UCLA STAT 110 A

Applied Probability & Statistics for
Engineers

eInstructor: Ivo Dinov,

Asst. Prof. In Statistics and Neurology

eTeaching Assistant: Maria Chang, UCLA statistics

University of California, Los Angeles, Spring 2003
http://www.stat.ucla.edu/~dinov/

Frequency Distributions- damaged boxes

Frequency Distributions- damaged boxes

Chapters 3 — Discrete Variables,
Probabilities, CLT

®Random Variables (RV’s
®Probability Density Functions (PDEF’s) for discrete RV’s | |
®Binomial, NegativeBinomial, Geometric,

®Hypergeometric, Poisson distributions
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Experiments, Models, RV’s

® An experiment is a naturally occurring
phenomenon, a scientific study, a sampling trial or a
test., in which an object (unit/subject) is selected at
random (and/or treated at random) to
observe/measure different outcome characteristics of
the process the experiment studies.

® Model — generalized hypothetical description used to
analyze or describe a phenomenon.

® A random variable is a type of measurement
taken on the outcome of a random experiment.

Stopping at one of each or 3 children

— complete/unique description of the
om this experiment.
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Definitions

® The probability function for a discrete random
variable X gives the chance that the observed value
for the process equals a specific outcome, x.
B P(X=x) [denoted pr(x) or P(x)]
for every value x that the R.V. X can take

® E.g., number of heads when a coin is tossed twice
x|

pr(x ) |

Tossing a biased coin twice

® For each toss, P(Head)=p > P(Tail)=
P(comp(H))=1-p

® QOutcomes: HH, HT, TH, TT
® Probabilities: p.p, p(1-p), (1I-p)p, (1-p)(1-p)

® Count X, the number of heads in 2 tosses

X 0 1 2

pr(x ) (1-p ) 2p (1-p)

Bernoulli Trials

® A Bernoulli trlal is an experiment where only two
possible outcomes are possible (0 / 1).

® Examples:
® Coin tosses
® Computer chip (0/ 1) signal.

® Poll supporters/opponents; yes/no; for/against.




The two-color urn model

balls in an urn, of which there are

M black balls
N-M whiteballs

Sample n balls and count X = # black balls in sample

The answer is: Binomial distribution

® The distribution of the number of heads in n
tosses of a biased coin is called the Binomial
distribution.

Binary random process

The biased-coin tossing model is a physical model for
situations which can be characterized as a series of
trials where:

Meach trial has only two outcomes: success or
failure;

Hp = P(success) is the same for every trial; and

Mtrials are independent.

® The distribution of X = number of successes (heads)
in N such trials is

Binomial(V, p)

=

The biased-coin tossing model

toss 1 toss n

pr(H)=p pr(H) =p pr(H) =p

Perform n tosses and count X = # heads

5

Sampling from a finite population —
Binomial roximation

If we take a sample of size n

® from a much larger population (of size V)

® in which a proportion p have a characteristic of
interest, then the distribution of X, the number in
the sample with that characteristic,

® is approximately Binomial(n, p).
O (Operating Rule: Approximation is adequate if 7/ N< 0.1.)

® Example, polling the US population to see what
proportion is/has-been married.



Binomial Probabilities —
the moment we all have been waiting for!

® Suppose X ~ Binomial(n, p), then the probability
n

PX=x)=| |p-p), 0sx<n
X

® Where the binomial coefficients are defined by

i M=1%2%3%...%(n=1)Xn

n-factorial

x) (n=x)! xI’

mnles — Birthday Paradox

® The Birth Paradox: In a random group of N people, what is the
change that at least two people have the same birthday?

® E.x., if N=23, P>0.5. Main confusion arises from the fact that in
real life we rarely meet people having the same birthday as us, and
we meet more than 23 people.

® The reason for such high probability is that any of the 23 people
can compare their birthday with any other one, not just you
comparing your birthday to anybody else’s.

® There are N-Choose-2 = 20*19/2 ways to select a pair or people.
Assume there are 365 days in a year, P(one-particular-pair-same-
B-day)=1/365, and

® P(one-particular-pair-failure)=1-1/365 ~ 0.99726.

® For N=20, 20-Choose-2 = 190. E={No 2 people have the same
birthday is the event all 190 pairs fail (have different birthdays)},
then P(E) = P(failure)'%* = 0.99726'% = 0.59.

® Hence, P(at-least-one-success)=1-0.59=0.41, quite high.

® Note: for N=42 = P>0.9 ...

ge Winnings from a Game conducted NV times

Number Prize won in dollars(x)
of games 1 2 3 Average winnings
played frequencies per game
(N) (Relative frequencies) ()_f)
100 64 25 11

(.64)
573

(25)
316
(573)  (316)
5995 3015
(5995) (.3015)
11917 6080
(5959) (.3040) (.1001)
17946 9049 3005
(5982) (.3016) (.1002) 15020

(.6) (3) (@)}

(.11) 17
111
(.111)

990
(.099)

2000

Binomial Formula with examples

® Does the Binia robability satisfy the requirements?
n n—x
sz(X=x)=zx(x)p"(1—p)( ) =p+a-p) =1

® Explicit examples for n=2, do the case n=3 at home!
% (zJpx(l —p)(z -x) - { Three terms in the sum

x=0

2 0 2 2 1 1 2 2 0
p'(l=py+| |p(l=-p)+| _|p(l-p) =

0 1 2 Usual

1x1%(1=p) +2x px(1=p)+1x p'x1= J duadratic-

expansion

(P +(1_p))2 =1 Sormula

Expected values

® The game of chance: cost to play:$1.50; Prices {$1, $2, $3},
probabilities of winning each price are {0.6, 0.3, 0.1}, respectively.

® Should we play the game? What are our chances of
winning/loosing?

Prize (3) X | 1 2 3

Probability pr(x) | 0.6 0.3 0.1
What we would "expect” from 100 games add across row
Number of games won 0.6 X 100 0.3 X100 0.1 X100

$ won 1x0.6x100 2x0.3 x100 3x0.1 x100 Sum

otal prize money = Sum; Average prize money = Sum/100
’ 7 ser Y =1x0.6 + 2<0.3 + 3<0.1
=15

price to play expected return

Definition of the expected value, in general.

® The expected value:

[x P(x)dx
all X

= Sum of (value times probability of value)




Example

Population standard deviation

The population standard deviation is

sd(X) = YE[(X - py]

Note that if X is a RV, then (X-|l) is also a RV,
and so is (X-[1)>. Hence, the expectation,
E[(X-))?], makes sense.

Binomial and Multinomial Distributions

n x, X, X,
S x5 pse, pan) = [ ]pl'pz““p;
XysXgs e, Xy
X k k
with Z;x,: n, XPi=1

Marginal distribution of X;: Bin(n, p,)

The expected value and population mean

M= E(X) is called the mean of the distribution of X.
Hy = E(X) is usually called the population mean.

M« is the point where the bar graph of P(X = x) balances.

For the Binomial distribution . . . mean

00 =npl1-p)

Binomial and Multinomial Distributions

Ex. Suppose we have 9 people arriving at a meeting.
P(by Air) = 0.4, P(by Bus)=0.2
P(by Automobile) = 0.3, P(by Train) = 0.1

P(3 by Air, 3 by Bus, 1 by Auto, 2 by Train) = ?

P(2 by air)=?




Linear Scaling (affine transformations) aX + b

For any constants @ and b, the expectation of the RV aX + b
is equal to the sum of the product of a and the expectation of
the RV X and the constant b.

E(aX + b)=a E(X) +b

And similarly for the standard deviation (4, an additive
factor, does not affect the SD).

SD(aX +b) = |a| SD(X)

Linear Scaling (affine transformations) aX + b

Example:
E(aX+b)=a EX)+b SD(aX +b) = |a| SD(X)
1. X={-1,2,0,3,4,0,-2, 1}; P(X=x)=1/8, for each x
. Y=2X-5={7,-1,-5,1,3,-5,-9,-3}
. EX)=
. E(Y)=
. Does E(X) = 2EX)-5?
. Compute SD(X), SD(Y). Does SD(Y) = 2 SD(X)?

Linear Scaling (affine transformations) aX + b

And why do we care?
E(aX+ b)=a E(X) +b SD(aX +b) = |a| SD(X)

-E.g., say the rules for the game of chance we saw before change and
the new pay-off is as follows: {$0, $1.50, $3}, with probabilities of
{0.6, 0.3, 0.1}, as before. What is the newly expected return of the
game? Remember the old expectation was equal to the entrance fee of
$1.50, and the game was fair!

Y =3(X-1)2
{$1,$2,$3} > {30, $1.50, $3},
E(Y) = 32 E(X)-3/2=3/4=$0.75

And the game became clearly biased. Note how easy it is to compute E(Y).

Linear Scaling (affine transformations) aX + b

Why is that so?
E(aX + b)=a E(X)+b

SD(aX +b) = |a| SD(X)

Linear Scaling (affine transformations) aX + b

And why do we care?

E(aX+b)=aEX)+h  SD(aX+b) = |a| SD(X)

-completely general strategy for computing the distributions
of RV’s which are obtained from other RV’s with known
distribution. E.g., X~N(0,1), and Y=aX+b, then we need
not calculate the mean and the SD of Y. We know from the
above formulas that E(Y) = b and SD(Y) =a|.

-These formulas hold for all distributions, not only for
Binomial and Normal.

Means and Variances for (in)dependent Variables!

® Means:
B Independent/Dependent Variables {X1, X2, X3, ..., X10}

0O E(XI+X2+X3+ ... +X10) = E(X1)+ E(X2)+ E(X3)+... + E(X10)

® Variances:
B Independent Variables {X1, X2, X3, ..., X10}, variances add-up

Var(X1 +X2+X3+... + X10) =
Var(X1)+Var(X2)+Var(X3)+...+Var(X1)
B Dependent Variables {X1, X2}
Variance contingent on the variable dependences,
Q Eg.,If X2=2X1+5,

Var(X1 +X2) =Var (X1 + 2X1 +5) =

Var(3X1 +5) =Var(3X1) = 9Var(X1)




For the Binomial distribution ... SD

SDX) =+/np(1- p)

Poisson Distribution — Definition

® Used to model counts — number of arrivals (k) on a
given interval ...

® The Poisson distribution is also sometimes referred to
as the distribution of rare events. Examples of
Poisson distributed variables are number of accidents
per person, number of sweepstakes won per person,
or the number of catastrophic defects found in a
production process.

Functional Brain Imaging - Positron Emission
Tomography (PET)

Annihilation detection

detecior

PET,

Sample vs. theoretical mean & varaince

(population mean) E(X)= X x P(x)
N all x

©® Sample mean X = *Z X

©® (Theoretical) Variancek:l

Var(X)= ¥ (x=p, ) P(x) [= [Ge-n,) P(x)dXJ
all x all x
©® (Sample) variance

® The xpected value:
=[x P(x)dx
all x

k

Var(X) =3 (= X) = (5, - X)PGo)

N

Functional Brain Imaging —
Positron Emission Tomography (PET)

" Annihilation (simple)

ation of morentun:

Functional Brain Imaging —
_Positron Emission Tomography (PET)

Isotope Energy (MeV) Range(mm) 1/2-life Appl.
lig 0.96 1.1 20 min receptors
150 1.7 1.5 2min stroke/activation

" 0.6 1.0 110 min  neurology
1 ~2.0 1.6 4.5days oncology




Functional Brain Imaging —
Positron Emission Tomography (PET)

Left Hand

Poisson Distribution — Mean

® Used to model counts — number of arrivals (k) on a
oiven interval ...

Y~Poisson( ), then P(Y=k) =

Ae™
k!

,k=0,1,2,...

® Mean of Y, [y, = A, since
o /\k -A ~ o0 /\k ~ o0 Ak
E(Y):ZkL:e/‘zk_:eA [
k=0 k! k=0 k! k=1 (k_l)!
o k-1 o k

- A e A -
=Y L =g S A= feet = A
R AT=TR T

Poisson Distribution - Variance

® Y~P01sson(/] ), then P(Y=k) = Ae” ,k=0,1,2,...
1
® Variance of Y, 0, = A", since e

A

o2 =Var(Y)= i(k-/\)z/‘ki =..=A
v 2, o

® For example, suppose that Y denotes the number of
blocked shots (arrivals) in a randomly sampled game
for the UCLA Bruins men's basketball team. Then
a Poisson distribution with mean=4 may be used to
model Y .

Poisson Distribution - Example

® For example, suppose that Y denotes the number of
blocked shots in a randomly sampled game for the
UCLA Bruins men's basketball team. Poisson
distribution with mean=4 may be used to model Y .
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Poisson as an approximation to Binomial

® Suppose we have a sequence of Binomial(n, p,)
models, with lim(n p,) = A, as n->infinity.

® For each 0<=y<=n, if Y ~ Binomial(n, p,), then

n y n-y
(Y, =)~ ( y)P,, (-p,)

M But this converges to:

, oway? YA
(2)pra-py-ogid o=
Y o »

® Thus, Binomial(n, p,) = Poisson(A)

Poisson as an approximation to Binomial

® Rule of thumb is that approximation is good if:

[ n>=100
[ | p<=0.01
[ | A=np <=20

® Then, Binomial(n, p,) = Poisson(\)




Example using Poisson approx to Binomial

® Suppose P(defective chip) = 0.0001=10. Find the
probability that a lot of 25,000 chips has > 2 defective!

® Y~ Binomial(25,000, 0.0001), find P(Y>2). Note that
Z~Poisson(A =n p =25,000 x 0.0001=2.5)

P(Z>2):1_P(ZS2):1—Z'75e_2'5 =

o1

(2.50 L 250 . 2.5
1- e + e

Normal approximation to Binomial — Example

©® Roulette wheel investigation:
® Compute P(Y>=58), where Y~Binomial(100, 0.47) —

M The proportion of the Binomial(100, 0.47) population having
more than 58 reds (successes) out of 100 roulette spins (trials).

m Since np=47>=10 & n(1-p)=53>10 Normal
approx is justified.
® Z=(Y-np)/Sqrt(np(1-p)) =
58 — 100*%0.47)/Sqrt(100%0.47%0.53)=2.2
® P(Y>=58) € = P(Z>=2.2)=0.0139
® True P(Y>=58) = 0.177, using SOCR (demo!)
©® Binomial approx useful when no access to SOCR avail.

Normal approximation to Poisson — example

® Let X,~Poisson(A) & X,~Poisson([) >X,+ X,~Poisson(A+)
® Let X, X,, X, ..., X, ~ Poisson(2), and independent,
® Y, =X, +X,+ - +X, ~Poisson(400), E(Y,)=Var(¥,)=400.

® By CLT the distribution of the standardized variable
(Y, —400) / (400)""> =» N(0, 1), as k increases to infinity.

®Z,=(¥,—400)/20 ~N(0,1) Y, ~N(400, 400).
OP(2 <Y, <400) = (std’z 2 & 400) =
® P((2-400)20 < Z, < (400-400)120 ) = P( -20< Z,<0)

=0.5 ﬁ

Normal approximation to Binomial

Suppose Y~Binomial(n, p)
® Then Y=Y+ Y,+ Y;+...+ Y, where
B Y, ~Bernoulli(p) , E(Y,)=p & Var(Y,)=p(1-p) 2
B E(Y)=np & Var(Y)=np(1-p), so)= (ap(1-p))”
B Standardize Y:
9 Z=(Y-np) / (np(1-p))*»
U By CLT = Z ~N(0, 1). So, Y ~ N [np. (np(1-p))?

® Normal Approx to Binomial is

reasonable when np >=10 & n(1-p)>10
(p & (1-p) are NOT too small relative to n).

Normal approximation to Poisson

® Let X,~Poisson(A) & X,~Poisson(l) >X,+ X,~Poisson(A+})
® Let X, X,, X, ..., X, ~ Poisson(A), and independent,
® Y, =X, +X,+ +X, ~Poisson(kA), E(Y,)=Var(¥)=kA.
® The random variables in the sum on the right are

independent and each has the Poisson distribution
with parameter A.

® By CLT the distribution of the standardized variable
(Y, — kX) / (kN)'2 =» N(0, 1), as k increases to infinity.

® So, for kA >=100, Z, = {(¥, — kA) / (bAN)2 } ~ N(0,1).
©> ¥, ~ N(k\, (kA)'2).

Poisson or Normal approximation to Binomial?

® Poisson Approximation (Binomial(n, p,) = Poissoa()\) ):
y —
Y n-y ? /1 e
() a-py-DlHE T2 —
y nxp, m A y'
En>=100 & p<=0.01 & A =np<=20
@ Normal Approximation

(Binomial(n, p) > N (np, (np(1-p))?))
Hnp >=10 & n(1-p)>10




Geometric, Hypergeometric,
Negative Binomial

® X ~ Geometric(p), then the probability mass function is
Probability of first failure at xth trial.

PX=0=(-pyp; EX)=""P; varx)=1"2 |
P 4

2

® Ex: Stat dept purchases 40 light bulbs; 5 are defective.
Select 5 components at random.

Find: P(3" bulb used is the first that does not work) = ?

S~

Hypergeometric Distribution & Binomial

Relation among Distributions

Normal (X) D
LS Ay

Chi-square (]

Lognormal (Y)

n

Uniform(X) :

Gamma D Exponential(X)

Uniform(U) :

Geometric, Hypergeometric,
Negative Binomial

® Hypergeometric — X~HyperGeom,)

Total objects: N. Successes: M. Sample-size: n (without
replacement). X = number of Successes in sample

N-n. M _N-M (N]
N

Var(X) = XX —X ;

=]l N N

Ex: 40 components in a lot; 3 components are defectives.
Select 5 components at random.

P(obtain one defective) = P(X=1)="?

Geometric, Hypergeometric,
Negative Binomial

® Negative binomial pmf [X ~ NegBin(r, p), if =1 =
G tri x
eometric (p)] P(X=x)=(1-p)'p
Number of failures until the rth success (negative, since
number of successes (r) is fixed & number of trials (X) is random)

x+r-1
P(X =x) =[ jp'(l -p)

r—1

9 2

p



