Stat 13 Homework 3

http://www.stat.ucla.edu/~dinov/courses_students.html (30 points, student scores will be converted to scores out of 100) Suggested Solutions

Problem 1 (15 points)

$X=$ number of malfunction disk drives
$\mathrm{X} \sim \operatorname{Binomial}(\mathrm{n}, \mathrm{p})$
$\mathrm{P}(\mathrm{X}=\mathrm{x})=\binom{n}{x} p^{x}(1-p)^{n-x}$ where $\binom{n}{x}=\frac{n!}{x!(n-x)!}$
A, $\quad n=10(1 \mathrm{pt}), \mathrm{p}=4 \%=0.04(1 \mathrm{pt})$
B, Assumptions:

- each trial has only 2 outcomes: function / malfunction (1 pt)
- constant $p=>$ same value for each trial (1 pt)
- independence => results are independent of each other (1 pt)

C, \quad Yes (1 pt)
D,

$$
\begin{aligned}
& \text { Notation: } \mathrm{nCr}=\binom{n}{r} \\
& 1, \mathrm{P}(\mathrm{X}=0)={ }_{10} \mathrm{C}_{0} *(0.04)^{0} *(0.96)^{10}=0.6648(2 \mathrm{pts}) \\
& 2, \mathrm{P}(\mathrm{X}=1)={ }_{10} \mathrm{C}_{1} *(0.04)^{1} *(0.96)^{9}=0.277(2 \mathrm{pts}) \\
& 3, \mathrm{P}(\mathrm{X} \geq 2)=1-\mathrm{P}(\mathrm{X}<2)=1-\mathrm{P}(\mathrm{X} \leq 1)=1-[\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)]=1-[0.6648+0.277]=0.0582(2 \mathrm{pts}) \\
& 4, \mathrm{P}(3 \leq \mathrm{X} \leq 6):(3 \mathrm{pts}) \\
& \quad \text { method 1: } \\
& \quad=\mathrm{P}(\mathrm{X}=3)+\mathrm{P}(\mathrm{X}=4)+\mathrm{P}(\mathrm{X}=5)+\mathrm{P}(\mathrm{X}=6)=0.006213 \\
& \quad \text { method } 2: \\
& \quad=\mathrm{P}(\mathrm{X} \leq 6)-\mathrm{P}(\mathrm{X}<3) \\
& \quad=\mathrm{P}(\mathrm{X} \leq 6)-\mathrm{P}(\mathrm{X} \leq 2) \\
& \\
& =0.999999982331-0.993786284008 \\
& =0.006213
\end{aligned}
$$

Problem 2 (10 points)
Notation: Hus B = husband's blood type B
A, Since husband's blood type independent of wife's blood type,
$P($ Hus $B)=11 \% ~(1 p t)$
B, Due to independence,
$P($ Hus A and Wife A) $=P($ Hus A) * $P($ Wife $A)=30 \%$ * $30 \%=9 \%(2$ pts)
C, $\quad P($ at least 1 AB$):(3 \mathrm{pts})$
Method 1:
$=P($ Hus not $A B$ and Wife $A B)+P($ Hus $A B$ and Wife not $A B)+P($ Hus $A B$ and Wife $A B)$

$$
=(90 \%)(10 \%)+(10 \%)(90 \%)+(10 \%)(10 \%)=19 \%
$$

Method 2: (Using complement rule)
$=1-P$ (Hus not $A B$ and Wife not $A B$)
$=1-(90 \%)(90 \%)=19 \%$
D, $\quad P($ same blood type $) \quad=P($ Hus O and Wife $O)+P($ Hus A and Wife $A)+P($ Hus B and Wife B) + P (Hus $A B$ and Wife $A B$)
$=(49 \%)(49 \%)+(30 \%)(30 \%)+(11 \%)(11 \%)+(10 \%)(10 \%)$ $=35.22 \%(4 \mathrm{pt})$

Problem 3 (5 points)

Total number of members $=275$
Total number of females $=150$
Total number of males $=125$
A, $\quad P($ female $)=150 / 275=0.545(1 \mathrm{pt})$
B, $\quad P($ female and $4-5$ times $)=37 / 275=0.1345(1 \mathrm{pt})$
C, $\quad P($ male or 4 -or-more $)=P($ male $)+P(4$-or-more $)-P$ (male and 4-or-more)

$$
\begin{aligned}
& =125 / 275+(26+6+37+11) / 275-(26+6) / 275 \\
& =173 / 275 \\
& =0.629(3 \mathrm{pts})
\end{aligned}
$$

OR
$P($ male or 4-or-more $)=1-\mathrm{P}($ Complement $)=1-\mathrm{P}($ Female and in group-A-or-B $)=$ $=1-P(\{$ Female and in group $-A\}$ or $\{$ Female and in group $-B\})=$
$=1-(34 / 275+68 / 275)=1-0.371$
$=0.629$ (3 pts)

