Stat13 Homework 4

http://www.stat.ucla.edu/~dinov/courses_students.html
(30 points, student scores will be converted to scores out of 100)
Suggested Solutions

Problem 1
a) (4 points)
$\operatorname{Pr}(X \leq 19)=0.0228$
$\operatorname{Pr}(X<19)=0.0228$
$\operatorname{Pr}(X>21)=1-0.1587=0.8413$
$\operatorname{Pr}(24 \leq X \leq 27)=0.9772-0.6915=0.2857$
b) (2 points)

Let least denote the least amount needed. Then least satisfies: $\operatorname{Pr}(X \leq$ least $)=90 \%$.
We can see from the table that the least amount needed is 10.2404
The IQR is $9.4633-7.7367=1.7266$
c)
i) (1 point)
$z=\frac{6-5.1}{0.87}=1.0345$
$\operatorname{Pr}(X>6)=\operatorname{Pr}(Z>1.0345)=1-0.848=0.152$
ii) (1 point)
similarly,
$\operatorname{Pr}(4.3 \leq X \leq 6.6)=\operatorname{Pr}\left(\frac{4.3-5.1}{0.87} \leq Z \leq \frac{6.6-5.1}{0.87}\right)=0.9577-0.1789=0.7788$
iii) (1 point)
$\operatorname{Pr}(\mathrm{Z}<-0.126)=0.45$
Hence $x=-0.126 \times 0.87+5.1=4.99$
d)
i) (1 point for mean, 1 points for SD)
$E(Y)=3 E(X)-3 E(W)=-24$
$S D(Y)=\sqrt{3^{2} S D^{2}(X)+3^{2} S D^{2}(W)}=\sqrt{306}=17.49$
ii) (2 point)
----centered much lower than either X or W
----distribution is more spread out than X or W
Problem 2
i) (4 points)
z-score for the value:
$-6: z=\frac{-6-3}{4}=-2.25$, hence 2.25 SD away from mean
10: $z=\frac{10-3}{4}=1.75$, hence 1.75 SD away from mean
7: $z=\frac{7-3}{4}=1$, hence 1 SD away from mean
-0.4: $z=\frac{-0.4-3}{4}=-0.825$, hence 0.825 SD away from mean
ii) (2 points)

$$
\operatorname{Pr}(-2 \leq X \leq 0)=\operatorname{Pr}\left(\frac{-2-3}{4} \leq Z \leq \frac{0-3}{4}\right)=0.2266-0.1056=0.121
$$

No difference. Because $\operatorname{Pr}(-2<X<0)=\operatorname{Pr}(-2 \leq X \leq 0)-\operatorname{Pr}(X=-2)-\operatorname{Pr}(X=-0)$. But $\operatorname{Pr}(X=-2)=\operatorname{Pr}(X=-0)=0$ for normal distribution. Hence no difference.

Problem 3. (6 points total, 2 for each)
i) $\operatorname{Pr}(73 \leq M \leq 75)=\operatorname{Pr}\left(\frac{73-70}{3} \leq Z \leq \frac{75-70}{3}\right)=0.9522-0.8413=0.1109$
ii) $M+F \sim N\left(70+65.5,\left(\sqrt{3^{2}+2.5^{2}}\right)^{2}\right)$

So, $\operatorname{Pr}(M+F \leq 140)=\operatorname{Pr}\left(Z \leq \frac{140-(70+65.5)}{\sqrt{3^{2}+2.5^{2}}}\right)=0.8754$
iii) $M-F \sim N\left(70-65.5,\left(\sqrt{3^{2}+2.5^{2}}\right)^{2}\right)$

So, $\operatorname{Pr}(M-F \leq 0)=\operatorname{Pr}\left(Z \leq \frac{0-(70-65.5)}{\sqrt{3^{2}+2.5^{2}}}\right)=0.1246$

