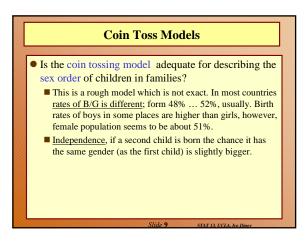
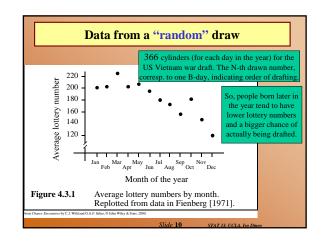
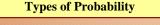
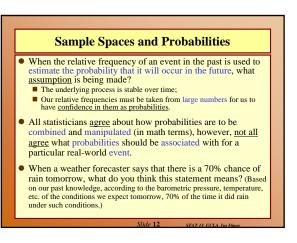
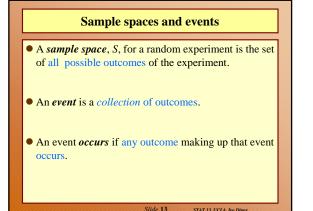

Let's Make a Deal Paradox.

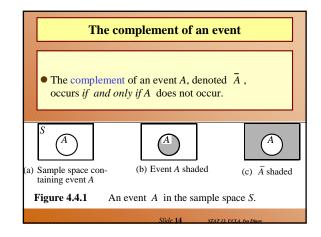

- The *intuition* of most people tells them that each of the doors, the chosen door and the unchosen door, are equally likely to contain the prize so that there is a 50-50 chance of winning with either selection? This, however, is **not the case**.
- The probability of winning by using the switching technique is 2/3, while the odds of winning by not switching is 1/3. The easiest way to explain this is as follows:

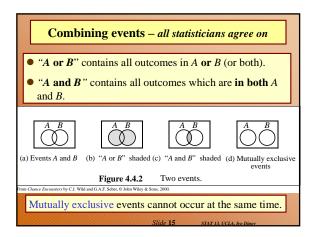

Let's Make a Deal Paradox.

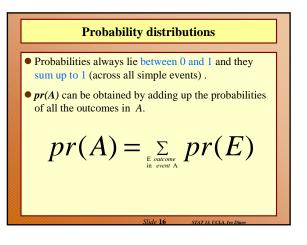

- The probability of picking the wrong door in the initial stage of the game is 2/3.
- If the contestant picks the wrong door initially, the host must reveal the remaining empty door in the second stage of the game. Thus, if the contestant switches after picking the wrong door initially, the contestant will win the prize.
- The probability of winning by switching then reduces to the probability of picking the wrong door in the initial stage which is clearly 2/3.
- Demos:

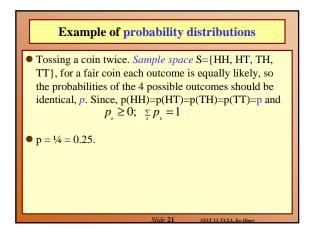


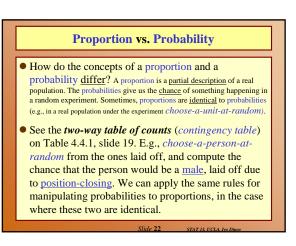


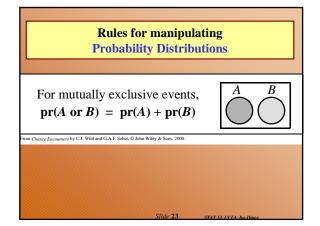


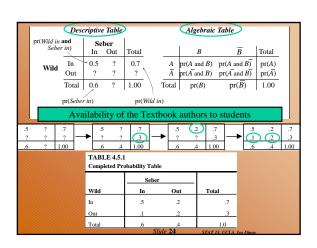

- Probability models have two essential components (*sample space*, the space of all possible outcomes from an experiment; and a list of *probabilities* for each event in the sample space). Where do the outcomes and the probabilities come from?
- <u>Probabilities from models</u> say mathematical/physical description of the sample space and the chance of each event. Construct a fair die tossing
- <u>Probabilities from data</u> data observations determine our probability distribution. Say we toss a coin 100 times and the observed Head/Tail counts are used as probabilities.
- <u>Subjective Probabilities</u> combining data and psychological factors to design a reasonable probability table (e.g., gambling, stock market).

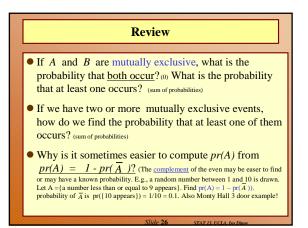

Slide 11 STAT 13. UCLA. In

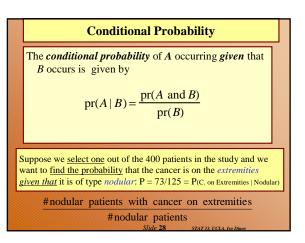

	Job la	sses in the	US	
TABLE 4.	4.1 Job Losses in	the US (in tho	usands)	
for 1987 to	1991			
	Reas	son for Job Loss		
	Workplace		Position	Total
	moved/closed	Slack work	abolished	
Male	moved/closed 1,703	Slack work 1,196	abolished 548	3,447
M ale Female				3,447 2,137

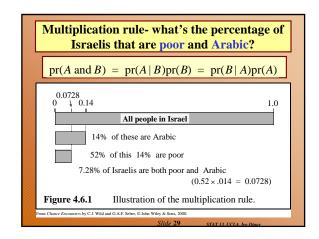

	Job la	sses cont.		
	Workplace move <u>d/clo</u> sed	Slack work	Position abolished	Total
Male	(1,703)	1,196	548	3,447
Female	1,210	564	363	2,137
Total	2,913	1,760	911	5,584
TABLE 4.4.2	Proportions of J	ob Losses from	Table 4.4.	1
TABLE 4.4.2	<u> </u>	ob Losses from on for Job Loss		ſ _
TABLE 4.4.2	<u> </u>			
TABLE 4.4.2	Reas Workplace	on for Job Loss	s Position	
	Reas Workplace moved/closed	on for Job Los Slack work	s Position abolishee	d tota

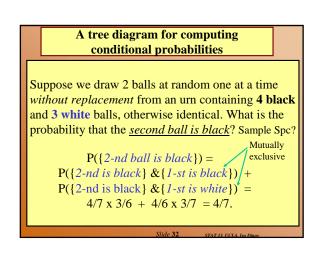

Review

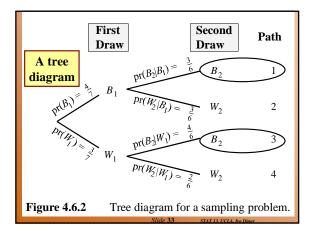

- What is a sample space? What are the <u>two essential</u> <u>criteria</u> that must be satisfied by a possible sample space? (completeness – every outcome is represented; and uniqueness – no outcome is represented more than once.
- What is an event? (collection of outcomes)
- If A is an event, what do we mean by its complement, \overline{A} ? When does \overline{A} occur?
- If *A* and *B* are events, when does *A* or *B* occur? When does *A* and *B* occur?



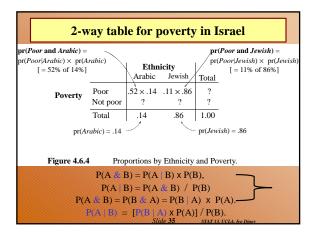


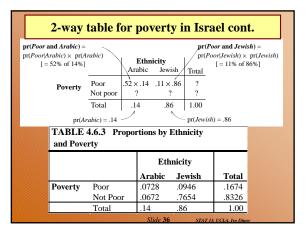

	Unn	narried	couples		
Select an un us the proba				110000000000000000000000000000000000000	
TABLE 4.5.2 P Sharing Househ	-		l Male-Fema	le Couples	
		Fen	nale		
	Never			Married	Total
Male	Married	Divorced	Widowed	to other	
Never Married	0.401	.111	.017	.025	.554
Divorced	.117	.195	.024	.017	.353
Widowed	.006	.008	.016	.001	.031
Married to other	.021	.022	.003	.016	.062
Total	.545	.336	.060	.059	1.000

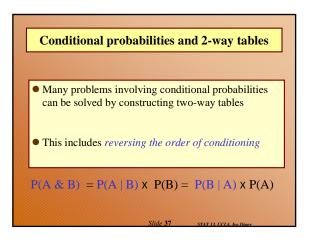


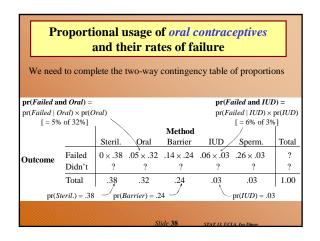

		• -	kin cancer – ional probabili	<u>ties</u>
TABLE4.6.1: 400 N	felanoma Pa	tients by Tyj Si		1
an a	Head and		F () (Row
Туре	Neck	Trunk	Extremities	Totals
Hutchinson's				
melanomic freckle	22	2	10	34
Superficial	16	54	115	185
Nodular	19	33	73	125
Indeterminant	11	17	28	56
Column Totals	68	106	226	400

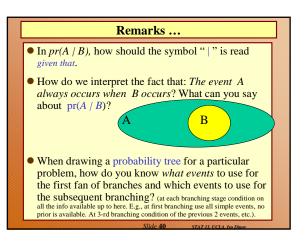
51:20 27

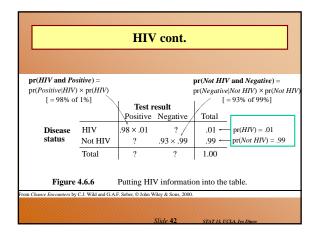


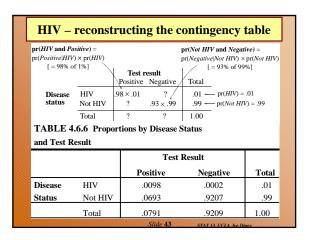




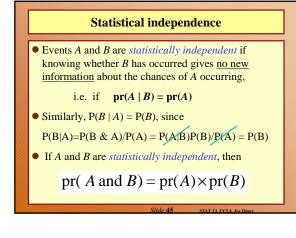








	(Oral co	ontrac	eptives	s cont.			
pr(Failed	and Oral)	=			pr(Fa	uiled and IUI	() =	
pr(Failed	Oral) × pr	(Oral)			pr(Fa	iled IUD) ×	pr(IUD)	
[= 5	% of 32%]	. <				[= 6% of 39	6]	
				Method		/		
		Steril.	Oral	Barrier	IUD /	Sperm.	Total	
	Failed	$0 \times .38$.05 × .32	$.14 \times .24$.06 × .03	$.26 \times .03$?	
Outcome	Didn't	?	?	?	?	?	?	
	Total	.38	.32	.24	.03	.03	1.00	
pr	(Steril.) =	38 – pr(E	Barrier) = .2	24 —	$ \subset $	pr(IUD) = .03	3	
TABLE 4	.6.4 Tabl	e Construct	ted from th	e Data in E	xample 4.6	.8		
				Method				
		Steril.	Oral	Barrier	IUD	Sperm.	Tota	ıl
Outcome	Failed	0	.0160	.0336	.0018	.0078	.0592	2
	Didn't	.3800	.3040	.2064	.0282	.0222	.940	8
	Total	.3800	.3200	.2400	.0300	.0300	1.0000)
				lide 39	STAT 13.	UCLA. Ivo Dinov		



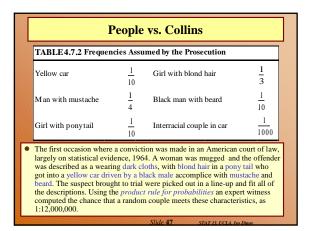

8	en Mean Absorbance F ELISA for HIV Antib	
MAR	Healthy Donor	HIV patients
<2	$202 \} 275$	0 L - False
2 - 2.99	$_{73}$ J $_{73}^{273}$	t cut-off ² ^{J 2} Nega
3 - 3.99	15	(FNE 7 Power
4 - 4.99	³ Fals	7
5 - 5.99	2	tives ¹⁵ 1-P(FNI
6 -11.99	2	36 1-P(Neg F
12+	0	21 ~ 0.976
Total	297	88

TABLE 4.6.7	Proportions Inf	fected with HIV		
Country	No. AIDS Cases	Population (millions)	pr(HIV)	Having Test pr(HIV Positive)
United States	218,301	252.7	0.00864	0.109
Canada	6,116	26.7	0.00229	0.031
Australia	3,238	16.8	0.00193	0.026
New Zealand	323	3.4	0.00095	0.013
United Kingdom	5,451	57.3	0.00095	0.013
Ireland	142	3.6	0.00039	0.005

Summary

- What does it mean for two events *A* and *B* to be *statistically independent*?
- Why is the working rule under independence, P(A and B) = P(A) P(B), just a special case of the multiplication rule P(A & B) = P(A | B) P(B)?
- Mutual independence of events $A_1, A_2, A_3, ..., A_n$ if and only if $P(A_1 \& A_2 \& ... \& A_n) = P(A_1)P(A_2)...P(A_n)$
- What do we mean when we say two human characteristics are *positively associated? negatively* associated? (blond hair – blue eyes, pos.; black hair – blue eyes, neg.assoc.)

. 40

STAT 13 UCLA

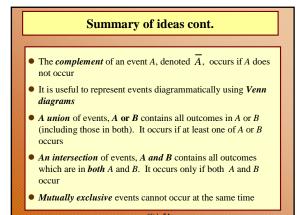
Review• Other the predict of the calculated P(A and B) if we treat positively associated events as independent? If we treat negatively associated events as independent? If we treat negatively associated events as independent? (Example, let B={A + {b}}, A & B are neg-assoc'd, P(A&B)=P(A)(P(A)+P((b))), under indep. assump's. However, P(A&B)=P(A)(P(A)+P((b))), under indep. assump's. However, P(A&B)=P(A)(P(A)+P((b))), under indep. assoc'd - A & comp(B) are predicted events as independent? If A & B are neg-assoc'd - A & comp(B) are predicted events. If A & B are neg-assoc'd - A & comp(B) are predicted events as independent? If A & B are neg-assoc'd - A & comp(B) are predicted events. If A & B are neg-assoc'd - A & comp(B) are predicted eve

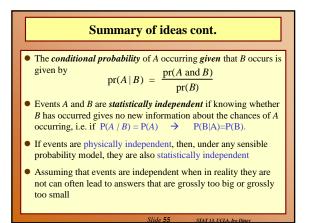
Summary of ideas

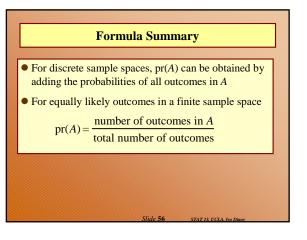
- The *probabilities* people quote come from 3 main sources:
 (i) *Models* (idealizations such as the notion of equally
 - likely outcomes which suggest probabilities by symmetry).(ii) *Data* (e.g. relative frequencies with which the event has occurred in the past).
 - (iii) *subjective feelings* representing a degree of belief
- A simple probability model consists of a sample space and a probability distribution.
- A sample space, *S*, for a random experiment is the set of all possible outcomes of the experiment.

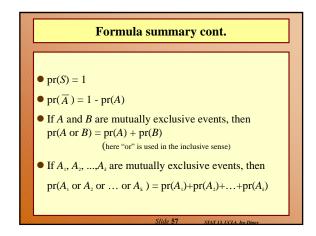
Slide 51

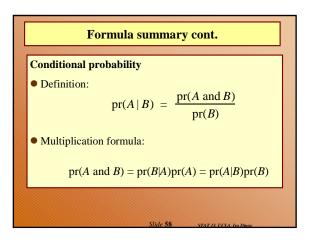
STAT 13 LICLA I


Summary of ideas cont. A list of numbers p₁, p₂, ... is a *probability distribution* for S = {s₁, s₂, s₃, ...}, provided all of the p_i's lie between 0 and 1, and they add to 1. According to the probability model, p_i is the probability that outcome s_i occurs. We write p_i = P(s_i).


ilide 52 STAT 13 UCLA. Ivo Di


Summary of ideas cont.


- An event is a collection of outcomes
- An event *occurs* if any outcome making up that event occurs
- The probability of event A can be obtained by adding up the probabilities of all the outcomes in A
- If all outcomes are equally likely,


$pr(A) = \frac{\text{number of outcomes in } A}{\text{total number of outcomes}}$

