
1

PIC 20A, UCLA, Ivo Dinov Slide 1

UCLA PIC 20A
Java Programming

�Instructor: Ivo Dinov,
Asst. Prof. In Statistics, Neurology and

Program in Computing

�Teaching Assistant: Yon Seo Kim, PIC

University of California, Los Angeles, Summer 2002
http://www.stat.ucla.edu/~dinov/

PIC 20A, UCLA, Ivo Dinov Slide 2

PIC 20 A – Course Organization

� http://www.stat.ucla.edu/~dinov/courses_students.html

�Summer2002\HTMLs\PIC20A.html

�Java Demo: C:\Ivo.dir\LONI_Viz\LONI_Viz_MAP_demo\run.bat

PIC 20A, UCLA, Ivo DinovSlide 3

Chapter 1 – Getting Started

� What is the Java platform and what it can do?

� How to compile and run two simple programs on the
Windows, the UNIX/Linux or the Mac OS X
platforms.

� Software Development Kits (SDKs) provided by Sun
Microsystems include a minimal set of tools to let you
run and compile your programs.

� Advanced developers are encouraged to use a
professional Integrated Development Environment
(IDE).

PIC 20A, UCLA, Ivo DinovSlide 4

Chapter 1 – Getting Started

� Java is a high-level language that is characterized by:-

• Simple • Robust • High performance

• Object oriented • Secure • Multithreaded

• Distributed • Architecture neutral • Dynamic

• Interpreted • Portable

� Most programming languages, you either compile or
interpret a program to run it on your computer. In
Java a program is both compiled and interpreted.

PIC 20A, UCLA, Ivo DinovSlide 5

Chapter 1 – Getting Started

� Bytecodes is the machine code instructions for the Java
Virtual Machine (Java VM). Every Java interpreter is an
implementation of the Java VM.

� Write once, run anywhere. As long as a computer has a
Java VM, the same Java program should run on
Windows, Solaris, or Mac.

PIC 20A, UCLA, Ivo DinovSlide 6

Java Platform

� A platform is the hardware or software environment in
which a program runs (W2K, Linux, Solaris, MacOS).
Most platforms can be described as a combination of the
operating system and hardware.

� Java platform is software-only platform that runs on top
of other, hardware-based platforms and has these 2
components:
�The Java Virtual Machine (Java VM)
�The Java Application Programming Interface

(API)

2

PIC 20A, UCLA, Ivo DinovSlide 7

Java Platform

�The Java Virtual Machine (Java VM)
�The Java Application Programming Interface

(API)

PIC 20A, UCLA, Ivo DinovSlide 8

Java VM & Java API

� The Java VM is the base for the Java platform and is
ported onto various hardware-based platforms.

� The Java API is a large collection of ready-made
software components that provide many useful
capabilities, such as graphical user interface (GUI)
widgets. The Java API is grouped into libraries of related
classes and interfaces; these libraries are known as
packages.

PIC 20A, UCLA, Ivo DinovSlide 9

Native vs. Portable Code

� Native code is code that, after you compile it, runs on a
specific hardware platform.

� As a platform-independent (portable) environment, the
Java platform can be a bit slower than native code.
However, smart compilers, well-tuned interpreters, and
just-in-time bytecode compilers can bring performance
close to that of native code without threatening
portability.

PIC 20A, UCLA, Ivo DinovSlide 10

Java Applets & Applications

� The most common types of programs written in the Java
programming language are applets and applications.

� An applet is a program that adheres to certain conventions that
allow it to run within a Java-enabled web browser.

� Example: C:/Ivo.dir/UCLA_Classes/Applets.dir/DiceApplet.htm

� An application is a standalone program that runs directly on the
Java platform. A special kind of application known as a server
serves and supports clients on a network.

� Servers Ex: Web servers, Mail servers, Print servers.

� Servlets, similar to applets, are run-time extensions of applications.
Instead of working in browsers, though, servlets run within Java
Web servers, configuring or tailoring the server.

PIC 20A, UCLA, Ivo DinovSlide 11

Java 2 Platform SE v 1.4

PIC 20A, UCLA, Ivo DinovSlide 12

First Java Program – HelloWorldApp

� Your first program, HelloWorldApp , will simply display
the greeting “Hello World!” To create this program, you
complete each of the following steps.

� Create a source file. A source file contains text, written in
the Java programming language, that you and other
programmers can understand. You can use any text editor
to create and to edit source files.

� Compile the source file into a bytecode file. The
compiler takes your source file and translates the text into
instructions that the Java VM can understand. The
compiler converts these instructions into a bytecode file.

3

PIC 20A, UCLA, Ivo DinovSlide 13

First Java Program – HelloWorldApp

� /**
� * The HelloWorldApp class implements an application
� * that displays "Hello World!"to the standard output.
� */
� public class HelloWorldApp {
� public static void main(String [] args)) {
� //Display "Hello World!"
� System.out.println("Hello World!");
� }
� }

Case
Sensitive

Do this example in a DOS shell or Explorer
javac HelloWorldApp.java

java HelloWorldApp

PIC 20A, UCLA, Ivo DinovSlide 14

First Java Applet – HelloWorld

� Applet called HelloWorld , displaying the greeting “Hello
World!” Unlike HelloWorldApp , however, the applet runs
in a Java-enabled Web browser, such as the HotJava TM
browser, Netscape Navigator, or Microsoft Internet
Explorer.

� Create a source file, compile the source file, and run the
program. However, unlike for an application, you must
also create an HTML file.

PIC 20A, UCLA, Ivo DinovSlide 15

First Java Applet – HelloWorld.java

� import java.applet.Applet;
� import java.awt.Graphics;
�public class HelloWorld extends Applet {
� public void paint(Graphics g) {
� //Display "Hello world!"
� g.drawString("Hello world!",50,25);
� }
�}

PIC 20A, UCLA, Ivo DinovSlide 16

First Java Applet – HelloWorld

� HTML file to accompany your applet. HelloWorld.html
� <HTML>
� <HEAD>
� <TITLE>A Simple Program</TITLE>
� </HEAD>
� <BODY>
� Here is the output of my program:
� <APPLET CODE="HelloWorld.class“

WIDTH=150 HEIGHT=25 >
� </APPLET>
� </BODY>
� </HTML>

PIC 20A, UCLA, Ivo DinovSlide 17

Running Java Applet – HelloWorld

� Compiling:
�javac HelloWorld.java
� The compiler should generate a Java bytecode file,

HelloWorld.class
� Although you can use a Web browser to view your applets,

you may find it easier to test your applets by using the
simple appletviewer application that comes with the Java
platform. To view the elloWorld applet using appletviewer
enter at the prompt:

�appletviewer HelloWorld.html
�netscape HelloWorld.html

PIC 20A, UCLA, Ivo DinovSlide 18

Exceptions …

� Exception in thread “main ”
java.lang.NoClassDefFoundError:HelloWorldApp

� If you receive this error, the interpreter cannot find your bytecode
file, HelloWorldApp.class .

� One of the places java tries to find your bytecode file is your current
directory. So, if your bytecode file is in C drive, you should change
your current directory to that. To change your directory, type the
following command at the prompt and press Enter :

� cd c:
� The prompt should change to C:. If you enter dir at the prompt, you

should see your .java and .class files. Now again enter
� java HelloWorldApp
� Still have problems, change your CLASSPATH variable.
� set CLASSPATH=

4

PIC 20A, UCLA, Ivo DinovSlide 19

First Java Application Program

� HelloWorldApp , displays the greeting “Hello World!”
To createthis program:

� Create a source file – text written in the Java that others
can understand. Use any text editor to generate/edit source
files – *.java.

� Compile the source file into a bytecode file – javac
translates the source/text into instructions that the Java
Virtual Machine can understand, bytecode file – *.class.

� Run the program contained in the bytecode file via Java
interpreter – carries out the instructions by translating them
into instructions that your computer can understand.

� E.g.,C:\Ivo.dir\UCLA_Classes\Summer2002\PIC20A\Examples\JavaTutorialExa
mples\getStarted\application\example\HelloWorldApp.java

PIC 20A, UCLA, Ivo DinovSlide 20

First Java Applet

� HelloWorldA, displays the greeting Hello World! in a
java enabled browser

� Create a source file – notepad HelloWorld.java
notepad Hello.html.

� Compile the source – javac HelloWorld.java
makes – HelloWorld.class.

� Run the program – appletviewer Hello.html.

� E.g.,C:\Ivo.dir\UCLA_Classes\Summer2002\PIC20A\Examples\JavaTutorialExa
mples\getStarted\applet\example\HelloWorld.java && Hello.html

PIC 20A, UCLA, Ivo DinovSlide 21

HelloWorld – Program description

�Kinds of Comments:
� /* text */
� Compiler ignores everything from opening /* to closing */.
� /** documentation */
� This style indicates a documentation comment (doc comment, for

short). Compiler ignores all the text within the comment. The SDK
javadoc tool uses doc comments to automatically generate docs.

� Example:C:\Ivo.dir\UCLA_Classes\Summer2002\PIC20A\Examples\JavaTutor
ialExamples\getStarted\applet\example\doc\index.html

� // text
� The compiler ignores everything from the //to the end of the line.

PIC 20A, UCLA, Ivo DinovSlide 22

HelloWorld – Program description

�Defining a Class:
� class HelloWorldApp {

public static void main(String [] args)){
System.out.println("Hello World!"); // Display the string

}
}

� A class is the basic building block of an object-oriented language,
such as Java. A class is a blueprint that describes the state and the
behavior associated with instances of that class. When you
instantiate a class, you create an object that has the same states
and behaviors as other instances of the same class.

� The state associated with a class or an object is stored in member
variables.

PIC 20A, UCLA, Ivo DinovSlide 23

HelloWorld – Program description

�Defining a Class:
� The behavior associated with a class or an object is implemented

with methods, which are similar to the functions or procedures in
procedural languages, such as C/FORTRAN/Pascal.

� Ex. Of a class is a recipe—for making a cake. It’s a blueprint for
making a specific instance of the recipe. Your attempt to make a
cake is one instance of the recipe, and someone else’s attempt to
bake the same cake is another instance.

� Ex. of a class that represents a rectangle: The class defines
variables for the origin, width, and height. The class might also
define a method that calculates its area/circumference.
An instance of the rectangle class, a rectangle object, contains the
information for a specific rectangle, such as the dimensions of the
floor of your office or the dimensions of this page.

PIC 20A, UCLA, Ivo DinovSlide 24

HelloWorld – Program description

�Main method of a Class:
� The entry point of every Java application is its main method. The

interpreter first invokes the main method defined in that class. The
main method controls the initial flow of the program.

� /** The HelloWorldApp class implements an application that
* simply displays "Hello World!"to the standard output.
*/
class HelloWorldApp {

public static void main(String [] args)){
System.out.println("Hello World!"); // Display the string.

}
}

5

PIC 20A, UCLA, Ivo DinovSlide 25

HelloWorld – Program description

�Main method of a Class:
� Every application must contain a main method declared like this:

public static void main(String [] args))
� 3 modifiers:
� public : Allows any class to call the main method
� static : Means that the main method is associated with the

HelloWorldApp class as a whole instead of operating on an instance
of the class

� void : Indicates that the main method does not return a value
� Each application must contain a main method. When invoked, the

interpreter starts by calling the class’s main method, which then calls
all the other methods.

PIC 20A, UCLA, Ivo DinovSlide 26

HelloWorld – Program description

�Main method of a Class:
� The main method accepts a single argument: an array of

elements of type String , like this:
public static void main(String [] args)

� This array is the mechanism through which the Java
Virtual Machine passes information to your application.
Each String in the array is called a command-line
argument. It let users affect the operation of the
application at run-time, without recompiling it.

� The HelloWorldApp application, is very simple and
ignores its command-line arguments.

PIC 20A, UCLA, Ivo DinovSlide 27

HelloWorld – Program description

�Using Classes & Objects:
� Because HelloWorldApp is such a simple program, it

doesn’t need to define any classes except HelloWorldApp .
However, the application does use another class,
System, that is part of the Java API. The System class
provides system-independent access to system-dependent
functionality.

� The System class contains standard output stream—a
place to send text, usually refers to the terminal window
the Java interpreter runs.

� Caution! Using the standard output stream isn’t
recommended in 100% Pure Java programs. However, it’s
fine to use during the development cycle.

PIC 20A, UCLA, Ivo DinovSlide 28

HelloWorld – Program description

�Using Classes & Objects:
� System.out.println("Hello World!");
� Ex. of a class variable and an instance method.

System.out .println("Hello World!");
� The construct System.out is the full name of the out

variable in the System class. The application never
instantiates the System class but instead refers to out
directly through the class. The reason is that out is a class
variable—a variable associated with a class rather than
with an object.

� The Java Virtual Machine allocates a class variable once
per class, no matter how many instances of that class exist.

PIC 20A, UCLA, Ivo DinovSlide 29

HelloWorld – Program description

�Using Classes & Objects:
� System.out.println("Hello World!");
� System’s out variable is a class variable, it refers to an

instance of the Print-Stream class (another Java API-
provided class that implements an easy-to-use output
stream). When it is loaded into the application, the System
class instantiates PrintStream and assigns the new
PrintStream object to the out class variable.

� System.out.println ("Hello World!");
� Calls one of out’s instance methods. An instance method

implements behavior specific to a particular object—an
instance of a class.

PIC 20A, UCLA, Ivo DinovSlide 30

HelloWorld – Program description

�Using Classes & Objects:

System.out.println("Hello World!");

� Java also has instance variables. An instance variable is a
member variable associated with an object rather than with
a class. Each time you instantiate a class, the new object
gets its own copy of all the instance variables defined in its
class.

� We’ll discuss these further in ch. 4 …

6

PIC 20A, UCLA, Ivo DinovSlide 31

HelloWorld – Applet description

�Importing Classes & Packages:
� HelloWorld.java begins with two import statements that import

the Applet and Graphics classes:
import java.applet.Applet;
import java.awt.Graphics;
public class HelloWorld extends Applet {

public void paint(Graphics g) {
g.drawString("Hello world!",50,25);

}
}

� By importing classes or packages, a class can easily refer to classes
in other packages. Packages are used to group classes, similar to the
way libraries group C functions.

PIC 20A, UCLA, Ivo DinovSlide 32

HelloWorld – Applet description

�Importing Classes & Packages:
import java.applet.Applet;
import java.awt.Graphics;
public class HelloWorld extends Applet {

public void paint(Graphics g) {
g.drawString("Hello world!",50,25);

}
}

� Importing the Applet and Graphics classes lets the
program refer to them later without any prefixes. The
java.applet. and java.awt. prefixes tell the compiler
which packages it should search for the Applet and
Graphics classes.

PIC 20A, UCLA, Ivo DinovSlide 33

HelloWorld – Applet description

�Defining an Applet Sub-Class:
� import java.applet.Applet;

import java.awt.Graphics;
public class HelloWorld extends Applet {

public void paint(Graphics g){
g.drawString("Hello world!",50,25);

}
}

� Every applet must define a subclass of the Applet class. Applets
inherit a great deal of functionality from the Applet class, ranging
from the ability to communicate with the browser to the ability to
present a graphical user interface (GUI).

PIC 20A, UCLA, Ivo DinovSlide 34

HelloWorld – Applet description

�Implementing Applet Methods:
� import java.applet.Applet;

import java.awt.Graphics;
public class HelloWorld extends Applet {

public void paint(Graphics g){
g.drawString("Hello world!",50,25);

} }

� There’s a single method here: paint . Every applet should
implement at least one of the following methods: init , start , or
paint . Applets do not need to implement a main method.

� Applets are designed to be included in HTML pages. Using the
<APPLET>HTML tag, you specify (at a minimum) the location of
the Applet subclass and the dimensions of the applet’s on-screen
display area. The applet’s coordinate system starts at (0,0), which is
at the upper-left corner of the applet’s display area.

PIC 20A, UCLA, Ivo DinovSlide 35

HelloWorld – Applet description

�Running an Applet:
� When it encounters an <APPLET>tag, a Java-enabled

browser reserves on-screen space for the applet, loads the
Applet subclass onto the computer on which it is
executing, and creates an instance of the Applet subclass.

� <HTML> <HEAD> <TITLE>A Simple Program </TITLE>
</HEAD>
<BODY>
Here is the output of my program:
<APPLET CODE="HelloWorld.class“ WIDTH=150 HEIGHT=25>
</APPLET>
</BODY></HTML>

