

Correlation Coefficient

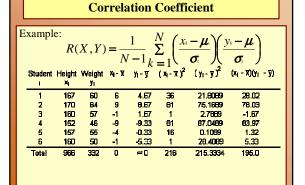
Correlation coefficient (-1<=R<=1): a measure of linear association, or clustering around a line of multivariate

Relationship between two variables (X, Y) can be summarized by: (μ_X, σ_X) , (μ_Y, σ_Y) and the correlation coefficient, R. R=1, perfect positive correlation (straight line relationship), R=0, no correlation (random cloud scatter), R=-1, perfect negative correlation.

Computing R(X,Y): (standardize, multiply, average)

$$R(X,Y) = \frac{1}{N-1} \sum_{k=1}^{N} \left(\frac{x_k - \mu}{\sigma_k} \right) \left(\frac{y_k - \mu}{\sigma_k} \right) \begin{bmatrix} X = \{x_1, x_2, \dots, x_{N-1}\} \\ Y = \{y_1, y_2, \dots, y_{N-1}\} \\ (\mu_{\lambda}, \sigma_{\lambda}), (\mu_{\lambda}, \sigma_{\lambda}) \end{bmatrix}$$
sample mean / SD

Clida 16 common version and



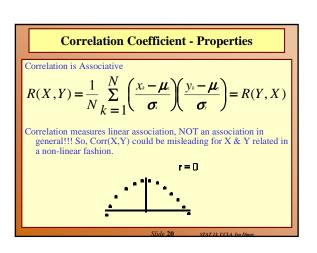
Example:
$$R(X,Y) = \frac{1}{N-1} \sum_{k=1}^{N} \left(\frac{x_k - \mu}{\sigma} \right) \left(\frac{y_k - \mu}{\sigma} \right)$$

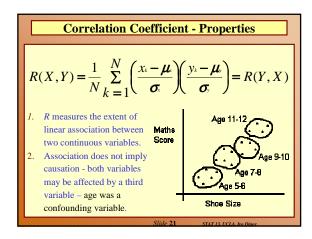
$$\mu_X = \frac{966}{6} = 161 \,\text{cm}, \quad \mu_Y = \frac{332}{6} = 55 \,\text{kg},$$

$$\sigma_X = \sqrt{\frac{216}{5}} = 6.573, \quad \sigma_Y = \sqrt{\frac{215.3}{5}} = 6.563,$$

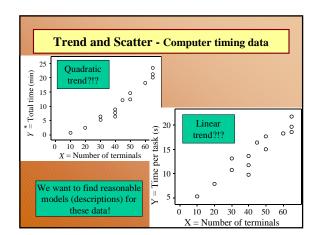
$$Corr(X,Y) = R(X,Y) = 0.904$$

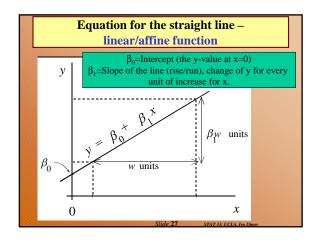
Correlation Coefficient - Properties Correlation is invariant w.r.t. linear transformations of X or Y $R(X,Y) = \frac{1}{N-1} \sum_{k=1}^{N} \left(\frac{xk - \mu_x}{\sigma_x} \right) \left(\frac{yk - \mu_y}{\sigma_y} \right) =$ R(aX + b, cY + d), since $\left(\frac{axk + b - \mu ax + b}{\sigma ax + b} \right) = \left(\frac{axk + b - (a\mu x + b)}{|a| \times \sigma_x} \right) =$ $\left(\frac{a(xk - \mu) + b - b}{a \times \sigma_x} \right) = \left(\frac{xk - \mu_x}{\sigma_x} \right)$

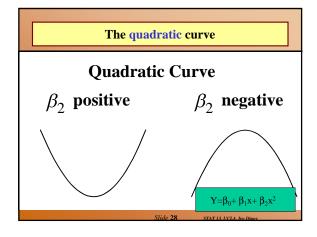


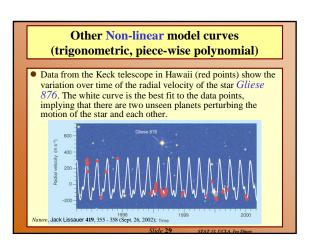


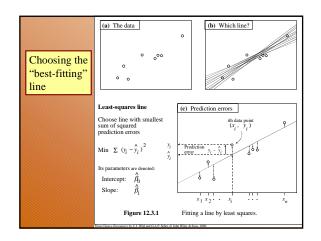
Trend and Scatter - Computer timing data The major components of a regression relationship are trend and scatter around the trend. To investigate a trend – fit a math function to data, or smooth the data. Computer timing data: a mainframe computer has X users, each running jobs taking Y min time. The main CPU swaps between all tasks. Y* is the total time to finish all tasks. Both Y and Y* increase with increase of tasks/users, but how? Number of terminals: 50 60 45 14.9 18.4 12.4 7.9 Total Time (mins): 6.6 0.9 Time Per Task (secs) 5.5 17.8 18.4 16.5 11.9 Number of terminals: 30 65 40 65 65 9.2 Total Time (mins): 12.6 6.7 23.6 20.2 21.4 Time Per Task (secs) 13.3 21.8 13.8

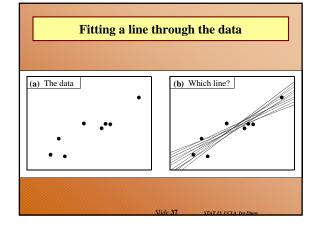


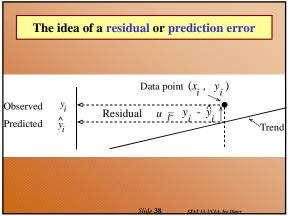


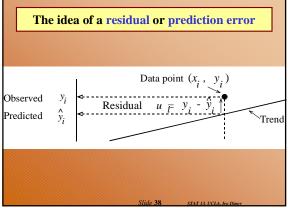


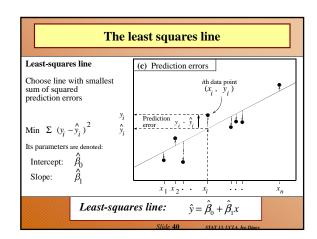


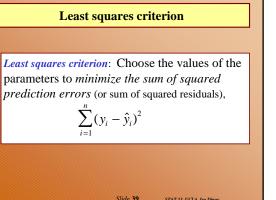


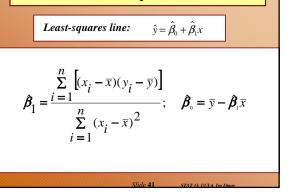




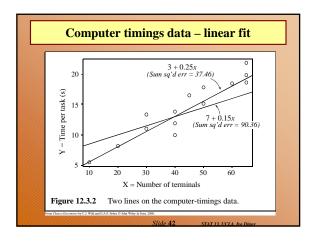


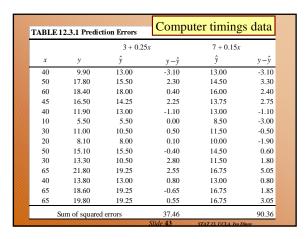


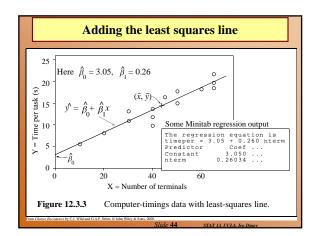


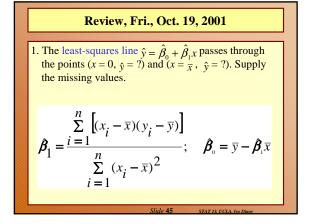


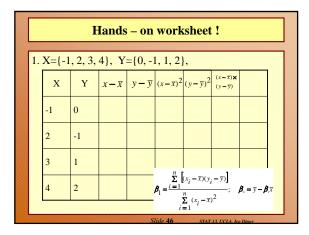
The least squares line



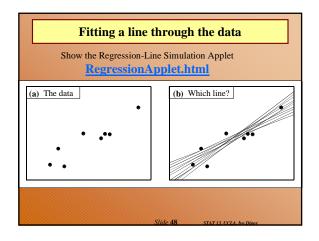


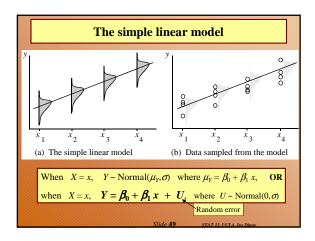


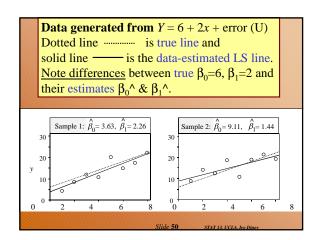


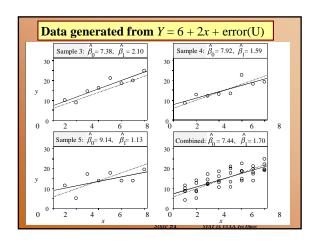


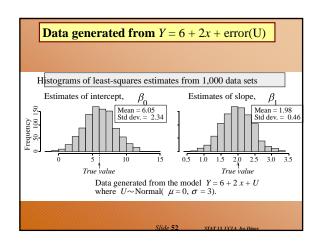
Hands – on worksheet!								
1.	X={-1	, 2, 3,	4}, Y	={0, -1	1, 1, 2	$\overline{x} =$	2, <u>j</u>	$\bar{v} = 0.5$
	X	Y	$x - \overline{x}$	$y - \overline{y}$	$(x-\overline{x})^2$	$(y - \overline{y})^2$	$(x - \overline{x}) \times (y - \overline{y})$	
	-1	0	-3	-0.5	9	0.25	1.5	
	2	-1	0	-1.5	0	2.25	0	
	3	1	1	0.5	1	0.25	0.5	
	4	2	2	1.5	4	2.25	3	$\beta_1 = 5/14$ $\beta_0 = y^- \beta 1 * x^-$
	2	0.5			14	5 STAT	5	$\frac{\beta_0 = 0.5}{10/14}$

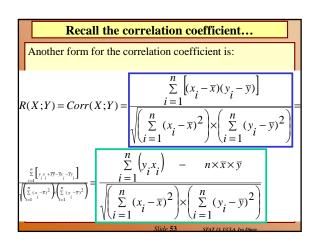


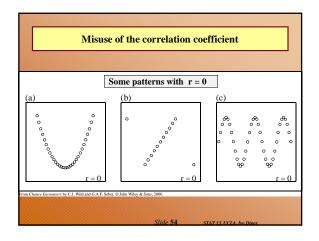


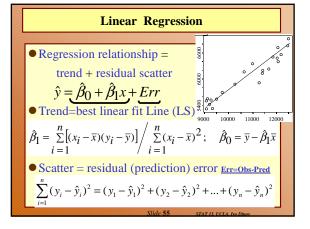


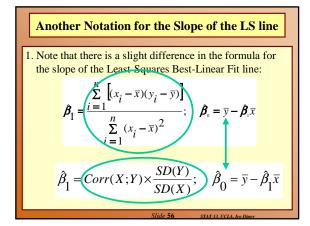


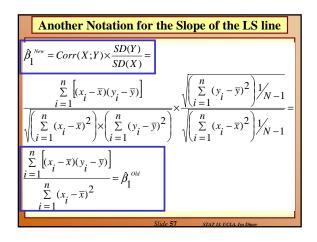












Course Material Review

- 1. ======Part I========
- 2. Data collection, surveys.
- 3. Experimental vs. observational studies
- 4. Numerical Summaries (5-#-summary)
- 5. Binomial distribution (prob's, mean, variance)
- 6. Probabilities & proportions, independence of events and conditional probabilities
- 7. Normal Distribution and normal approximation

Slide 58 STAT 13 UCLA Iva Dina

Course Material Review - cont.

- 1. ======Part II===
- 2. Central Limit Theorem sampling distribution of \overline{X}
- 3. Confidence intervals and parameter estimation
- 4. Hypothesis testing
- 5. Paired vs. Independent samples
- Chi-Square (χ²) Goodness-of-fit Test
- 7. Analysis Of Variance (1-way-ANOVA, one categorical var.)
- 8. Correlation and regression
- 9. Best-linear-fit, least squares method

Slide 59 STAT 13. UCLA, Ivo Dine