
try{
t hrow Exception2

}
catch (Exceptionl){...}

}
catch(Exception2){...}

M If still not caught, non-GUI based applications terminate

Rethrowing an Exception

® Rethrowing exceptions
B Use if handler cannot process exception

M Rethrow exception with the statement:
throw e;
ODetected by next enclosing t ry block

M Handler can always rethrow exception, even if it performed
some processing

Catching an Exception

® cat ch blocks
M Contain exception handlers
B Format:

catch(ExceptionType ref) {
error handling code

82 catch (DivideByZeroException dbze) {
83 JOpt i onPane. showMessageDi al og(this,
84 "Attenpted to Divide by Zero",
85 JOpt i onPane. ERROR_MESSAGE) ;

86 }

M To catch all exceptions, catch an exception object:
catch(Exception e)

Catching an Exception

® Information
B Information can be passed in the thrown object
M Data in instance variables

® Ifa cat ch block throws an exception
B Exception must be processed in enclosing t r y block

® Usage of exception handlers
B Rethrow exception (next section)
O Convert exception to different type
M Perform recovery and resume execution

B Look at situation, fix error, and call method that generated
exception

M Return a status variable to environment

Throws Clause

® Throws clause
M Lists exceptions that can be thrown by a method

92 public double quotient(int nunerator, int denominator)
93 throws Divi deByZer oException

int g(float h) throws a, b, c

/1 method body

}

B Method can throw listed exceptions or derived types

Throws Clause

® Run-time exceptions
M Derive from RunTi neExcept i on
M Some exceptions can occur at any point
UAr rayl ndexQut Of BoundsExcept i on
ONul | Poi nt er Except i on

O Create object reference without attaching object to reference
Ud assCast Excepti on

Olnvalid casts

B Most avoidable by writing proper code

Throws Clause

® Catch-or-declare requirement
B If method calls another method that explicitly throws
checked exceptions
L Exceptions must be in original method's t hr ows clause

M Otherwise, original method must cat ch exception

B Method must either cat ch exception or declare it in the
t hr owclause

Exceptions and Inheritance

® Inheritance
B Exception classes can have a common superclass
Hcatch (Superclass ref)
OCatches subclasses
"Is a" relationship
B Polymorphic processing
M Easier to catch superclass than catching every subclass

Throws Clause

® Checked exceptions
B Must be listed in t hr ows clause of method
B All non-Runt i neExcepti ons

® Unchecked exceptions

B Can be thrown from almost any method
QTedious to write t hr ows clause every time
HNo t hr ows clause needed

M Errorsand RunTi meExcepti ons

Constructors, Finalizers and Exception Handling

® What to do with an error in constructor?
B Constructor cannot return value

B How do we inform program of error?
M Possible solutions
Hope someone tests defective object
Set some variable outside constructor

B Thrown exception informs program of a failed constructor

® Exceptions thrown in constructors

B Object marked for garbage collection
Qfinalize

M No particular order

final | y Block

® Resource leaks
M Programs obtain and do not return resources
B Automatic garbage collection avoids most memory leaks
UOther leaks can still occur
®finally block
M Placed after last cat ch block

M Can be used to returns resources allocated in t r y block

B Always executed, irregardless whether exceptions thrown
or caught

M If exception thrown in f i nal | y block, processed by
enclosing t r'y block

QIf there was an original exception, it is lost

10

1 /I UsinaExceptions.
2 I/ Denonstration of stack unwindina.
3 public class UsinaExceptions {

4 public static void main(Strina arasf1)

5

6 try { ; Call method t hr owException |

Z " throwexception | (enclosed inat ry block). |
&) catch (Exception e) { o

10 Systemerr.println("Exception h{ Throwan Excepti on. The cat ch block
11 i cannot handle it, but the f i nal | y block
12 1 executes irregardless.

public static void throwException() throws

/1 Throw an exception and catch i
17 try {

18 Systemout. println("
19 t hrow new Excenti on
20 i
21 catch(Runti meException e) { // nothina cauaht
22 Svstemerr.println("Exception hapdled in " +
23 “met hod throyException”);
24 1

25 finallv {
26 Svstemerr.printin("Finally is al wavs
1

throwExcention”);
/1 aenerjate

111 Usi anxcm ions.iava

2 [Denpnstratina the aet Messaae and print StackTrace

3 [/ methods inherited into all exception classes.

4 public class UsinaExceptions {

5 public static void main(Strina aragtl— 5

6 { Call met hod1, which calls

7 trv { et hod2, which calls met hod3,
Ye e q

g et hod1(which throws an exception.

10 catch (Excention e) {

11 Svstemerr.orintln(e.aetMessaae() + "\n"):

12

ij " e.orintStackTrace(): get Nessage prints the St ri ng the

15 1 Except i on was initialized with.

16

17 public static void methddl() throws Exceotion |

18 { = B PR

19 et hod2() : print St ackTr ace prints the methods in this

20 ¥ order:

2 thod3

22 public static void nethod2() t|MEtNO

23 { net hod2
24 met hod3(): net hodl
¥ mai n

public static void method3() t| (order they were called when exception occurred)
{

throw new Excention("Exception thrown in

Using pri nt St ackTr ace and get Message

® Class Thr owabl e

B Superclass of all exceptions
B Method pri nt St ackTrace

OPrints method call stack for caught Except i on object

O Most recent method on top of stack

QHelpful for testing/debugging
B Constructors

QException()

QException(String informationString)
i nformationString may be accessed with method
get Message

Exception thrown in nethod3

java.l ang. Exception: Exception thrown in nethod3

at Usi ngExcept i ons. met hod3(Usi ngExcepti ons. j ava: 28)
at Usi ngExcepti ons. met hod2(Usi ngExcepti ons. j ava: 23)
at Usi ngExcepti ons. met hod1(Usi ngExcepti ons. j ava: 18)
at Usi ngExcepti ons. mai n(Usi ngExcepti ons. j ava: 8)

®Program Output

11

