UCLA STAT 13
 Introduction to Statistical Methods for the Life and Health Sciences

\bullet Instructor: Ivo Dinov,

Asst. Prof. In Statistics and Neurology

- Teaching Assistants: Sovia Lau, Jason Cheng UCLA Statistics

University of California, Los Angeles, Fall 2003 http://www.stat.ucla.edu/~dinov/courses_students.htmI

Chapter 10: Data on a Continuous Variable

- One-sample issues
- Two independent samples
- More than 2 samples
- Blocking, stratification and related samples

Flying helmet sizes for NZ Air Force

Measure the head-size of all air force recruits. Using cheaper cardboard or more expensive metal calipers. Are there systematic differences in the two measuring methods? Again, paired comparisons.

TABLE 10.1.2	Air Force Head Sizes Data			
Recruit	Cardboard $(\mathbf{m m})$	Metal $(\mathbf{m m})$	Difference (Card-metal)	Sign of difference
1	146	145	1	+
2	151	153	-2	-
3	163	161	2	+
4	152	151	1	+
5	151	145	6	+
6	151	150	1	+
		Slide 22	STAT 13, UCLA, Ivo Dinov	

Head sizes: Does type of caliper make a difference?

Figure 10.1.8 Dot plot of differences in size (with 95% CI).
Paired T-Test and Confidence Interval
paired f for cardboard - metal

metal
$18 \quad 152.94$
1.611

Figure 10.1.9 Minitab paired- t output for the size data
Figure 10.1.9 Minitab paired- t output for the size data.

Comparing two means for independent samples

Suppose we have 2 samples/means/distributions as follows: $\left\{\bar{x}_{1}, N\left(\boldsymbol{\mu}_{1}, \boldsymbol{\sigma}_{1}\right)\right\}$ and $\left\{\bar{x}_{2}, N\left(\boldsymbol{\mu}_{2}, \boldsymbol{\sigma}_{2}\right)\right\}$. We've seen before that to make inference about $\mu_{1}-\mu_{2}$ we can use a T-test for $\mathrm{H}_{0}: \mu_{1}-\mu_{2}=0$ with $t_{0}=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-0}{S E\left(\bar{x}_{1}-\bar{x}_{2}\right)}$ And $\mathrm{CI}\left(\mu_{1}-\mu_{2}\right)=\bar{x}_{1}-\bar{x}_{2} \pm t \times S E\left(\bar{x}_{1}-\bar{x}_{2}\right)$
If the 2 samples are independent we use the SE formula $S E=\sqrt{s_{1}^{2} / n_{1}+s_{2}^{2} / n} \quad$ with $d f=\operatorname{Min}\left(n_{1}-1 ; n_{2}-1\right)$
This gives a conservative approach for hand calculation of an approximation to the what is known as the Welch procedure, which has a complicated exact formula.

Means for independent samples equal or unequal variances?

Pooled T-test is used for samples with assumed equal variances. Under data Normal assumptions and equal variances of $\left(x_{1}-x_{2}-0\right) / S E\left(x_{1}-x_{2}\right)$, where

$$
S E=s_{p} \sqrt{1 / n_{1}+1 / n_{2}} ; s_{p}^{2}=\sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}}
$$

is exactly Student's t distributed with $d f=\left(n_{1}+n_{2}-2\right)$
Here s_{p} is called the pooled estimate of the variance, since it pools info from the 2 samples to form a combined estimate of the single variance $\sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}=\sigma^{2}$. The book recommends routine use of the Welch unequal variance method.

We know how to analyze $1 \& 2$ sample data. How about if we have than 2 samples -One-way ANOVA, F-test

One-way ANOVA refers to the situation of having one factor (or categorical variable) which defines group membership - e.g., comparing 4 reading methods, effects of different reading methods on reading comprehension, data: $50-13 / 14$ y/o students tested.

Hypotheses for the one-way analysis-of-variance F-test
Null hypothesis: All of the underlying true means are identical. Alternative: Differences exist between some of the true means.

Comparing two means for independent samples

1. How sensitive is the two-sample t-test to non-Normality in the data? (The 2-sample T-tests and CI's are even more robust than the 1 -sample tests, against nonNormality, particularly when the shapes of the 2 distributions are similar and $\mathrm{n}_{1}=\mathrm{n}_{2}=\mathrm{n}$, even for small n , remember $d f=\mathrm{n}_{1}+\mathrm{n}_{2}-2$.
2. Are there nonparametric alternatives to the two-sample t-test ? (Wilcoxon rank-sum-test, Mann-Witney test, equivalent tests, same P values.)
3. What difference is there between the quantities tested and estimated by the two-sample t-procedures and the nonparametric equivalent? (Non-parametric tests are based on ordering, not size, of the data and hence use median, not mean, for the average. The equality of 2 means is tested and $\mathrm{CI}\left(\mu_{1}^{\sim}-\mu_{1}^{\sim}\right)$.

Comparing 4 reading methods

Comparing 4 reading methods, effects of different reading methods on reading comprehension, data: $50-13 / 14$ y/o students tested.
-Mapping: using diagrams to relate main points in text; -Scanning: reading the intro and skimming for an overview before reading details;
-Mapping and Scanning;
-Neither.
Table below shows increases in test scores, of 4 groups of students taking similar exams twice, w/ \& w/o using a reading technique.
Research question: Are the results better for students using mapping, scanning or both?

More about the F-test

- $\mathrm{s}_{\mathrm{B}}^{2}$ is a measure of variability
of sample means, how far apart they are.
- $\mathrm{s}^{2}{ }_{\mathrm{W}}$ reflects the avg. internal
Variability within the samples.

$$
\begin{gathered}
s_{B}^{2}=\frac{\sum n_{i}\left(\bar{x}_{i .}-\bar{x}_{. .}\right)^{2}}{k-1} \\
s_{W}^{2}=\frac{\sum\left(n_{i}-1\right) s_{i}^{2}}{n_{t o t}-k}
\end{gathered}
$$

- The F-test statistic, f_{0}, tests H_{0} by comparing the variability of the sample means (numerator) with the variability within the samples (denominator).
- Evidence against H_{0} is provided by values of f_{0} which would be unusually large if H_{0} was true.

Interpreting the \boldsymbol{P}-value from the \boldsymbol{F}-test
(The null hypothesis is that all underlying true means are identical.)

- A large \boldsymbol{P}-value indicates that the differences seen between the sample means could be explained simply in terms of sampling variation.
- A small \boldsymbol{P}-value indicates evidence that real differences exist between at least some of the true means, but gives no indication of where the differences are or how big they are.
- To find out how big any differences are we need confidence intervals.

F-test assumptions

1. Samples are independent, physically independent subjects, units, objects are being studies.
2. Sample Normal distributions, especially sensitive for small n_{i}, number of observations, $N\left(\mu_{i}, \sigma\right)$.
3. Standard deviations should be equal within all samples, $\sigma_{1}=\sigma_{2}=\sigma_{3}=\ldots \sigma_{n_{\mathrm{k}}}=\sigma .\left(1 / 2<=\sigma_{\mathrm{k}} / \sigma_{\mathrm{j}}<=2\right)$

How to check/validate these assumptions for your data? For the reading-score improvement data:
independence is clear since different groups of students are used. Dot-plots of group data show no evidence of non-Normality. Sample SD's are very similar, hence we assume population SD's are similar.

Review

1. What is an one-way analysis of variance? (compare means of several groups of independent samples.)
2. When do we use the one-way ANOVA F-test? ${ }_{(i N(\mu, \sigma))_{1}^{*}}$ samples.
3. What null hypothesis does it test? What is the alternative hypothesis? (all underying mee means sec itentical: a teast 2 are different)
4. Qualitatively, how does the F-test obtain evidence against H_{0} ? (separation between sample means/intra-sample variability).
5. Qualitatively, what type of information is captured by the numerator of the F-statistic? What about the denominator? (variability-of-sample-means/variability-within-samples).

Always plot your data

Always plot your data before using formal tools of analysis (tests and confidence intervals).

- the quickest way to see what the data says
- often reveals interesting features that were not expected
- helps prevent inappropriate analyses and unfounded conclusions
- Plots also have a central role in checking up on the assumptions made by formal methods.

Nonparametric (distribution-free) methods

- less sensitive to outliers
- do not assume any particular distribution for the original observations
- do assume random samples from the populations of interest
- measure of center is the median rather than the mean
- tend to be somewhat less effective at detecting departures from a null hypothesis and tend to give wider confidence intervals

All formal methods make assumptions

- If the assumptions are false, the results of the analysis may be meaningless.
- A method is robust against a specific departure from an assumption if it still behaves in the desired way despite that assumption being violated.
\square e.g. it gives " 95% confidence intervals" that still cover the true value of θ for close to 95% of samples taken.
- A method is sensitive to departures from an assumption if even a small departure from the assumption causes it to stop behaving in the desired way.

Normal Theory Techniques

One sample methods

- Two-sided t-tests and t-intervals for a single mean are
\square quite robust against non-Normality
\square can be sensitive to presence of outliers in small to moderate-sized samples
- One-sided tests are reasonably sensitive to skewness.
- Normality can be checked
\square graphically using Normal quantile plots
■ formally, e.g. the Wilk-Shapiro test.

2-sample \boldsymbol{t}-tests and intervals for differences

 between means $\mu_{1}-\mu_{2}$
Assume

\square statistically independent random samples from the two populations of interest
Dboth samples come from Normal distributions

- Pooled method also assumes that $\sigma_{1}=\sigma_{2}$ Welch method (unpooled) does not

Two-sample t-methods are
\square remarkably robust against non-Normality
\square can be sensitive to the presence of outliers in small to moderatesized samples
OOne-sided tests are reasonably sensitive to skewness.

- The Wilcoxon or Mann-Whitney test is a nonparametric alternative to the two-sample t-test.

More than two samples and the \boldsymbol{F}-test

- For testing whether more than two means are different we use the F-test.
- The method of comparing several means is referred to as a one-way analysis of variance.
- The formal null hypothesis $\left(H_{0}\right)$ tested is that all k ($k \geq 2$) underlying population means μ_{i} are identical.
- The alternative hypothesis $\left(H_{1}\right)$ is that differences exist between at least some of the μ_{i} 's.

Assumptions of the \boldsymbol{F}-test cont.

- Assumptions of the F-test
- independent samples;
- Normality;

■ equal population standard deviations.

- The test
- is robust to non-Normality
- is reasonably robust to differences in the standard deviations when there are equal numbers in each sample, but not so robust if the sample sizes are unequal
- can be used if the usual plots are satisfactory and the largest sample standard deviation is no larger than twice the smallest
- is not robust to any dependence between the samples.

The \boldsymbol{F}-test cont.

- The numerator of the F-statistic f_{0} reflects how far apart the sample means are. The denominator reflects average variability within the samples
- Evidence against H_{0} is provided by
\square sample means that are further apart than expected from the internal variability of the samples.
\square large values of the F-statistic.
- A small P-value demonstrates evidence that differences exist between some of the true means
\square To estimate the size of any differences we use confidence intervals

