UCLA PIC 20A
Java Programming

elnstructor: Ivo Dinov,
Asst. Prof. In Statistics, Neurology and
Program in Computing

eTeaching Assistant: Yon Seo Kim, Pic

University of California, Los Angeles, Summer 2002
http://www.stat.ucla.edu/~dinov/

What is a Thread?

A thread is a single sequential flow of control that
runs within a program.

® Ex: A Web browser is a multithreaded application —
you can scroll a page while it’s downloading an
applet or an image, play animation and sound
concurrently, print a page in the background while
you download a new page, or watch three sorting
algorithms race to the finish.

® Some books call a thread a lightweight process. A
thread is considered lightweight because it runs
within the context of a full-blown program and takes

advantage of the resources allocated for that program

and the program’s environment.

What is a Thread?

Basic support for threads is in the class
java.lang.Thread. It provides a thread API
and provides all the generic behavior for
threads.

B starting, sleeping, running, yielding, and having
a priority.

® To implement a thread using the Thread class,

you need to provide it with a run method that

performs the thread’s task.

Chapter 8 — Threads in Java

® What Is an Thread?

® Example - TimerThread
® Life-cycle of a thread

® Thread Priority

® Synchronizing Threads
® Grouping Threads

What is a Thread?

high-level thread API. For example, if your
program must perform a task repeatedly,
consider using the java.util. Timer class. The
Timer class is also useful for performing a task
after a delay.

® If you’re writing a program with a GUI, you
might want to use the javax.swing.Timer class
instead of java.util. Timer. SwingWorker,
helps you with another common job:

performing a task in a background thread, and
updating the GUI when the task completes.

TimerTask — example

Using a timer to perform a task after a delay Reminder.java

import java.util. Timer;//Demo that uses java.util. Timer to
import java.util. TimerTask; //wiea s o excoutc once s sconds ave passed
public class Reminder {
Timer timer;
public Reminder(int seconds){

timer =new Timer();
timer.schedule(new RemindTask(),seconds*1000);

TimerTask — example

Using a timer to perform a task after a delay Reminder.java
class RemindTask extends TimerTask {
public void run(){ System.out.printIn("Time's up!");
timer.cancel();//Terminate the timer threfd

H

public static void main (String args []) {
new Reminder(5);
System.out.println("Task scheduled.");

To Stop Timer Threads

® By default, a program keeps running as long as its
timer threads are running. To terminate a timer
thread:

M Invoke cancel on the timer. You can do this from anywhere
in the program, such as from a timer task’s run method.

B Make the timer’s thread a “daemon” by creating the timer
like this: new Timer(true). If the only threads left in the
program are daemon threads, the program exits.

B After all the timer’s scheduled tasks have finished
executing, remove all references to the Timer object.
Eventually, the timer’s thread will terminate.

M Invoke the System.exit method, which makes the entire
program (and all its threads) exit.

To Stop Timer Threads

We need to call the System.exit method to make this program.
class RemindTask extends TimerTask {
public void run(){
System.out.println("'Time's up!");
toolkit.beep();
//timer.cancel();
//Not necessary since we call System.exit
System.exit(0);
//StOpS the AWT thread (and everything else)

}

} //END:: public class ReminderBeep

TimerTask — example

®Basic components of implementing and
scheduling a task a timer thread.

HImplement a custom subclass of TimerTask
The run method contains the code that
performs the task. Here, the subclass is
named RemindTask .

lClreate a thread by instantiating the Timer
class.

MInstantiate the timer task object (
RemindTask()).

ESchedule the timer task for execution. This
example uses the schedule method, with args
= timer task; and the delay in milliseconds.

To Stop Timer Threads

® Sometimes, timer threads aren’t the only threads that
can prevent a program from exiting when expected.
For example, 1f you use the AWT at all to make
beeps—the AWT automatically creates a nondaemon
thread that keeps the program alive. We need to call
the System.exit method to make this program.
public class ReminderBeep {
public ReminderBeep(int seconds)
toolkit =Toolkit.getDefaultToolkit();
timer =new Timer();

timer.schedule(new
RemindTask(),seconds*1000);

Perform
public class AnnoyingBeep {
Toolkit toolkit;
Timer timer;
public AnnoyingBeep(){
toolkit =Toolkit.getDefaultToolkit();
timer =new Timer();

ti .schedul indTask(), 0
mer-sqhg 0'0’03(;"/7%111‘131"& ay 3 s(L?l’)séquent rate

;

class RemindTask extends TimerTask {
int numWarningBeeps =3;
public void run(){
if (numWarningBeeps >0)
toolkit.beep();

Performing a task repeatedly

Perform a task once per second.
class RemindTask extends TimerTask {
int numWarningBeeps =3;
public void run(){
if (numWarningBeeps >0) { toolkit.beep();
System.out.println("Beep!");
numWarningBeeps--;
}else { toolkit.beep();
System.out.println("Time's up!");
//timer.cancel();//Not necessary since we call
System.exit(0); //Stops AWT thread/everything
}

Thread’s run method

L] Custoizi the Thread’s run method: pp. 277

Class Thr ead: An Overview of the Thr ead Methods

® Thr ead methods
Mstati c methodsl eep(mlliseconds)

O Thread sleeps (does not contend for processor) for number of
milliseconds

[Can give lower priority threads a chance to run
Hinterrupt

Qinterrupts a thread
HEstatic methodi nterrupted

OReturns t r ue if current thread interrupted
Hislnterrupted

UDetermines if a thread is interrupted
misAlive

UReturns t r ue if st ar t called and thread not dead (r un has not
completed)

Performing a task repeatedly

The AnnoyingBeep program uses a three-argument version of the

schedule method to specify that its task should execute once a

second, beginning immediately. Here are all the Timer
methods you can use to schedule repeated executions of tasks:

® schedule(TimerTask task ,long delay ,long period)

® schedule(TimerTask task ,Date time ,long period)

® scheduleAtFixedRate(TimerTask task, long delay,long period)

® scheduleAtFixedRate(TimerTask task,Date firstTime,long period)

If smoothness is important to schedule a task for repeated
execution, use a schedule method; or a scheduleAtFixedRate
method when time synchronization is important. Ex.,
AnnoyingBeep program uses the schedule method, which
means that the annoying beeps will all be at least 1 second
apart. If one beep is late for any reason, all subsequent beeps
will be delayed.

Class Thr ead: An Overview of the Thr ead Methods

® Thread-related methods
B See API for more details (especially exceptions)
B Constructors
OThread(threadNane)

QThr ead()
O Creates an auto numbered Thr ead of format Thr ead- 1, Thr ead-
2.

Hrun
U"Does work" of thread

UCan be overridden in subclass of Thr ead or in Runnabl e object
(more on interface Runnabl e in 15.10)

Estart

ULaunches thread, then returns to caller
QCalls run

OError to call st ar t twice for same thread

Class Thr ead: An Overview of the Thr ead Methods

® Thr ead methods
Myi el d - discussed later
Hset Name(threadNanme)
Hget Name
mtoString
QReturns thread name, priority, and Thr eadGr oup (more 15.11)
E st ati ¢ method cur rent Thr ead
OReturns reference to currently executing thread
Hjoin
U Calling thread waits for thread receiving message to die before it
can proceed

No argument or 0 millisecond argument means thread will wait
indefinitely
O Can lead to deadlock/indefinite postponement

Thread States: Life Cycle of a Thread

® Thread states

B Born state
O Thread just created
OWhen st ar t called, enters ready state

B Ready state (runnable state)
OHighest-priority ready thread enters running state
B Running state
USystem assigns processor to thread (thread begins executing)

O When r un method completes or terminates, enters dead state
M Dead state
UThread marked to be removed by system
QEntered when r un terminates or throws uncaught exception

Thread Priorities and Thread Scheduling

® All Java applets / applications are multithreaded
B Threads have priority from 1 to 10
OThread. MN_PRIORITY - 1
QOThr ead. NORM PRI ORI TY - 5 (default)
QOThread. MAX_PRIORI TY - 10
ONew threads inherit priority of thread that created it

® Timeslicing
M Each thread gets a quantum of processor time to execute
QAfter time is up, processor given to next thread of equal priority (if
available)
B Without timeslicing, each thread of equal priority runs to
completion

Thread Priorities and Thread Scheduling

Class Thr ead: An Overview of the Thr ead Methods

® Other thread states

M Blocked state

UEntered from running state

UBlocked thread cannot use processor, even if available

L Common reason for blocked state - waiting on I/O request
B Sleeping state

QEntered when sl eep method called

O Cannot use processor

UEnters ready state after sleep time expires
B Waiting state
OEntered when wai t called in an object thread is accessing
HOne waiting thread becomes ready when object calls not i fy
Unoti fyAl | - all waiting threads become ready

Thread Priorities and Thread Scheduling

® Java scheduler
B Keeps highest-priority thread running at all times
W [f timeslicing available, ensure equal priority threads execute in round-
robin fashion
B New high priority threads could postpone execution of lower priority
threads
O Indefinite postponement (starvation)

® Priority methods
W setPriority(int priorityNunber)
HgetPriority
B yi el d -thread yields processor to threads of equal priority

0 Useful for non-timesliced systems, where threads run to completion

Thread Priorities and Thread Scheduling

® Example program
B Demonstrate basic threading techniques
OCreate a class derived from Thr ead
QUse sl eep method
B Overview
UCreate four threads, which sleep for random amount of time
QAfter they finish sleeping, print their name

B Program has two classes
QPrint Thread
ODerives from Thr ead
OInstance variable s| eepTi me
OThr eadTest er
O Creates four Pri nt Thr ead obj ects

11 hr eadTester. java 7
2 [/ Show nultiple threads printina at different .ExampleS/dln()V/
ThreadTest.java

public class ThreadTester {
public static void main(String aras(1)
{

PrintThread threadl, thread2, thread3, thread4;

threadl = new Print Thread(“"threadl"):
thread2 = new PrintThread("thread2"):
thread3 = new PrintThread("thread3");
thread4 = new PrintThrgadt_ttheaadas

mai n terminates after starting the Pri nt Thr eads,
Svstemerr. pri nyfv but the application does not end until the last thread
dies.

threadl. start():
thread2. start();
thread3.start();
thread4. start();

Systemerr.printin("Threads started\n"):

NNNERRR PR R R
NRCooNdnrmNRo XN R~®

25 class PrintThread extends Thread {
private int sleepTine;

/1 PrintThread constructor assians name to thread
cal ling Thread constructor

Starting threads
Threads started

. threadl; *sf""p;"&ﬁ’/é’” CaTaTOREAY NS
: thread2; sleep: 64

Nane: thread3; sleep: 1752 n g
Nane: thread4; sleep: 3120

Starting threads ng
Threads started

thread2 going to sleep

thread4 going to sleep ng
threadl going to sleep
thread3 going to sleep
thread2 done sl eeping
thread3 done sleeping
thread4 done sl eeping

Synchronizing Threads

® Thread may decide it cannot proceed
B May voluntarily call wai t while accessing a
synchr oni zed method

URemoves thread from contention for monitor object and processor
QThread in waiting state

B Other threads try to enter monitor object
USuppose condition first thread needs has now been met
UCan call not i fy to tell a single waiting thread to enter ready state
Unoti fyAll - tells all waiting threads to enter ready state

public PrintThread(String name)
Call superclass
super (- name)$———————— constructor to assign

name to thread.
11 sleep between 0 and 5 secormm

sl eepTine = (int) (Math.randon{) * 5000);

Syst el pet Name() +

start calls the r un method. [/ 5 ol G)

sl eep can throw an ion, so it
/1 execute the ghread isenclosedinatry block.

public void run()
{
/1 put thr to sleep for a randominterval

try {
Systemerr.println(getNane() + " going to
Thread. sl eep(sleepTine);

1

catch (InterruptedException exception) {
Systemerr.println(exception.toString());

}

}

/1 print thread name
Systemerr.println(getNane() + " done sleeping"

Synchronizing Threads

©® Monitors

M Object with synchr oni zed methods
K Any object can be a monitor

B Methods declared synchr oni zed
Qpublic synchronized int myMethod(int x)
QOnly one thread can execute a synchr oni zed net hod ata

time
O Obtaining the lock and locking an object

QIf multiple synchr oni zed methods, only one may be active

M Java also has synchr oni zed blocks of code

Producer/Consumer Relationship without
Thread Synchronization

® Producer / Consumer relationship
B Producing thread may write to buffer (shared memory)
B Consuming thread reads from buffer
B If not synchronized, data can become corrupted
QProducer may write before consumer read last data
O Data lost
U Consumer may read before producer writes new data

OData "doubled"
B Using synchronization

QIf producer knows that consumer has not read last data, calls wai t
(awaits a not i f y command from consumer)

QIf consumer knows producer has not updated data, calls wai t

(awaits not i f y command from producer)

Producer/Consumer Relationship without
Thread Synchronization

® Example
M Producer / Consumer relationship without synchronization

B Overview
UProducer writes numbers 1 through 10 to a buffer
O Consumer reads them from buffer and sums them
QIf producer/consumer operate in order, total should be 55
M Classes
QPr oducel nt eger and Consunel nt eger
Olnherit from Thr ead
Osl eep for random amount of time, then read from / write to buffer
QHol dI nt eger Unsynchr oni zed
O Has data and unsynchronized set and get methods
dshar edCel |
O Driver, creates threads and calls st ar t

16 // Producel nteger. j ava
17 // Definition of threaded class Producel nteger
18 public class Producelnteger extends Thread {
19 private Hol di nteger Unsynchroni zed pbl d;
20
21 publ i ¢ Producel nteger (Hol di nteger Unsynchr oni zed h)
22
23 super ("Producel nt eger"
;; 8 el el = G \Pm|drehsma
e Hol dI nt eger Unsynchr oni zed object,
27 public void run() and will use its set methods.
28 {
29 for (int count = 1; count <= 10; count++) {
30 /1 sleep for a randominterval
31 try {
32 Thread. sl eep((int) (Math.random() * 3000));
33 i
34 catch(InterruptedException e) {
35 Systemerr.printin(e toString());

}

pHol d. set Sharedint (count);

}

Systemerr.printin(getName() +
42 " finished producing val ues” +
“\nTerminating " + getName());

1 // HoldintegerUnsynchroni zed. j ava

2 1/ Definition of class Hol di nteger Unsynchr oni zed

3 public class Hol di nteger Unsynchr oni zed {

4 private int sharedint = -1;

5

6 public void setSharedint(int val)

7

8 Systemerr.println(Thread. current Thread() . get Nane() +

9 " setting sharedint to " al)

10 sharedint = val ;

11 }

12

13 public int getSharedint()

14 {

15 Systemerr.println(Thread. current Thr eat()—getName

16 " retrieving sharedint value * + sharedint);

17 return sharedint; Because the set and get methods are

18) unsynchronized, the two threads

19 } could call them at the same time.
Class Hol dI nt eger Unsynchroni zed

1. Instance variable
2. set Shar edl nt (unsynchronized)
3. get Shar edl nt chronized

1
2
3

Il SharedCel | . java
/1 Show mul tiple threads nodifying shared object.
public class SharedCel |l {
public static void main(String args[])
{
Hol dI nt eger Unsynchroni zed h =
new Hol di nt eger Unsynchroni zed() ;
Producel nteger p = new Producel nteger(h);
Consunel nteger ¢ = new Consunel nteger(h)

p.start();
c.start();

®(Class Shar edCel |

®]. main

/1 Consurnel nt eger . j ava

/1 Definition of threaded class Consunel nteqger

public class Consumel nteger extends Thread {
private Hol di nt eger Unsynchroni zed chol d;

publ i ¢ Consumel nteger (Hol di nt eger Unsynchr oni zed h)
{
super ("Consunel nteger”);

cHold = h;
i

public void run()
{

int val, sum=0;

do {
/1 sleep for a randominterval
try {

Thread. sl eep((int) (Math.random() * 3000));

1

catch(InterruptedException e) {
Systemerr.println(e.toString());

1

val = chHol d. get Sharedi nt();
sum += val ;
} while (val !=10):

Systemerr.println(
getName() + " retrieved values totaling: " + sum+
"\nTerminating " + getName()):

Consunel nteger retrieving sharedint value -1
Consunel nt eger retrieving sharedint value -1
Producel nteger setting sharedint to 1
ing sharedint to 2
ing sharedint value 2
redint to 3
Int to 4
t to 5
t value 5

®Program Output

Notice how the producer and consumer act out of order,
‘which results in a sum of 49 (not 55).

] rducer/Consumer Relationship with
Thread Synchronization

® Condition variable of a monitor

B Variable used to test some condition
QDetermines if thread should call wai t

B For our producer / consumer relationship
UCondition variable determines whether the producer should write
to buffer or if consumer should read from buffer
QUse boolean variable wr i t eabl e
QIfwri t eabl e true, producer can write to buffer
OIf f al se, then producer calls wai t , and awaits notify
QIfwr i teabl e fal se, consumer can read from buffer
OIft r ue, consumer calls wai t

/1 Hol di nt eger Synchr oni zed. j ava

/1 Definition of class Hol dinteger Synchroni zed that

/1 uses thread synchronization to ensure that both

Il threads access sharedint at the proper tinmes.

public class Hol di nteger Synchroni zed {
private int sharedint = -1; —_—
private bool ean|

©No oA ® N

Test the condition variable. Ifit is not the producer's

9 public synchron|iith thenVAITE:

10 {
1 while (lwiteable) {
12 try {

/1 not the producer’s turn —_—

15 catch (Interrupte
16 e. print StackTrace()\
17 }

}

Systemerr.println(Thread. curren\Jhr ead() . get Nane() +
21 " setting sharedint to "
22 sharedint = val ;

Ifwrit eabl eistrue, write to
the buffer, toggle wr i t eabl e,
and not i f y any waiting threads
(so they may read from the
buffer).

24 witeable = fal se;
notify(); // tell a waiting thread to

Producel nteger setting sharedint to 1
Consunel nteger retrieving sharedint value
Producel nteger setting sharedint to 2

3 ng sharedl nt value 2
haredint to 3

i

5| ® Program Output

The producer and consumer act in order, and the
proper total is reached (55).

: Pducer/Consumer Relationship with
Thread Synchronization

® Redo example program with synchronization

B Synchronize the set and get methods
QOnce the producer writes to memory, wr i t eabl e isf al se
(cannot write again)
UOnce consumer reads, wr i t eabl e is t r ue (cannot read again)
OEach thread relies on the other to toggle wr i t eabl e and call
notify
B Only class Hol dI nt eger Unsynchr oni zed is
changed
UNow called Hol dI nt eger Synchroni zed
OWe only changed the implementation of the set and get methods

publ i ¢ synchroni zed int get Shar edi nt ()

29
30 while (witeable) { // not the consumer's turn
31 try {
32 wai t();
33 } -
34 catch (Interr\ptedException o) Y| AS With set Shar edi nt,, test the
35 e.printStackNace(); oondmonvarllable. If not the consumer's
36) turn, then wai t .
37 }
38
39 witeable = true;
40 notify(); // tell a waiti\ng thread to becone ready
41
42 System err. printl n(¥read. cyrrent Thread() . get Nane() + Zed)
43 " retrieving shared! * + sharedint);
return sharedint;

Ifitis ok to read (wr i t eabl e is
fal se),setwiteabletotrue,
notify,andreturn sharedlnt.

Producer/Consumer Relationship: The Circular Buffer

® Previous program
M Does access data properly, but not optimally
B Producer cannot produce faster than consumer can
consume
UTo allow this, use a circular buffer
Has enough cells to handle "extra" production

UOnce producer knows consumer has read data, allowed to
overwrite it

® Redo program with a circular buffer

M For the circular buffer, use 5-element array

QVariables r eadLoc and wr i t eLoc keep track of position in
array

QlIncremented, and kept between O and 4 with % 5

UCondition variables r eadabl e and wr i t eabl e

Producer/Consumer Relationship: The Circular Buffer

® Redo program with a circular buffer
M Producer starts first, sowr i t eLoc >readLoc (in
beginning)
Qifwri teLoc == readLoc (in set method), producer looped
around and "caught up" to consumer
UBuffer is full, so producer stops writing (wai t)

M In get method
UiIfreadLoc == writeLoc then consumer "caught up" to
producer
OBuffer is empty, so consumer stops reading (wai t)
M This time, use a GUI

B Only the set and get methods (in
Hol dI nt eger Synchr oni zed) change significantly

public static void main(String args[])

29 {
30 SharedCel | app = new Shar edCel | ()
31 app. addW ndowLi st ener
32 new W ndowadapt er () {
33 public void windowd osi ng(WndowEvent e)
34 {
35 Systemexit(0);

}

} —_—

®1. GUI added

output. append("\n" + getName() +
75 " finished producing val ues" +
“\nTerninating " + getName() + "\n");

®1.1 Update GUI

1 /] SharedCell.java

2 |1 Show multiple threads nodifying shared object.
3 inport java.text.Decimal For mat;

4 import java.awt.*;

5 inport java.aw.event.*;

6 inport javax.sw ng.*;

7

8

gl

public class SharedCel | extends JFrame {
public SharedCell ()
10 {
11 super ("Denonstrating Thread Synchronization");
JText Area output = new JTextArea(20, 30);

get Cont ent Pane() . add(new JScrol | Pane(out put)
15 set Size(500, 500);
show() ;

/1 set up threads and start threads
19 Hol dI nt eger Synchroni zed h =
20 new Hol dI nt eger Synchroni zed(out put);
21 Producel nteger p = new Producel nteger(h, output
Consunel nteger ¢ = new Consunel nteger (h, output

p.start();
c.start();

42 /1 Producel nteger. j ava

43 [/ Definition of threaded class Producel nteger

44 inport javax.swing. JText Area;

a5

46 public class Producel nteger extends Thread {

47 private ol dinteger Synchroni zed pHol d;

48 private JTextArea output; —_—
49

50

51 public Producel nteger(Hol di nteger Synchroni zed h,

52 JTextArea o)

53 —_—
54 super ("Producel nteger”);

55 pHol d = h;

56 output = o;

57}

58

59 public void run()

60 {

61 for (int count = 1; count <= 10; count++) {

62 /1 sleep for a randominterval

63 /1 Note: Interval shortened purposely to fill buffer
64 try {

65 Thread. sl eep((int) (Math.randon() * 500));
66 }

67 catch(InterruptedException e) {

68 Systemerr.printin(e.toString());

69 }

pHol d. set Shar edi nt (count):

80 // Consumel nteger. j ava

81 // Definition of threaded class Consunelnteger
82 inport javax.swing. JText Area;

83

84 public class Consumelnteger extends Thread {
85 private Hol dintegerSynchroni zed cHol d;

86 private JTextArea output;

88 publ i ¢ Consunel nteger (Hol di nteger Synchr oni zed h,
89 JTextArea o)

91 super (" Consunel nteger”); —
92 cHold =
output = o;

public void run()
97 {

int val, sums= 0;

do {
101 /1 sleep for a randominterval

102 try {

103 Thread. sl eep((int) (Math.random() * 3000)); nodate
104 i

105 catch(InterruptedException e) {

106 Systemerr.printin(e toStrina()):

1

val = cHol d. get Sharedint();
sum += val ;
vhile (_val

1= 10

output. append("\n" + get Name() +
114 " retrieved values totaling: " + sum+
“\nTerminating " + getName() +"\n");

®1.1 Update GUI

150 sharedint[writeLoc | = val;
151 readabl e = true;

153 output.. append("\ nProduced "
154 " into cell "

Set appropriate location in the
circular buffer. Update
readabl e.

156 writeloc = (witeloc + 1) %5;

158 output. append("\twite " + witelLoc +
159 "\tread " + readlLoc); .
160 di spl ayBuf fer (output, sharedint); Increment Wr i t eLoc, use % 5

to keep it in range.
Test for full buffer.

162 if (witeloc == readloc) {

163 witeable = fal se;

164 output . append("\ nBUFFER FULL");
1

167 notify():
t

170 public synchronized int getSharedlnt()
{

172 int val;

174 while (!readable) {

176 output. append(" WAI TING TO CONSUME")

177 wai t();

178 ¥

179 catch (InterruptedException e) {

180 Systemerr.printin(e.toStrina());
i

s
P ¢ i d

i
Pwmimm & e
i S A HA
s
Pt Vil i Pl

gy =1 B
=m L E el @ Pl

1197/ Hol di nt eger Synchr oni zed. j ava
120// Definition of class Hol dinteger Synchroni zed that

121// uses thread synchronization to ensure that both

122/1 threads access sharedint at the proper tines.

123i nport | avax. swi ng. JText Ar ea;

124i nport j ava. t et . Deci nal For mat ;

125 —_—
126public class Hol di nteger Synchroni zed {
127 private int sharedint[] ={ -1, -1,
128 private boolean writeable = tru
129 private bool ean readable = fals
130 private int readloc = 0, writeloc =

131 private JText Area output; Notice all the added instance Vﬁﬂﬂbles,
132 A A P

133 public Hol di nteger Synchr oni zed(JText Ar ¢ including the eircular buffer and
134 condition variables.

135 output = o;

136}

137

138 public synchronized void setSharedint(int val)

139 {

140 while (twiteable) {

141 try {

142 output . append(“ WAI TI NG TO PRODUCE * + val);

143 wait();

144 ¥

145 catch (InterruptedException e) {

146 Systemerr.printin(e.tostring());

147 }

183
184 writeable = true;

185 val = sharedint[readloc];

186

187 output. append(“\nConsumed * + val +

188 " fromcell " + readloc);

189

190 readloc = (readloc + 1) %S5;

191

192 out put . append("\twrite " iteloc +

193 "\tread " + reawloc);

122 di spl ayBuf fer (output, sharedint). Similar to set Shar ed! nt . Update
196 it (readloc == writeloc) { readLoc, test for empty buffer,
197 readabl e = fal se; return val.

198 output . append("\ nBUFFER EMPTY");

199 t

200

201 notify();

202

203 return val;

204}

205

206 public void displayBuffer(JTextArea out, int buf[])

207 {

208 Deci mal For mat for mat Nunber = new Deci mal Format (" #;-#");

209 output. append("\tbuffer: ");

210

211 for (int i =0; i <buf.length; i++)

212 out.append(" " + formatNumber.format(buf[i 1));

Daemon Threads

® Daemon threads

M Threads that run for benefit of other threads
UGarbage collector

B Run in background
QUse processor time that would otherwise go to waste

M Unlike normal threads, do not prevent a program from

terminating

U When only daemon threads remain, program exits

M Must designate a thread as daemon before st ar t called
set Daenmon(true);

B Method i sDaenon

OReturns t r ue if thread is a daemon thread

Runnabl e mterface

® Java does not support multiple inheritance
M Instead, use interfaces
B Until now, inherited from class Thr ead, overrode r un

® Multithreading for an already derived class

B Implement interface Runnabl e (j ava. | ang)
UNew class objects "are" Runnabl e objects

B Override r un method
QControls thread, just as deriving from Thr ead class
Qin fact, class Thr ead implements interface Runnabl e

B Create new threads using Thr ead constructors
QThread(runnabl eObj ect)

OThread(runnabl eObj ect, threadName)

Runnabl e mterface

® Upcoming example program
B Create a GUI and three threads, each constantly displaying
a random letter
B Have suspend buttons, which will suspend a thread
QActually calls wai t
QWhen suspend unclicked, calls not i fy

QUse an array of bool eans to keep track of which threads are
suspended

29 for (int i =0; i <SIZE i++) {
30 outputsf i 1 = new JLabel ();
31 outputs[i 1.setBackground(Color.green);
32 outputs[i].setCpaque(true);
33 c.add(outputsf i 1);

Use the Thr ead constructor to create new
threads. The Runnabl e object is t hi s

35 checkboxes[i] = new JCheckBox(" Sus|
applet.

36 checkboxes[i 1.addActi onLi st ener (
37 c.add(checkboxes[i 1);
38 Y

41 public void start()

43 /1 create threads and start every tine start is called

44 for (int i =0; i < threads.lenath; i++) {

45 threads[i | = . B .

oG new Thread(this, "Thread - | L00p will execute indefinitely because
a7 threads[|].start(); threads[index] == currentThread. The

48 1 st op method in the applet sets all threads to nul |,
start calls r un method for thread.

lic void run()

Thread current Thread = Thread. current,
54 int index = getlndex(currentThreag/;
char di spl ayChar;

while (threads index | == currentThread) {
/1 sleep from0 to 1 second

Runnabl e mterface

® Synchronized blocks of code
synchroni zed(nonitor Qoject){

}
B noni t or Obj ect - Object to be locked while thread executes
block of code

® Suspending threads
M In earlier versions of Java, there were methods to
suspend/resume threads
QDangerous, can lead to deadlock
M Instead, usewai t and notify

1 // RandonCharacters.java

2 I/ Demonstrating the Runnabl einterface
3 inmport java.awt.*;

4 inport java.awt.event.*;

inport javax.swing.*;

5

6

7 public class RandonCharacters extends JAppl et

8 inpl ements Runnabl e,

9 Acti onli stener {
10 private String al phabet = "ABCDEFGHI J
11 private JLabel outputs[];

12 private JCheckBox checkboxes[];
private final static int SIZE =

Use abool ean array to keep track of which
threads are "suspended". We will actually use
wai t andnoti fy to suspend the threads.

private Thread threads[];
private bool ean suspended];

public void init()
19

20 outputs = new JLabel [SIZE];
checkboxes = new JCheckBox[SIZE |;

threads = new Thread]
suspended = new bool ean[

SIZE |;
SIZE |;

Container ¢ = get Cont ent Pane() ;
c.setLayout(new GridLayout(SIZE, 2, 5, 5));

62 synchroni zed(this) {
63 while (suspended| index | &
64 threads[index] == currentThread)

65 vai t();

66 }

67 }

68 catch (InterruptedException e -

69 Systemerr. printin(sl eep il Synchronized block tests suspended array
70 } to see if a thread should be "suspended".
71 If so, calls wai t .

72 di spl ayChar = al phabet . char At (

73 (int) (Math.randon() * 26));

75 outputs[index].setText(currentThread.get Name() +
76 “: " + displayChar);
}

System err. println(
80 current Thread. get Name() + " terninating®);
}

private int getlndex(Thread current)

for (int i =
86 it (current
return i;

< threads. | engt h;
= threads[i])

P44

return -1;

10

publ i ¢ synchr oni zed voi d stop()

93

9 /1 stop threads every tine stop is called

95 /1 as the user browses another Wb page

96 for (int i =0; i < threads.length; i++)

97 threads[i] = null;

98 \ Sets all threads to nul | , which

99 noti fyAll (); causes loop in r un to end, and r un
100 } terminates.

101

102 public synchronized void actionPerformed(ActionEvent e)

103 {

104 for (int i =0; i < checkboxes.length; i++) {
105 it (e getSource() == checkboxes[i]) {
106 suspended[i] = !suspended[i]:

108 outputs[i].setBackgr

tsuspended[i] ? Col O green : Color.red);

if (!suspended i])
112 notify();
ij — Loop and find which box was checked, and suspend
e) AL appropriate thread. The r un method checks for suspended
B) threads.
If suspend is off, then notify the appropriate thread.

Thread Groups

® Thread groups
B Threads in a thread group can be dealt with as a group
UOMay want to i nt er r upt all threads in a group
B Thread group can be parent to a child thread group

® Class Thr eadG oup

B Constructors
ThreadG oup(threadG oupNane)
ThreadGroup(parent ThreadG oup, nane)
UCreates child Thr eadGr oup named nane

Thread Groups

® Thr eadG oup Methods

B See API for more details
HactiveCount

UNumber of active threads in a group and all child groups
Henunerate

QTwo versions copy active threads into an array of references

UTwo versions copy active threads in a child group into an array of
references

Eget MaxPriority
QReturns maximum priority of a Thr eadGr oup
Oset MaxPriority

Hget Name, get Parent

Thread Groups

® Associating Thr eads with Thr eadG oups
B Use constructors
B Thread(threadG oup, threadNane)
B Thread(threadG oup, runnabl eObject)
Ulnvokes r un method of r unnabl eObj ect when thread
executes
B Thread(threadG oup, runnabl eObject,
t hreadNane)
QAs above, but Thr ead named t hr eadNanme

11

