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UCLA  STAT 110 A
Applied Probability & Statistics for 

Engineers

�Instructor:   Ivo Dinov, 
Asst. Prof. In Statistics and Neurology

�Teaching Assistant: Maria Chang,  UCLA Statistics

University of California, Los Angeles,  Spring  2003
http://www.stat.ucla.edu/~dinov/
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Chapters 3 – Discrete Variables, 
Probabilities, CLT

�Random Variables (RV’s
�Probability Density Functions (PDF’s) for discrete RV’s
�Binomial, NegativeBinomial, Geometric, 
�Hypergeometric, Poisson distributions
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Frequency Distributions- damaged boxes
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Type Total Relative Percentage 
Frequency Frequency

A - Flap out 16 0.0096 1
B - Flap torn 17 0.0102 1
C - End smashed 132 0.0793 8
D – Puncture 95 0.0571 6
E - Glue problem 87 0.0523 5
F - Corner gouge 984 0.5913 59
G – Compr. wrinkle 15 0.0090 1
H - Tip crushed 303 0.1821 18
I - Tot. destruction 15 0.0090 1

Total 1664 0.9999* 100
(* the relative frequencies do not add to 1.0000 due to rounding) 

Frequency Distributions- damaged boxes
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Relative frequency for type A  is: 

Percentage for type A  is:  
percent.

The usefulness of relative frequencies and 
percentages is clear: for example, it is easily seen 
that corner gouge
accounts for 59% of the total number of damages. 

0.0096
1664

16 =

10.96100
1664
16 ≈=×

Frequency Distributions- damaged boxes
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The frequency distribution of a variable is often presented 
graphically as a bar-chart/bar-plot. For example, the data 
in the frequency table above can be shown as: 

The vertical axis can be frequencies or relative 
frequencies or percentages.  On the horizontal axis all 
boxes should have the same width leave gaps between 
the boxes (because there is no connection between them) 
the boxes can be in any order.

Frequency Distributions- damaged boxes
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Experiments,    Models,   RV’s

� An experiment is a naturally occurring 
phenomenon, a scientific study, a sampling trial or a 
test., in which an object (unit/subject) is selected at 
random (and/or treated at random) to 
observe/measure different outcome characteristics of 
the process the experiment studies.

�Model – generalized hypothetical description used to 
analyze or describe a phenomenon.

� A random variable is a type of measurement 
taken on the outcome of a random experiment.
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Definitions

� The probability function for a discrete random 
variable X gives the chance that the observed value 
for the process equals a specific outcome, x.
� P(X = x) [denoted pr(x) or P(x)]

for every value x that the R.V. X can take

� E.g., number of heads when a coin is tossed twice

x 0 1 2

pr(x ) 1
2

1
4

1
4
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Outcome GGG GGB GB BG BBG BBB

Probability
1
4

1
8

1
8

1
8

1
8

1
4

Stopping at one of each or 3 children

� For R.V.   X = number of girls, we have

X 0 1 2 3

pr(x )
5
8

1
8

1
8

1
8

Sample Space – complete/unique description of the 
possible outcomes from this experiment.
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� For each toss,  P(Head) = p   � P(Tail) = 
P(comp(H))=1-p

� Outcomes:      HH,  HT,        TH,            TT

� Probabilities:  p.p,  p(1-p),   (1-p)p,   (1-p)(1-p)

� Count X, the number of heads in 2 tosses
X 0 1 2
pr(x ) (1−p )2 2p (1−p ) p 2

Tossing a biased coin twice
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Calculating Interval probabilities
from cumulative probabilities

1 2 3 4 5 6 7 8 9 10 11 12
To get 4 to 8,

and remove from 3 down

pr(3 < X - 8)
=  pr(X - 8)

pr(X - 3)

[= p

x-values :

start with everything up to 8
P(3< X <9)

P(X <9)
P(X<=3)

How to find the upper-tail?
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Bernoulli Trials

� A Bernoulli trial is an experiment where only two 
possible outcomes are possible (0 / 1).

� Examples: 

�Coin tosses

�Computer chip (0 / 1) signal.

�Poll supporters/opponents; yes/no; for/against.
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The two-color urn model

Sample  n  balls and count  X = # black balls in sample

M  black balls

N – M  white balls

N  balls in an urn, of which there are

We will compute the probability distribution of the R.V. X

STAT 110A, UCLA, Ivo DinovSlide 15

The biased-coin tossing model

  Perform  n  tosses and count  X = # heads

toss 1 toss 2 toss  n
pr(H) = p pr(H) = p pr(H) = p

We also want to compute the probability
distribution of this R.V. X!

Are the two-color urn and the biased-coin
models related? How do we present the 

models in mathematical terms?
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� The distribution of the number of heads in n
tosses of a biased coin is called the Binomial 
distribution.

The answer is:  Binomial distribution
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x 0 1 2 3 4 5 6
Individual pr(X = x) 0.001 0.010 0.060 0.185 0.324 0.303 0.118
Cumulative pr(X - x) 0.001 0.011 0.070 0.256 0.580 0.882 1.000

Binomial(N, p) – the probability distribution
of the number of Heads in an N-toss coin 
experiment, where the probability for Head 
occurring in each trial is p.

E.g., Binomial(6, 0.7)

For example  P(X=0) = P(all 6 tosses are Tails) =

001.03.0)7.01( 66 ========−−−−
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Binary random process

The biased-coin tossing model is a physical model for 
situations which can be characterized as a series of 
trials where:
�each trial has only two outcomes: success or 

failure;
�p = P(success) is the same for every trial; and
�trials are independent.

� The distribution of X = number of successes (heads) 
in N such trials is

Binomial(N, p)
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Sampling from a finite population –
Binomial Approximation

If we take a sample of size n

� from a much larger population (of size N)

� in which a proportion p have a characteristic of 
interest, then the distribution of X, the number in 
the sample with that characteristic,

� is approximately Binomial(n, p).
� (Operating Rule: Approximation is adequate if n / N< 0.1.)

� Example, polling the US population to see what 
proportion is/has-been married.
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Binomial Probabilities –
the moment we all have been waiting for!

� Suppose X ~ Binomial(n, p), then the probability

� Where the binomial coefficients are defined by
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Binomial Formula with examples

� Does the Binomial probability satisfy the requirements?

� Explicit examples for n=2, do the case n=3 at home!
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quadratic-
expansion
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Three terms in the sum
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Examples – Birthday Paradox
� The Birthday Paradox: In a random group of N people, what is the 

change that at least two people have the same birthday?
� E.x., if N=23, P>0.5. Main confusion arises from the fact that in 

real life we rarely meet people having the same birthday as us, and 
we meet more than 23 people.

� The reason for such high probability is that any of the 23 people 
can compare their birthday with any other one, not just you 
comparing your birthday to anybody else’s.

� There are N-Choose-2 = 20*19/2 ways to select a pair or people. 
Assume there are 365 days in a year, P(one-particular-pair-same-
B-day)=1/365, and 

� P(one-particular-pair-failure)=1-1/365  ~  0.99726.
� For N=20, 20-Choose-2 = 190. E={No 2 people have the same 

birthday is the event all 190 pairs fail (have different birthdays)},
then P(E) = P(failure)190 = 0.99726190 = 0.59.

� Hence,  P(at-least-one-success)=1-0.59=0.41, quite high.
� Note: for N=42 � P>0.9 …
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Prize ($) x 1 2 3
Probability pr(x) 0.6 0.3 0.1

$ won

Total  prize money  =  Sum; Average prize money  =  Sum/100
 = 1  0.6  +  2  0.3  +  3  0.1
 = 1.5

Sum
Number of games won

What we would "expect" from 100 games add across row
0.6 100 0.3 100 0.1 100

2 0.3 100 3 0.1 1001 0.6 100

Expected values

� The game of chance: cost to play:$1.50;  Prices {$1, $2, $3}, 
probabilities of winning each price are {0.6, 0.3, 0.1}, respectively.

� Should we play the game? What are our chances of 
winning/loosing?

Theoretically Fair Game: price to play EQ the expected return!
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TABLE 5.4.1   Average Winnings from a Game conducted N  times

Number
of games 1 2 3 Average winnings 

played per game

(N )

100 64 25 11
( .64) ( .25) ( .11) 1.7

 1,000 573 316 111
( .573) ( .316) ( .111) 1.538

10,000 5995 3015 990
( .5995) ( .3015) ( .099) 1.4995

20,000 11917 6080 2000
( .5959) ( .3040) ( .1001) 1.5042

30,000 17946 9049 3005
( .5982) ( .3016) ( .1002) 1.5020

( .6) ( .3)  ( .1) 1.5

Prize won in dollars(x )

frequencies

(Relative frequencies)

∞

(x  ) So far we looked
at the theoretical
expectation of the
game. Now we 
simulate the game
on a computer
to obtain random 
samples from
our distribution, 
according to the
probabilities
{0.6, 0.3, 0.1}.
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� The expected value:

E(X) =

� = Sum of (value times probability of value)

����

x
xx

 all
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Definition of the expected value, in general.
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Example

X 0 1 2 3

pr(x )
5
8

1
8

1
8

1
8

25.1
8
13

8
12

8
51

8
10

)(P)(E

====

××××++++××××++++××××++++××××====

����====
x

xxX

In the at least one of each or at most 3 children
example, where X ={number of Girls}  we have:
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µµµµX = E(X) is called the mean of the distribution of X.

µµµµX = E(X) is usually called the population mean.

µµµµx is the point where the bar graph of P(X = x) balances.

The expected value and population mean
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The population standard deviation is

sd( X) =  E[(X -  µ)2 ]

Population standard deviation

Note that if X is a RV, then (X-µµµµ) is also a RV, 
and so is (X-µµµµ)2. Hence, the expectation, 

E[(X-µµµµ)2],  makes sense.
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)-1( = )sd( pnpX

For the Binomial distribution . . . mean

E(X) = n p,

X~Binomial(n, p) ����

X=Y1+Y2+Y3+..+Yn,
where Yk ~Bernoulli(p),

E(Y1)=p ����
E(X) = E(Y1+Y2+Y3+..+Yn)=np
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Binomial and Multinomial Distributions

� Multinomial Distribution

�k possible outcomes ( )

�Each outcome has probability pi ( )

� In n independent trials,

where Xi = # of times that Ei occurs.  
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Marginal distribution of Xi: Bin(n, pi)
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Binomial and Multinomial Distributions

Ex.   Suppose we have 9 people arriving at a meeting.

P(by Air) = 0.4,  P(by Bus) = 0.2

P(by Automobile) = 0.3,  P(by Train) = 0.1

P(3 by Air, 3 by Bus, 1 by Auto, 2 by Train) = ?

P(2 by air) = ?
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For any constants a and b, the expectation of the RV aX + b
is equal to the sum of the product of a and the expectation of 
the RV X and the constant b.

E(aX + b) = a E(X) +b

And similarly for the standard deviation (b, an additive 
factor, does not affect the SD).

SD(aX +b) = |a| SD(X)

Linear Scaling (affine transformations) aX + b
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Why is that so?

E(aX + b) = a E(X) +b SD(aX +b) = |a| SD(X)

Linear Scaling (affine transformations) aX + b
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Example:

E(aX + b) = a E(X) +b SD(aX +b) = |a| SD(X)

1. X={-1, 2, 0, 3, 4, 0, -2, 1}; P(X=x)=1/8, for each x 

2. Y = 2X-5 = {-7, -1, -5, 1, 3, -5, -9, -3}

3. E(X)=

4. E(Y)=

5. Does  E(X)  =  2 E(X) –5 ?

6. Compute SD(X),  SD(Y). Does SD(Y)  =  2 SD(X)?

Linear Scaling (affine transformations) aX + b
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And why do we care?

E(aX + b) = a E(X) +b SD(aX +b) = |a| SD(X)

-completely general strategy for computing the distributions 
of RV’s which are obtained from other RV’s with known 
distribution. E.g., X~N(0,1), and Y=aX+b, then we need 
not calculate the mean and the SD of Y. We know from the 
above formulas that E(Y) = b and SD(Y) =|a|.

-These formulas hold for all distributions, not only for 
Binomial and Normal.

Linear Scaling (affine transformations) aX + b
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And why do we care?

E(aX + b) = a E(X) +b SD(aX +b) = |a| SD(X)

-E.g., say the rules for the game of chance we saw before change and 
the new pay-off is as follows: {$0, $1.50, $3}, with probabilities of 
{0.6, 0.3, 0.1}, as before. What is the newly expected return of the 
game? Remember the old expectation was equal to the entrance fee of 
$1.50, and the game was fair!

Y = 3(X-1)/2
{$1, $2, $3} � {$0, $1.50, $3}, 

E(Y) =  3/2 E(X) –3/2 = 3 / 4 = $0.75

And the game became clearly biased. Note how easy it is to compute E(Y).

Linear Scaling (affine transformations) aX + b
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Means and Variances for (in)dependent Variables!

� Means:
� Independent/Dependent Variables {X1, X2, X3, …, X10}

� E(X1 + X2 + X3 + … + X10) = E(X1)+ E(X2)+ E(X3)+… + E(X10)

� Variances:
�� IndependentIndependent Variables {X1, X2, X3, …, X10}, variances add-up

Var(X1 +X2 + X3 + … + X10) = 
Var(X1)+Var(X2)+Var(X3)+…+Var(X1)

�� DependentDependent VariablesVariables {X1, X2} 
Variance contingent on the variable dependences, 
� E.g., If  X2 = 2X1 + 5,

Var(X1 +X2) =Var (X1 + 2X1 +5) = 
Var(3X1 +5) =Var(3X1) = 9Var(X1)
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For the Binomial distribution . . . SD

)-1( = )SD( pnpXE(X) = n p

X~Binomial(n, p) ����
X=Y1+Y2+Y3+…+Yn,

where Yk ~ Bernoulli(p),
Var(Y1)  =  (1-p)2xp + (0-p)2x(1-p) ����

Var(Y1)  = (1-p)(p-p2+p2)  =  (1-p)p ����
Var(X) = Var(Y1) + … + Var(Yn) =   n(1-p)p

SD(X)=Sqrt[Var(X)] = Sqrt[n(1-p)p]
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� The Expected value:
(population mean)

� Sample mean

� (Theoretical) Variance

� (Sample) variance
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Poisson Distribution – Definition

� Used to model counts – number of arrivals (k) on a 
given interval …

� The Poisson distribution is also sometimes referred to 
as the distribution of rare events. Examples of 
Poisson distributed variables are number of accidents 
per person, number of sweepstakes won per person, 
or the number of catastrophic defects found in a 
production process.
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Functional Brain Imaging –
Positron Emission Tomography (PET)
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Functional Brain Imaging - Positron Emission 
Tomography (PET)

http://www.nucmed.buffalo.edu
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Functional Brain Imaging –
Positron Emission Tomography (PET)

Isotope Energy (MeV)   Range(mm)  1/2-life  Appl.
C 0.96 1.1     20 min    receptors
O 1.7 1.5     2 min     stroke/activation
F 0.6      1.0     110 min      neurology
I ~2.0 1.6     4.5 days      oncology

11
15
18

124
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Functional Brain Imaging –
Positron Emission Tomography (PET)
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Poisson Distribution  – Mean

� Used to model counts – number of arrivals (k) on a 
given interval …

� Y~Poisson(    ), then P(Y=k) =              , k = 0, 1, 2, …

� Mean of Y, µY = λ, since
!
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Poisson Distribution - Variance

� Y~Poisson(    ), then P(Y=k) =              , k = 0, 1, 2, …

� Variance of Y, σY = λ½,  since

� For example, suppose that Y denotes the number of 
blocked shots (arrivals) in a randomly sampled game
for the UCLA Bruins men's basketball team. Then 
a Poisson distribution with mean=4 may be used to 
model Y .
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Poisson Distribution - Example

� For example, suppose that Y denotes the number of 
blocked shots in a randomly sampled game for the
UCLA Bruins men's basketball team. Poisson 
distribution with mean=4 may be used to model Y .

1   2   3   4   5 6   7   8   9   10   11   12   13   14   15
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Poisson as an approximation to Binomial

� Suppose we have a sequence of Binomial(n, pn)
models, with   lim(n pn)  � λλλλ, as  n�infinity. 

� For each 0<=y<=n, if Yn~ Binomial(n, pn), then

� P(Yn=y)=
�But this converges to:

� Thus, Binomial(n, pn) � Poisson(λλλλ) 
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Poisson as an approximation to Binomial

� Rule of thumb is that approximation is good if:

� n>=100
� p<=0.01
� λλλλ =n p <=20

� Then, Binomial(n, pn) � Poisson(λλλλ) 
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Example using Poisson approx to Binomial

� Suppose P(defective chip) = 0.0001=10-4. Find the 
probability that a lot of 25,000 chips has > 2 defective!

� Y~ Binomial(25,000, 0.0001), find P(Y>2). Note that 
Z~Poisson(λλλλ =n p =25,000 x 0.0001=2.5)
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Normal approximation to Binomial

� Suppose Y~Binomial(n, p)
� Then Y=Y1+ Y2+ Y3+…+ Yn, where

� Yk~Bernoulli(p) , E(Yk)=p  & Var(Yk)=p(1-p) ����

� E(Y)=np &  Var(Y)=np(1-p), SD(Y)= (np(1-p))1/2

� Standardize Y:
� Z=(Y-np) / (np(1-p))1/2

� By CLT ���� Z ~ N(0, 1). So, Y ~ N [np, (np(1-p))1/2]

� Normal Approx to Binomial is 
reasonable when  np >=10   &   n(1-p)>10
(p & (1-p) are NOT too small relative to n).
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Normal approximation to Binomial – Example

� Roulette wheel investigation:
� Compute P(Y>=58),  where Y~Binomial(100, 0.47) –

�The proportion of the Binomial(100, 0.47) population having 
more than 58 reds (successes) out of 100 roulette spins (trials).

� Since np=47>=10   &   n(1-p)=53>10 Normal 
approx is justified.

�Z=(Y-np)/Sqrt(np(1-p))   =                                  
58 – 100*0.47)/Sqrt(100*0.47*0.53)=2.2

� P(Y>=58)   ���� ���� P(Z>=2.2) = 0.0139
� True P(Y>=58) = 0.177, using SOCR (demo!)
� Binomial approx useful when no access to SOCR avail.

Roulette has 38 slots
18red 18black 2 neutral
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Normal approximation to Poisson

� Let X1~Poisson(λλλλ) & X2~Poisson(µµµµ)  ����X1+ X2~Poisson(λ+µλ+µλ+µλ+µ)

� Let X1, X2, X3, …, Xk ~ Poisson(λλλλ), and independent,
� Yk = X1 + X2 + ··· + Xk ~ Poisson(kλλλλ), E(Yk)=Var(Yk)=kλλλλ.

� The random variables in the sum on the right are 
independent and each has the Poisson distribution 
with parameter  λλλλ.

� By CLT the distribution of the standardized variable 
(Yk − kλλλλ) / (kλλλλ)1/2 ���� N(0, 1), as k increases to infinity.

� So, for  kλλλλ >= 100,  Zk = {(Yk − kλλλλ) / (kλλλλ)1/2 }  ~  N(0,1).
����� Yk ~  N(kλλλλ, (kλλλλ)1/2).
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Normal approximation to Poisson – example

� Let X1~Poisson(λλλλ) & X2~Poisson(µµµµ)  ����X1+ X2~Poisson(λ+µλ+µλ+µλ+µ)

� Let X1, X2, X3, …, X200 ~ Poisson(2222), and independent,
� Yk = X1 + X2 + ··· + Xk ~ Poisson(400), E(Yk)=Var(Yk)=400.

� By CLT the distribution of the standardized variable 
(Yk − 400) / (400)1/2 ���� N(0, 1), as k increases to infinity.

�Zk = (Yk − 400) / 20 ~ N(0,1)���� Yk ~ N(400, 400).
�P(2 < Yk < 400) = (std’z 2 & 400) = 
�P( (2−400)/20 < Zk < (400−400)/20 ) = P( -20< Zk<0) 

= 0.5
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Poisson or Normal approximation to Binomial?

� Poisson Approximation (Binomial(n, pn) � Poisson(λλλλ) ):

�n>=100  &  p<=0.01  &   λλλλ =n p <=20
� Normal Approximation

(Binomial(n, p) � N ( np, (np(1-p))1/2) )
�np >=10   &   n(1-p)>10
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Geometric, Hypergeometric, 
Negative Binomial

� X ~ Geometric(p), then the probability mass function is 

Probability of first failure at xth trial.

� Ex: Stat dept purchases 40 light bulbs; 5 are defective.

Select 5 components at random. 

Find: P(3rd bulb used is the first that does not work) = ?

2
1)(      ;1)(     ;)1()(

p
pXVar

p
pXEppxXP x −=−=−==
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Geometric, Hypergeometric, 
Negative Binomial

� Hypergeometric – X~HyperGeom(n, M,N)
Total objects: N. Successes: M. Sample-size: n (without 

replacement). X = number of Successes in sample

Ex: 40 components in a lot; 3 components are defectives.

Select 5 components at random.

P(obtain one defective) = P(X=1) = ?
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Hypergeometric Distribution & Binomial
=�Binomial approximation to Hyperheometric

�

Ex: 4,000 out of 10,000 residents are against a new tax. 
15 residents are selected at random.

P(at most 7 favor the new tax) = ?

p
N
k

N
n ≈<  then0.1),(usually small is  

),;(),,;( pnxBinknNxHyperGeom
approaches
�
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Geometric, Hypergeometric, 
Negative Binomial

� Negative binomial pmf [X ~ NegBin(r, p), if r=1 �
Geometric (p)]

Number of failures until the rth success (negative, since 
number of successes (r) is fixed & number of trials (X) is random)
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Relation among Distributions

Normal (X)
2,σµ

Normal (Z)
1,0

σ
µ−= XZ

Lognormal (Y)
2,σµ

YX ln= XeY =
Chi-square (   )

n

2χ

� =
= n

i iZ
1

2χ

Gamma
βα ,

2,2/ == βα n

Exponential(X)
β

1=α

n=2

Weibull
βγ,

1=γ

Uniform(U)
1,0

UX lnβ−=

Uniform(X)
βα ,

αβ
α

−
−= XU ααβ +−= UX )(

Beta
βα , 1== βα


