
1

PIC 20A, UCLA, Ivo Dinov Slide 1

UCLA PIC 20A
Java Programming

�Instructor: Ivo Dinov,
Asst. Prof. In Statistics, Neurology and

Program in Computing

�Teaching Assistant: Yon Seo Kim, PIC

University of California, Los Angeles, Summer 2002
http://www.stat.ucla.edu/~dinov/

PIC 20A, UCLA, Ivo DinovSlide 2

Chapter 8 – Threads in Java

�What Is an Thread?

�Example - TimerThread

�Life-cycle of a thread

�Thread Priority

�Synchronizing Threads

�Grouping Threads

PIC 20A, UCLA, Ivo DinovSlide 3

What is a Thread?
� A thread is a single sequential flow of control that

runs within a program.
� Ex: A Web browser is a multithreaded application –

you can scroll a page while it’s downloading an
applet or an image, play animation and sound
concurrently, print a page in the background while
you download a new page, or watch three sorting
algorithms race to the finish.

� Some books call a thread a lightweight process. A
thread is considered lightweight because it runs
within the context of a full-blown program and takes
advantage of the resources allocated for that program
and the program’s environment.

PIC 20A, UCLA, Ivo DinovSlide 4

What is a Thread?
�When implementing threads consider using

high-level thread API. For example, if your
program must perform a task repeatedly,
consider using the java.util.Timer class. The
Timer class is also useful for performing a task
after a delay.

�If you’re writing a program with a GUI, you
might want to use the javax.swing.Timer class
instead of java.util.Timer. SwingWorker,
helps you with another common job:
performing a task in a background thread, and
updating the GUI when the task completes.

PIC 20A, UCLA, Ivo DinovSlide 5

What is a Thread?
�Basic support for threads is in the class

java.lang.Thread. It provides a thread API
and provides all the generic behavior for
threads.
� starting, sleeping, running, yielding, and having

a priority.
�To implement a thread using the Thread class,

you need to provide it with a run method that
performs the thread’s task.

PIC 20A, UCLA, Ivo DinovSlide 6

TimerTask – example
Using a timer to perform a task after a delay Reminder.java

import java.util.Timer;//Demo that uses java.util.Timer to

import java.util.TimerTask; //schedule a task to execute once 5 seconds have passed

public class Reminder {
Timer timer;
public Reminder(int seconds){

timer =new Timer();
timer.schedule(new RemindTask(),seconds*1000);

}

2

PIC 20A, UCLA, Ivo DinovSlide 7

TimerTask – example
Using a timer to perform a task after a delay Reminder.java

class RemindTask extends TimerTask {
public void run(){ System.out.println("Time's up!");

timer.cancel();//Terminate the timer thread
}

}
public static void main (String args []) {

new Reminder(5);
System.out.println("Task scheduled.");

}
}

1.
2.

PIC 20A, UCLA, Ivo DinovSlide 8

TimerTask – example
�Basic components of implementing and

scheduling a task a timer thread.
�Implement a custom subclass of TimerTask

The run method contains the code that
performs the task. Here, the subclass is
named RemindTask .

�Create a thread by instantiating the Timer
class.

�Instantiate the timer task object (
RemindTask()).

�Schedule the timer task for execution. This
example uses the schedule method, with args
= timer task; and the delay in milliseconds.

PIC 20A, UCLA, Ivo DinovSlide 9

To Stop Timer Threads
� By default, a program keeps running as long as its

timer threads are running. To terminate a timer
thread:
� Invoke cancel on the timer. You can do this from anywhere

in the program, such as from a timer task’s run method.
�Make the timer’s thread a “daemon” by creating the timer

like this: new Timer(true). If the only threads left in the
program are daemon threads, the program exits.

�After all the timer’s scheduled tasks have finished
executing, remove all references to the Timer object.
Eventually, the timer’s thread will terminate.

� Invoke the System.exit method, which makes the entire
program (and all its threads) exit.

PIC 20A, UCLA, Ivo DinovSlide 10

To Stop Timer Threads
� Sometimes, timer threads aren’t the only threads that

can prevent a program from exiting when expected.
For example, if you use the AWT at all to make
beeps—the AWT automatically creates a nondaemon
thread that keeps the program alive. We need to call
the System.exit method to make this program.

public class ReminderBeep { ………. …..
public ReminderBeep(int seconds){

toolkit =Toolkit.getDefaultToolkit();
timer =new Timer();
timer.schedule(new

RemindTask(),seconds*1000);
}

PIC 20A, UCLA, Ivo DinovSlide 11

To Stop Timer Threads
We need to call the System.exit method to make this program.

class RemindTask extends TimerTask {
public void run(){

System.out.println("Time's up!");
toolkit.beep();

//timer.cancel();
//Not necessary since we call System.exit

System.exit(0);
//Stops the AWT thread (and everything else)

}
}
….

} // END:: public class ReminderBeep

PIC 20A, UCLA, Ivo DinovSlide 12

Performing a task repeatedly
Perform a task once per second.
public class AnnoyingBeep {

Toolkit toolkit;
Timer timer;
public AnnoyingBeep(){

toolkit =Toolkit.getDefaultToolkit();
timer =new Timer();
timer.schedule(new RemindTask(), 0,

1*1000); // initial delay & subsequent rate
}

class RemindTask extends TimerTask {
int numWarningBeeps =3;
public void run(){

if (numWarningBeeps >0)
toolkit.beep();

public static void main(String args [])
{ new Reminder(5);
System.out.println("Task scheduled.");
}

3

PIC 20A, UCLA, Ivo DinovSlide 13

Performing a task repeatedly
Perform a task once per second.

class RemindTask extends TimerTask {
int numWarningBeeps =3;
public void run(){

if (numWarningBeeps >0) { toolkit.beep();
System.out.println("Beep!");
numWarningBeeps--;

} else { toolkit.beep();
System.out.println("Time's up!");
//timer.cancel();//Not necessary since we call
System.exit(0); //Stops AWT thread/everything
}

}
}
...

}

Output:
Task scheduled.
Beep!
Beep! //one second after the 1st beep
Beep! //one second after the 2nd beep
Time's up! //one second after the 3rd beep

PIC 20A, UCLA, Ivo DinovSlide 14

Performing a task repeatedly
The AnnoyingBeep program uses a three-argument version of the

schedule method to specify that its task should execute once a
second, beginning immediately. Here are all the Timer
methods you can use to schedule repeated executions of tasks:

� schedule(TimerTask task ,long delay ,long period)
� schedule(TimerTask task ,Date time ,long period)
� scheduleAtFixedRate(TimerTask task, long delay,long period)
� scheduleAtFixedRate(TimerTask task,Date firstTime,long period)
If smoothness is important to schedule a task for repeated

execution, use a schedule method; or a scheduleAtFixedRate
method when time synchronization is important. Ex.,
AnnoyingBeep program uses the schedule method, which
means that the annoying beeps will all be at least 1 second
apart. If one beep is late for any reason, all subsequent beeps
will be delayed.

PIC 20A, UCLA, Ivo DinovSlide 15

Thread’s run method
� Customizing the Thread’s run method: pp. 277

PIC 20A, UCLA, Ivo DinovSlide 16

Class Thread: An Overview of the Thread Methods

� Thread-related methods
� See API for more details (especially exceptions)
�Constructors

�Thread(threadName)
�Thread()

�Creates an auto numbered Thread of format Thread-1, Thread-
2...

�run
�"Does work" of thread
�Can be overridden in subclass of Thread or in Runnable object

(more on interface Runnable in 15.10)
�start

�Launches thread, then returns to caller
�Calls run
�Error to call start twice for same thread

PIC 20A, UCLA, Ivo DinovSlide 17

Class Thread: An Overview of the Thread Methods

� Thread methods
�static method sleep(milliseconds)

�Thread sleeps (does not contend for processor) for number of
milliseconds

�Can give lower priority threads a chance to run
�interrupt

�Interrupts a thread
�static method interrupted

�Returns true if current thread interrupted
�isInterrupted

�Determines if a thread is interrupted
�isAlive

�Returns true if start called and thread not dead (run has not
completed)

PIC 20A, UCLA, Ivo DinovSlide 18

Class Thread: An Overview of the Thread Methods

� Thread methods
�yield - discussed later
�setName(threadName)
�getName
�toString

�Returns thread name, priority, and ThreadGroup (more 15.11)
�static method currentThread

�Returns reference to currently executing thread
�join

�Calling thread waits for thread receiving message to die before it
can proceed

�No argument or 0 millisecond argument means thread will wait
indefinitely

�Can lead to deadlock/indefinite postponement

4

PIC 20A, UCLA, Ivo DinovSlide 19

Thread States: Life Cycle of a Thread
� Thread states

�Born state
�Thread just created
�When start called, enters ready state

�Ready state (runnable state)
�Highest-priority ready thread enters running state

�Running state
�System assigns processor to thread (thread begins executing)
�When run method completes or terminates, enters dead state

�Dead state
�Thread marked to be removed by system
�Entered when run terminates or throws uncaught exception

PIC 20A, UCLA, Ivo DinovSlide 20

Class Thread: An Overview of the Thread Methods

� Other thread states
�Blocked state

�Entered from running state
�Blocked thread cannot use processor, even if available
�Common reason for blocked state - waiting on I/O request

� Sleeping state
�Entered when sleep method called
�Cannot use processor
�Enters ready state after sleep time expires

�Waiting state
�Entered when wait called in an object thread is accessing
�One waiting thread becomes ready when object calls notify
�notifyAll - all waiting threads become ready

PIC 20A, UCLA, Ivo DinovSlide 21

Thread Priorities and Thread Scheduling

� All Java applets / applications are multithreaded
�Threads have priority from 1 to 10

�Thread.MIN_PRIORITY - 1

�Thread.NORM_PRIORITY - 5 (default)
�Thread.MAX_PRIORITY - 10

�New threads inherit priority of thread that created it

� Timeslicing
�Each thread gets a quantum of processor time to execute

�After time is up, processor given to next thread of equal priority (if
available)

�Without timeslicing, each thread of equal priority runs to
completion

PIC 20A, UCLA, Ivo DinovSlide 22

Thread Priorities and Thread Scheduling

� Java scheduler
� Keeps highest-priority thread running at all times
� If timeslicing available, ensure equal priority threads execute in round-

robin fashion
� New high priority threads could postpone execution of lower priority

threads
� Indefinite postponement (starvation)

� Priority methods
� setPriority(int priorityNumber)

� getPriority

� yield - thread yields processor to threads of equal priority
�Useful for non-timesliced systems, where threads run to completion

PIC 20A, UCLA, Ivo DinovSlide 23

Thread Priorities and Thread Scheduling

A B

Ready threads

C

D E F

G

H I

J K

Priority 1

Priority 2

Priority 3

Priority 4

Priority 5

Priority 6

Priority 7

Priority 8

Priority 9

Priority 10

PIC 20A, UCLA, Ivo DinovSlide 24

Thread Priorities and Thread Scheduling

� Example program
�Demonstrate basic threading techniques

�Create a class derived from Thread
�Use sleep method

�Overview
�Create four threads, which sleep for random amount of time
�After they finish sleeping, print their name

� Program has two classes
�PrintThread

�Derives from Thread
� Instance variable sleepTime

�ThreadTester

�Creates four PrintThread objects

5

PIC 20A, UCLA, Ivo Dinov Slide 25

1 // ThreadTester.java
2 // Show multiple threads printing at different
intervals.3
4 public class ThreadTester {
5 public static void main(String args[])
6 {
7 PrintThread thread1, thread2, thread3, thread4;
8
9 thread1 = new PrintThread("thread1");
10 thread2 = new PrintThread("thread2");
11 thread3 = new PrintThread("thread3");
12 thread4 = new PrintThread("thread4");
13
14 System.err.println("\nStarting threads");
15
1616 thread1.start();
17 thread2.start();
18 thread3.start();
19 thread4.start();
20
21 System.err.println("Threads started\n");
22 }
23 }
24
25 class PrintThread extends Thread {
26 private int sleepTime;
27
28 // PrintThread constructor assigns name to thread
29 // by calling Thread constructor

main terminates after starting the PrintThreads,
but the application does not end until the last thread
dies.

�Examples/dinov/
ThreadTest.java

PIC 20A, UCLA, Ivo Dinov Slide 26

�1.2 Constructor

�1.2.1 Randomize sleepTime

�2. run

30 public PrintThread(String name)
31 {

3232 super(name);
33
34 // sleep between 0 and 5 seconds
35 sleepTime = (int) (Math.random() * 5000);
36
37 System.err.println("Name: " + getName() +
38 "; sleep: " + sleepTime);
39 }
40
41 // execute the thread

4242 public void run()
43 {
44 // put thread to sleep for a random interval

4545 try {
46 System.err.println(getName() + " going to
sleep");47 Thread.sleep(sleepTime);
48 }
49 catch (InterruptedException exception) {
50 System.err.println(exception.toString());
51 }
52
53 // print thread name
54 System.err.println(getName() + " done sleeping"
);55 }
56 }

Call superclass
constructor to assign
name to thread.

sleep can throw an exception, so it
is enclosed in a try block.

start calls the run method.

PIC 20A, UCLA, Ivo Dinov Slide 27

�Program Output

Starting threads
Threads started

thread1 going to sleep
thread2 going to sleep
thread3 going to sleep
thread4 going to sleep
thread4 done sleeping
thread1 done sleeping
thread2 done sleeping
thread3 done sleeping

Name: thread1; sleep: 3876
Name: thread2; sleep: 64
Name: thread3; sleep: 1752
Name: thread4; sleep: 3120

Starting threads
Threads started

thread2 going to sleep
thread4 going to sleep
thread1 going to sleep
thread3 going to sleep
thread2 done sleeping
thread3 done sleeping
thread4 done sleeping
thread1 done sleeping PIC 20A, UCLA, Ivo DinovSlide 28

Synchronizing Threads

� Monitors
�Object with synchronized methods

�Any object can be a monitor
�Methods declared synchronized

�public synchronized int myMethod(int x)

�Only one thread can execute a synchronized method at a
time

�Obtaining the lock and locking an object
�If multiple synchronized methods, only one may be active

� Java also has synchronized blocks of code

PIC 20A, UCLA, Ivo DinovSlide 29

Synchronizing Threads

� Thread may decide it cannot proceed
�May voluntarily call wait while accessing a
synchronized method
�Removes thread from contention for monitor object and processor
�Thread in waiting state

�Other threads try to enter monitor object
�Suppose condition first thread needs has now been met
�Can call notify to tell a single waiting thread to enter ready state
�notifyAll - tells all waiting threads to enter ready state

PIC 20A, UCLA, Ivo DinovSlide 30

Producer/Consumer Relationship without
Thread Synchronization

� Producer / Consumer relationship
�Producing thread may write to buffer (shared memory)
�Consuming thread reads from buffer
� If not synchronized, data can become corrupted

�Producer may write before consumer read last data
�Data lost

�Consumer may read before producer writes new data
�Data "doubled"

�Using synchronization
�If producer knows that consumer has not read last data, calls wait

(awaits a notify command from consumer)
�If consumer knows producer has not updated data, calls wait

(awaits notify command from producer)

6

PIC 20A, UCLA, Ivo DinovSlide 31

Producer/Consumer Relationship without
Thread Synchronization

� Example
� Producer / Consumer relationship without synchronization
�Overview

�Producer writes numbers 1 through 10 to a buffer
�Consumer reads them from buffer and sums them
�If producer/consumer operate in order, total should be 55

�Classes
�ProduceInteger and ConsumeInteger

� Inherit from Thread
�sleep for random amount of time, then read from / write to buffer

�HoldIntegerUnsynchronized
�Has data and unsynchronized set and get methods

�SharedCell
�Driver, creates threads and calls start

PIC 20A, UCLA, Ivo Dinov Slide 32

�Class SharedCell

�1. main

�1.1 Initialize objects

1 // SharedCell.java
2 // Show multiple threads modifying shared object.
3 public class SharedCell {

4 public static void main(String args[])
5 {
6 HoldIntegerUnsynchronized h =
7 new HoldIntegerUnsynchronized();
8 ProduceInteger p = new ProduceInteger(h);
9 ConsumeInteger c = new ConsumeInteger(h);

10
11 p.start();
12 c.start();
13 }
14 }
15

PIC 20A, UCLA, Ivo Dinov Slide 33

�Class ProduceInteger

�1. extends Thread

�1.1 Instance variable

16 // ProduceInteger.java

17 // Definition of threaded class ProduceInteger

18 public class ProduceInteger extends Thread {

19 private HoldIntegerUnsynchronized pHold;

20

21 public ProduceInteger(HoldIntegerUnsynchronized h)

22 {

23 super("ProduceInteger");

2424 pHold = h;

25 }

26

27 public void run()

28 {

29 for (int count = 1; count <= 10; count++) {

30 // sleep for a random interval

31 try {

32 Thread.sleep((int) (Math.random() * 3000));

33 }

34 catch(InterruptedException e) {

35 System.err.println(e.toString());

36 }

37

38 pHold.setSharedInt(count);

39 }

40

41 System.err.println(getName() +

42 " finished producing values" +

43 "\nTerminating " + getName());

44 }

45 }

46

pHold refers to a
HoldIntegerUnsynchronized object,
and will use its set methods.

PIC 20A, UCLA, Ivo Dinov Slide 34

�Class ConsumeInteger

�1. extends Thread

�1.1 Instance variable

47 // ConsumeInteger.java
48 // Definition of threaded class ConsumeInteger
49 public class ConsumeInteger extends Thread {
50 private HoldIntegerUnsynchronized cHold;
51
52 public ConsumeInteger(HoldIntegerUnsynchronized h)
53 {
54 super("ConsumeInteger");
55 cHold = h;
56 }
57
58 public void run()

59 {
60 int val, sum = 0;
61
62 do {
63 // sleep for a random interval
64 try {
65 Thread.sleep((int) (Math.random() * 3000));
66 }
67 catch(InterruptedException e) {
68 System.err.println(e.toString());
69 }
70

71 val = cHold.getSharedInt();
72 sum += val;
73 } while (val != 10);
74
75 System.err.println(
76 getName() + " retrieved values totaling: " + sum +
77 "\nTerminating " + getName());
78 }
79 }

PIC 20A, UCLA, Ivo Dinov Slide 35

Class HoldInteger Unsynchronized

1. Instance variable
2. setSharedInt (unsynchronized)
3. getSharedInt (unsynchronized)

1 // HoldIntegerUnsynchronized.java

2 // Definition of class HoldIntegerUnsynchronized

3 public class HoldIntegerUnsynchronized {

4 private int sharedInt = -1;

5

66 public void setSharedInt(int val)

7 {

8 System.err.println(Thread.currentThread().getName() +

9 " setting sharedInt to " + val);

10 sharedInt = val;

11 }

12

13 public int getSharedInt()

14 {

15 System.err.println(Thread.currentThread().getName() +

16 " retrieving sharedInt value " + sharedInt);

17 return sharedInt;

18 }

19 }

Because the set and get methods are
unsynchronized, the two threads
could call them at the same time.

PIC 20A, UCLA, Ivo Dinov Slide 36

�Program Output

ConsumeInteger retrieving sharedInt value -1
ConsumeInteger retrieving sharedInt value -1
ProduceInteger setting sharedInt to 1
ProduceInteger setting sharedInt to 2
ConsumeInteger retrieving sharedInt value 2
ProduceInteger setting sharedInt to 3
ProduceInteger setting sharedInt to 4
ProduceInteger setting sharedInt to 5
ConsumeInteger retrieving sharedInt value 5
ProduceInteger setting sharedInt to 6
ProduceInteger setting sharedInt to 7
ProduceInteger setting sharedInt to 8
ConsumeInteger retrieving sharedInt value 8
ConsumeInteger retrieving sharedInt value 8
ProduceInteger setting sharedInt to 9
ConsumeInteger retrieving sharedInt value 9
ConsumeInteger retrieving sharedInt value 9
ProduceInteger setting sharedInt to 10
ProduceInteger finished producing values
Terminating ProduceInteger
ConsumeInteger retrieving sharedInt value 10
ConsumeInteger retrieved values totaling: 49
Terminating ConsumeInteger

Notice how the producer and consumer act out of order,
which results in a sum of 49 (not 55).

7

PIC 20A, UCLA, Ivo DinovSlide 37

Producer/Consumer Relationship with
Thread Synchronization

� Condition variable of a monitor
�Variable used to test some condition

�Determines if thread should call wait

� For our producer / consumer relationship
�Condition variable determines whether the producer should write

to buffer or if consumer should read from buffer
�Use boolean variable writeable
�If writeable true, producer can write to buffer

� If false, then producer calls wait, and awaits notify

�If writeable false, consumer can read from buffer
� If true, consumer calls wait

PIC 20A, UCLA, Ivo DinovSlide 38

Producer/Consumer Relationship with
Thread Synchronization

� Redo example program with synchronization
� Synchronize the set and get methods

�Once the producer writes to memory, writeable is false
(cannot write again)

�Once consumer reads, writeable is true (cannot read again)
�Each thread relies on the other to toggle writeable and call
notify

�Only class HoldIntegerUnsynchronized is
changed
�Now called HoldIntegerSynchronized
�We only changed the implementation of the set and get methods

PIC 20A, UCLA, Ivo Dinov Slide 39

�Classes SharedCell,
ConsumeInteger, and
ProduceInteger same as before
�-------------------------
�Class HoldInteger
Synchronized

1 // HoldIntegerSynchronized.java

2 // Definition of class HoldIntegerSynchronized that

3 // uses thread synchronization to ensure that both

4 // threads access sharedInt at the proper times.

5 public class HoldIntegerSynchronized {

6 private int sharedInt = -1;

7 private boolean writeable = true; // condition variable

8

9 public synchronized void setSharedInt(int val)

10 {

1111 while (!writeable) { // not the producer's turn

12 try {

13 wait();

14 }

15 catch (InterruptedException e) {

16 e.printStackTrace();

17 }

18 }

19

20 System.err.println(Thread.currentThread().getName() +

21 " setting sharedInt to " + val);

2222 sharedInt = val;

23

24 writeable = false;

25 notify(); // tell a waiting thread to become ready

26 }

27

Test the condition variable. If it is not the producer's
turn, then wait.

If writeable is true, write to
the buffer, toggle writeable,
and notify any waiting threads
(so they may read from the
buffer).

PIC 20A, UCLA, Ivo Dinov Slide 40

�3. getSharedInt (synchronized)

28 public synchronized int getSharedInt()

29 {

3030 while (writeable) { // not the consumer's turn

31 try {

32 wait();

33 }

34 catch (InterruptedException e) {

35 e.printStackTrace();

36 }

37 }

38

39 writeable = true;

4040 notify(); // tell a waiting thread to become ready

41

42 System.err.println(Thread.currentThread().getName() +

43 " retrieving sharedInt value " + sharedInt);

44 return sharedInt;

45 }

46 }

As with setSharedInt, test the
condition variable. If not the consumer's
turn, then wait.

If it is ok to read (writeable is
false), set writeable to true,
notify, and return sharedInt.

PIC 20A, UCLA, Ivo Dinov Slide 41

�Program Output

ProduceInteger setting sharedInt to 1
ConsumeInteger retrieving sharedInt value 1
ProduceInteger setting sharedInt to 2
ConsumeInteger retrieving sharedInt value 2
ProduceInteger setting sharedInt to 3
ConsumeInteger retrieving sharedInt value 3
ProduceInteger setting sharedInt to 4
ConsumeInteger retrieving sharedInt value 4
ProduceInteger setting sharedInt to 5
ConsumeInteger retrieving sharedInt value 5
ProduceInteger setting sharedInt to 6
ConsumeInteger retrieving sharedInt value 6
ProduceInteger setting sharedInt to 7
ConsumeInteger retrieving sharedInt value 7
ProduceInteger setting sharedInt to 8
ConsumeInteger retrieving sharedInt value 8
ProduceInteger setting sharedInt to 9
ConsumeInteger retrieving sharedInt value 9
ProduceInteger setting sharedInt to 10
ProduceInteger finished producing values
Terminating ProduceInteger
ConsumeInteger retrieving sharedInt value 10
ConsumeInteger retrieved values totaling: 55
Terminating ConsumeInteger

The producer and consumer act in order, and the
proper total is reached (55).

PIC 20A, UCLA, Ivo DinovSlide 42

Producer/Consumer Relationship: The Circular Buffer

� Previous program
�Does access data properly, but not optimally
� Producer cannot produce faster than consumer can

consume
�To allow this, use a circular buffer
�Has enough cells to handle "extra" production
�Once producer knows consumer has read data, allowed to

overwrite it

� Redo program with a circular buffer
� For the circular buffer, use 5-element array

�Variables readLoc and writeLoc keep track of position in
array

�Incremented, and kept between 0 and 4 with % 5
�Condition variables readable and writeable

8

PIC 20A, UCLA, Ivo DinovSlide 43

Producer/Consumer Relationship: The Circular Buffer

� Redo program with a circular buffer
� Producer starts first, so writeLoc > readLoc (in

beginning)
�If writeLoc == readLoc (in set method), producer looped

around and "caught up" to consumer
�Buffer is full, so producer stops writing (wait)

� In get method
�If readLoc == writeLoc then consumer "caught up" to

producer
�Buffer is empty, so consumer stops reading (wait)

�This time, use a GUI
�Only the set and get methods (in
HoldIntegerSynchronized) change significantly

PIC 20A, UCLA, Ivo Dinov Slide 44

�Class SharedCell

�1. GUI added

1 // SharedCell.java
2 // Show multiple threads modifying shared object.
3 import java.text.DecimalFormat;
4 import java.awt.*;
5 import java.awt.event.*;
6 import javax.swing.*;
7
8 public class SharedCell extends JFrame {
9 public SharedCell()
10 {
11 super("Demonstrating Thread Synchronization");
12 JTextArea output = new JTextArea(20, 30);
13
14 getContentPane().add(new JScrollPane(output)
);15 setSize(500, 500);
16 show();
17
18 // set up threads and start threads
19 HoldIntegerSynchronized h =
20 new HoldIntegerSynchronized(output);
21 ProduceInteger p = new ProduceInteger(h, output
);22 ConsumeInteger c = new ConsumeInteger(h, output
);23
24 p.start();
25 c.start();
26 }
27

PIC 20A, UCLA, Ivo Dinov Slide 45

�1. GUI added

28 public static void main(String args[])

29 {

30 SharedCell app = new SharedCell();

31 app.addWindowListener(

32 new WindowAdapter() {

33 public void windowClosing(WindowEvent e)

34 {

35 System.exit(0);

36 }

37 }

38);

39 }

40 }

41

PIC 20A, UCLA, Ivo Dinov Slide 46

�Class ProduceInteger

�1. Instance variable added to
accommodate GUI

42 // ProduceInteger.java

43 // Definition of threaded class ProduceInteger

44 import javax.swing.JTextArea;

45

46 public class ProduceInteger extends Thread {

47 private HoldIntegerSynchronized pHold;

48 private JTextArea output;

49

50

51 public ProduceInteger(HoldIntegerSynchronized h,

52 JTextArea o)

53 {

54 super("ProduceInteger");

55 pHold = h;

56 output = o;

57 }

58

59 public void run()

60 {

61 for (int count = 1; count <= 10; count++) {

62 // sleep for a random interval

63 // Note: Interval shortened purposely to fill buffer

64 try {

65 Thread.sleep((int) (Math.random() * 500));

66 }

67 catch(InterruptedException e) {

68 System.err.println(e.toString());

69 }

70

71 pHold.setSharedInt(count);

72 }

PIC 20A, UCLA, Ivo Dinov Slide 47

�1.1 Update GUI

73

74 output.append("\n" + getName() +

75 " finished producing values" +

76 "\nTerminating " + getName() + "\n");

77 }

78 }

79

PIC 20A, UCLA, Ivo Dinov Slide 48

�Class ConsumeInteger

�1. Instance variable added to accomodate
GUI

80 // ConsumeInteger.java

81 // Definition of threaded class ConsumeInteger

82 import javax.swing.JTextArea;

83

84 public class ConsumeInteger extends Thread {

85 private HoldIntegerSynchronized cHold;
86 private JTextArea output;

87

88 public ConsumeInteger(HoldIntegerSynchronized h,

89 JTextArea o)

90 {

91 super("ConsumeInteger");

92 cHold = h;

93 output = o;

94 }

95

96 public void run()

97 {

98 int val, sum = 0;

99
100 do {

101 // sleep for a random interval

102 try {

103 Thread.sleep((int) (Math.random() * 3000));

104 }

105 catch(InterruptedException e) {

106 System.err.println(e.toString());

107 }

108

109 val = cHold.getSharedInt();

110 sum += val;

111 } while (val != 10);

9

PIC 20A, UCLA, Ivo Dinov Slide 49

�1.1 Update GUI

112

113 output.append("\n" + getName() +

114 " retrieved values totaling: " + sum +

115 "\nTerminating " + getName() + "\n");

116 }

117}

118

PIC 20A, UCLA, Ivo Dinov Slide 50

�Class HoldInteger
Synchronized

�1. Instance variables

�2. setSharedInt

119// HoldIntegerSynchronized.java

120// Definition of class HoldIntegerSynchronized that

121// uses thread synchronization to ensure that both

122// threads access sharedInt at the proper times.

123import javax.swing.JTextArea;

124import java.text.DecimalFormat;

125

126public class HoldIntegerSynchronized {

127127 private int sharedInt[] = { -1, -1, -1, -1, -1 };

128 private boolean writeable = true;

129 private boolean readable = false;

130 private int readLoc = 0, writeLoc = 0;

131 private JTextArea output;

132

133 public HoldIntegerSynchronized(JTextArea o)

134 {

135 output = o;

136 }

137

138 public synchronized void setSharedInt(int val)

139 {

140 while (!writeable) {

141 try {

142 output.append(" WAITING TO PRODUCE " + val);

143 wait();

144 }

145 catch (InterruptedException e) {

146 System.err.println(e.toString());

147 }

148 }

149

Notice all the added instance variables,
including the circular buffer and
condition variables.

PIC 20A, UCLA, Ivo Dinov Slide 51

�2. setSharedInt

�3. getSharedInt

150150 sharedInt[writeLoc] = val;
151 readable = true;
152
153 output.append("\nProduced " + val +
154 " into cell " + writeLoc);
155
156 writeLoc = (writeLoc + 1) % 5;
157
158 output.append("\twrite " + writeLoc +
159 "\tread " + readLoc);
160 displayBuffer(output, sharedInt);
161

162 if (writeLoc == readLoc) {
163 writeable = false;
164 output.append("\nBUFFER FULL");
165 }
166
167 notify();
168 }
169
170 public synchronized int getSharedInt()
171 {
172 int val;
173

174 while (!readable) {
175 try {
176 output.append(" WAITING TO CONSUME");
177 wait();
178 }
179 catch (InterruptedException e) {
180 System.err.println(e.toString());
181 }
182 }

Set appropriate location in the
circular buffer. Update
readable.

Increment writeLoc, use % 5
to keep it in range.

Test for full buffer.

PIC 20A, UCLA, Ivo Dinov Slide 52

�3. getSharedInt

�4. GUI method

183

184 writeable = true;

185 val = sharedInt[readLoc];

186

187 output.append("\nConsumed " + val +

188 " from cell " + readLoc);

189

190190 readLoc = (readLoc + 1) % 5;

191

192 output.append("\twrite " + writeLoc +

193 "\tread " + readLoc);

194 displayBuffer(output, sharedInt);

195

196 if (readLoc == writeLoc) {

197 readable = false;

198 output.append("\nBUFFER EMPTY");

199 }

200

201 notify();

202

203 return val;

204 }

205

206 public void displayBuffer(JTextArea out, int buf[])

207 {

208 DecimalFormat formatNumber = new DecimalFormat(" #;-#");

209 output.append("\tbuffer: ");

210

211 for (int i = 0; i < buf.length; i++)

212 out.append(" " + formatNumber.format(buf[i]));

213 }

214}

Similar to setSharedInt. Update
readLoc, test for empty buffer,
return val.

PIC 20A, UCLA, Ivo Dinov Slide 53

�Program Output

PIC 20A, UCLA, Ivo DinovSlide 54

Daemon Threads

� Daemon threads
�Threads that run for benefit of other threads

�Garbage collector

�Run in background
�Use processor time that would otherwise go to waste

�Unlike normal threads, do not prevent a program from
terminating
�When only daemon threads remain, program exits

�Must designate a thread as daemon before start called
setDaemon(true);

�Method isDaemon
�Returns true if thread is a daemon thread

10

PIC 20A, UCLA, Ivo DinovSlide 55

Runnable Interface

� Java does not support multiple inheritance
� Instead, use interfaces
�Until now, inherited from class Thread, overrode run

� Multithreading for an already derived class
� Implement interface Runnable (java.lang)

�New class objects "are" Runnable objects

�Override run method
�Controls thread, just as deriving from Thread class
�In fact, class Thread implements interface Runnable

�Create new threads using Thread constructors
�Thread(runnableObject)

�Thread(runnableObject, threadName)

PIC 20A, UCLA, Ivo DinovSlide 56

Runnable Interface

� Synchronized blocks of code
synchronized(monitorObject){

...

}

� monitorObject- Object to be locked while thread executes
block of code

� Suspending threads
� In earlier versions of Java, there were methods to

suspend/resume threads
�Dangerous, can lead to deadlock

� Instead, use wait and notify

PIC 20A, UCLA, Ivo DinovSlide 57

Runnable Interface

� Upcoming example program
�Create a GUI and three threads, each constantly displaying

a random letter
�Have suspend buttons, which will suspend a thread

�Actually calls wait
�When suspend unclicked, calls notify
�Use an array of booleans to keep track of which threads are

suspended

PIC 20A, UCLA, Ivo Dinov Slide 58

�Class RandomCharacters

�1. implements Runnable

�1.1 Instance variables

1 // RandomCharacters.java

2 // Demonstrating the Runnableinterface

3 import java.awt.*;

4 import java.awt.event.*;

5 import javax.swing.*;

6

7 public class RandomCharacters extends JApplet

8 implements Runnable,

9 ActionListener {

10 private String alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

11 private JLabel outputs[];

12 private JCheckBox checkboxes[];

13 private final static int SIZE = 3;

14

15 private Thread threads[];

1616 private boolean suspended[];

17

18 public void init()

19 {

20 outputs = new JLabel[SIZE];

21 checkboxes = new JCheckBox[SIZE];

22

23 threads = new Thread[SIZE];

24 suspended = new boolean[SIZE];

25

26 Container c = getContentPane();

27 c.setLayout(new GridLayout(SIZE, 2, 5, 5));

28

Use a boolean array to keep track of which
threads are "suspended". We will actually use
wait and notify to suspend the threads.

PIC 20A, UCLA, Ivo Dinov Slide 59

�1.3 Set up GUI

�2. start

�2.1 Initialize objects

29 for (int i = 0; i < SIZE; i++) {

30 outputs[i] = new JLabel();

31 outputs[i].setBackground(Color.green);

32 outputs[i].setOpaque(true);

33 c.add(outputs[i]);

34

35 checkboxes[i] = new JCheckBox("Suspended");

36 checkboxes[i].addActionListener(this);

37 c.add(checkboxes[i]);

38 }

39 }

40

4141 public void start()

42 {

43 // create threads and start every time start is called

44 for (int i = 0; i < threads.length; i++) {

45 threads[i] =

46 new Thread(this, "Thread " + (i + 1));

47 threads[i].start();

48 }

49 }

50

51 public void run()

52 {

53 Thread currentThread = Thread.currentThread();

54 int index = getIndex(currentThread);

55 char displayChar;

56

5757 while (threads[index] == currentThread) {

58 // sleep from 0 to 1 second

59 try {

60 Thread.sleep((int) (Math.random() * 1000));

Use the Thread constructor to create new
threads. The Runnable object is this
applet.

Loop will execute indefinitely because
threads[index] == currentThread. The
stop method in the applet sets all threads to null,
which causes the loop to end.start calls run method for thread.

PIC 20A, UCLA, Ivo Dinov Slide 60

�3.1 synchronized block

�3.2 Display random character

�4. getIndex

6262 synchronized(this) {

63 while (suspended[index] &&

64 threads[index] == currentThread)

65 wait();

66 }

67 }

68 catch (InterruptedException e) {

69 System.err.println("sleep interrupted");

70 }

71

72 displayChar = alphabet.charAt(

73 (int) (Math.random() * 26));

74

75 outputs[index].setText(currentThread.getName() +

76 ": " + displayChar);

77 }

78

79 System.err.println(

80 currentThread.getName() + " terminating");

81 }

82

83 private int getIndex(Thread current)

84 {

85 for (int i = 0; i < threads.length; i++)

86 if (current == threads[i])

87 return i;

88

89 return -1;

90 }

91

Synchronized block tests suspended array
to see if a thread should be "suspended".
If so, calls wait.

11

PIC 20A, UCLA, Ivo Dinov Slide 61

�5. stop

�6. Event handler

92 public synchronized void stop()

93 {

94 // stop threads every time stop is called

95 // as the user browses another Web page

96 for (int i = 0; i < threads.length; i++)

9797 threads[i] = null;

98

99 notifyAll();

100 }

101

102 public synchronized void actionPerformed(ActionEvent e)

103 {

104 for (int i = 0; i < checkboxes.length; i++) {

105 if (e.getSource() == checkboxes[i]) {

106106 suspended[i] = !suspended[i];

107

108 outputs[i].setBackground(

109 !suspended[i] ? Color.green : Color.red);

110

111 if (!suspended[i])

112 notify();

113

114 return;

115 }

116 }

117 }

118}

Sets all threads to null, which
causes loop in run to end, and run
terminates.

Loop and find which box was checked, and suspend
appropriate thread. The run method checks for suspended
threads.

If suspend is off, then notify the appropriate thread.

PIC 20A, UCLA, Ivo Dinov Slide 62

�Program Output

PIC 20A, UCLA, Ivo DinovSlide 63

Thread Groups

� Thread groups
�Threads in a thread group can be dealt with as a group

�May want to interrupt all threads in a group

�Thread group can be parent to a child thread group

� Class ThreadGroup
�Constructors

ThreadGroup(threadGroupName)

ThreadGroup(parentThreadGroup, name)

�Creates child ThreadGroup named name

PIC 20A, UCLA, Ivo DinovSlide 64

Thread Groups
� Associating Threads with ThreadGroups

�Use constructors
�Thread(threadGroup, threadName)

�Thread(threadGroup, runnableObject)
�Invokes run method of runnableObject when thread

executes
�Thread(threadGroup, runnableObject,

threadName)
�As above, but Thread named threadName

PIC 20A, UCLA, Ivo DinovSlide 65

Thread Groups

� ThreadGroup Methods
� See API for more details
�activeCount

�Number of active threads in a group and all child groups
�enumerate

�Two versions copy active threads into an array of references
�Two versions copy active threads in a child group into an array of

references
�getMaxPriority

�Returns maximum priority of a ThreadGroup
�setMaxPriority

�getName, getParent

