Stat 13 Homework 6

http://www.stat.ucla.edu/~dinov/courses_students.html
(20 points, student scores will be converted to scores out of 100)

Suggested Solutions

Problem 61 (6 points)

$X \sim N($ mean $=1250$, sigma $=28)$
(1 pt)
(a)

$$
\begin{aligned}
& T 1=4 X \\
& E(T 1)=4 E(X)=5000 \\
& V(T 1)=16 V(X)=12544, \text { so } S D(T 1)=112 \\
& \text { So } T 1 \sim N(\text { mean }=5000 \text {, sigma }=112)
\end{aligned}
$$

(1 pt)
(b)

$$
\begin{aligned}
& T 2=X 1+X 2+X 3+X 4 \\
& E(T 2)=E(X 1)+E(X 2)+E(X 3)+E(X 4)=5000 \\
& V(T 2)=V(X 1)+V(X 2)+V(X 3)+V(X 4)=3136 \text { so } S D(T 2)=56
\end{aligned}
$$

(1 pt)
(c) differ in SD, plan 2 has smaller SD, half of that of plan 1
(1pt)
(d) $\quad \mathrm{P}(\mathrm{T} 1>5100)=\mathrm{P}(Z>(5100-5000) / 112)=P(Z>0.8928)=0.186$
(1pt)
(e) $\quad P(T 2>5100)=P(Z>(5100-5000) / 56)=P(Z>1.7857)=0.037$
(1pt)
(f) Plan 2

Problem 6_2 (6 points)

Let $X_{i j}, i=1,2,3,4,5, j=1,2$, denote the output of i -th die in j -th throw. Then clearly $Y=\sum_{i} \sum_{j} X_{i j}$. And we can also see that $X_{i j}$'s are independent of each other and identically distributed.
$E\left(X_{11}\right)=\frac{1}{8}(1+2+3+4+5+6+7+8)=4.5$ and $\operatorname{var}\left(X_{11}\right)=\sum_{i=1}^{8} \frac{1}{8}(i-4.5)^{2}=\frac{21}{4}$
hence $\mu_{Y}=4.5 * 10=45$, (2 points)
and $\sigma_{Y}=\sqrt{\operatorname{var}(Y)}=\sqrt{10 * \frac{21}{4}}=7.25$ (2 points)
Approximately, \bar{Y} will follow a Normal distribution by Central Limit theorem.
And $E(\bar{Y})=E\left(Y_{1}\right)=45$, (1 point)

$$
s d(\bar{Y})=\frac{1}{\sqrt{n}} s d\left(Y_{1}\right)=7.25 / 3=2.42 \quad(1 \text { point })
$$

Problem 63 (8 points)

(2 pts)
(a) $\mathrm{X} 1:$ Treatment group: mean $=14.1, \mathrm{SD}=2.468$

X2 : Control group: mean $=9.63, S D=3.336$
(4 pts)
(b) $95 \% \mathrm{Cl}=[(\mathrm{X} 1$-bar -X 2 -bar) $\pm \mathrm{t}$-value * $\mathrm{SE}(\mathrm{X} 1$-bar -X 2 -bar) $]$

SE(X1-bar - X2-bar $)=\operatorname{sqrt}\left(S D 1^{2} / n 1+S d 2^{2} / n 2\right)=\operatorname{sqrt}\left(2.468^{2} / 20+3.336^{2} / 19\right)$ $=0.9435$

For t -value:
Here, $95 \%=(1-\text { alpha })^{*} 100 \%$, so alpha $=0.05=5 \%$
Since we're calculating CI , hence the alpha value in the t-table is $0.05 / 2=0.025$
$D F=\min (n 1, n 2)-1=19-1=18$.
So, $\mathrm{t}_{0.025,18}=2.101$
$(\mathrm{X} 1-$ bar $-\mathrm{X} 2-\mathrm{bar})=14.1-9.63=4.47$
So $95 \% \mathrm{Cl}=\left(4.47 \pm 2.101^{*} 0.9435\right)=(2.49,6.45)$
Since this interval is greater than 0 (0 does not lies in the interval), we are 95% confident that there's positive difference between the 2 groups. Mean of treatment group is larger than that of the control group.
(1pt)
(c) To have $0.5 \mathrm{SE}\left(\mathrm{X} 1-\right.$ bar -X 2 -bar) $=0.5 * \operatorname{sqrt}\left(\mathrm{SD} 1^{2} / \mathrm{n} 1+\mathrm{Sd2}^{2} / \mathrm{n} 2\right)$
$=\operatorname{sqrt}\left(0.25\right.$ * (SD1 ${ }^{2} / \mathrm{n} 1+\mathrm{Sd}^{2} / \mathrm{n} 2$))
$=\operatorname{sqrt}\left(S D 1^{2} / 4^{*} n 1+S d 2^{2} / 4^{*} n 2\right)$
Hence, the new sample size is $4 n 1+4 n 2=4(n 1+n 2)=4(19+20)=156$
(1pt)
(d) Interval may contain the true difference, but there's a possibility that it doesn't contain it. If we perform such experiment many times, e.g. 100 times, then about 95% of the 100 Cl 's will contain the true difference.

