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REVIEW
Estimation (ch. 6, 7) 

Hypothesis Testing (ch. 8)

• Two Important Aspects of Statistical Inference

• Point Estimation – Estimate an unknown parameter, say θ, by 
some statistic computed from the given data which is referred to
as a point estimator.  Example:  S2 is a point estimate of σ2

•Interval Estimation – A parameter is estimated by an interval 
that we are “reasonably sure” contains the true parameter value. 
Example: A 95% confidence interval for θ

• Hypothesis Testing – Test the validity of a hypothesis that we 
have in mind about a particular parameter using sample data. 
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Confidence Intervals 
for the Mean, µ

• Normally Distributed Population –

• If σ known – construct with normal distribution

• If σ unknown and n < 30 – construct with student’s T 
distribution

• Arbitrarily Distributed Population -

• If n >> 30 – apply Central Limit Theorem and use 
normal distribution
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Confidence Interval for µ from a Normally 
Distributed Population, σ known
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Example

Construct a 90% confidence interval for the mean of a 
normally distributed population specified by

25,4,5 2 === nx σ
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Construct a 99% confidence interval for the mean of a 
normally distributed population specified by

25,4,5 2 === nx σ

Example cont.
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Construct a 99% confidence interval for the mean of a 
normally distributed population specified by

100,4,5 2 === nx σ

Example cont.
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Confidence Interval for µ from a Normally 
Distributed Population, σ unknown

Find the value tα/2,n-1 such that: 
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Construct a 90% confidence interval for the mean of a 
normally distributed population specified by

10,4,5 2 === nSx

Example
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Large Sample (n>>30) Confidence Interval 
for µ from an Arbitrarily Distributed 

Population

Apply Central Limit Theorem

• Since n is large, the T-distribution limits to the 
standard normal.  Hence, use a standard normal when 
computing confidence intervals regardless of whether 
σ is known or unknown. 
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Construct a 90% confidence interval for the mean of an 
arbitrarily distributed population specified by

35,4,5 2 === nSx

Example cont.

Stat 110B, UCLA, Ivo DinovSlide 12

z (6.2) Two Ways of Proposing Point Estimators 

zMethod of Moments (MOMs): 
z Set your k parameters equal to your first k moments.
z Solve. (e.g., Binomial, Exponential and Normal)

zMethod of Maximum Likelihood (MLEs):
z 1. Write out likelihood for sample of size n.
z 2. Take natural log of the likelihood.
z 3. Take partial derivatives with respect to your k parameters.
z 4. Take second derivatives to check that a maximum exists.
z 5. Set 1st derivatives equal to zero and solve for MLEs. e.g., 

Binomial, Exponential and Normal

Parameter (Point) Estimation



3

Stat 110B, UCLA, Ivo DinovSlide 13

z Suppose we flip a coin n=8 times and observe 
{T,H,T,H,H,T,H,H}. Estimate the value p = P(H).
zMethod of Moments Estimate p^: 
z Set your k parameters equal to your first k moments.

z Let X = {# T’s} Î np=8p=E(X)= Sample#H’s = 5 Î p^=5/8.

zMethod of Maximum Likelihood Estimate p^:
z 1. f(x | p) = likelihood function.
z 2.
z 3.

Parameter (Point) Estimation
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Hypothesis Testing –
the Likelihood Ratio Principle Example

z Let {X1, …, Xn}={0.5, 0.3, 0.6, 0.1, 0.2}, weights, be IID N(µ, 1) 
Î f(x;µ). Joint density is f(x1,…,xn; µ)=f(x1;µ)x… xf(xn;µ). 
z The likelihood function L(p) = f(X1,…,Xn; p) 
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z In any problem there are two hypotheses:
z Null Hypothesis, Ho

z Alternative Hypothesis, Ha

z We want to gain inference about Ha, that is we want to 
establish this as being true.  

z Our test results in one of two outcomes:
zReject Ho – implies that there is good reason to believe Ha

true
z Fail to reject Ho – implies that the data does not support 

that Ha is true; does not imply, however, that Ho is true

Hypothesis Testing
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z Point Estimates don’t mean a thing unless you know how reliable 
the measurement is.  Reporting an interval estimate at a certain
level of confidence is a simple way to express uncertainty in your 
estimates.

z Hypothesis testing is about making one of two conclusions, reject 
or fail to reject, about a specified hypothesis, while knowing 
something about the probabilities of the two types of errors in 
your conclusion.  The type I error you control by choosing α and 
your rejection region.  If the sample size is fixed, the probability 
of a type II error can be found assuming a certain alternative is 
true.  If the sample size hasn’t been determined, you can find a 
sample size sufficient to ensure the probability of a type II error is 
below a desired level for a certain alternative.

Hypothesis Testing - Motivation 
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z Hypothesis Testing Steps in General:
z 1. Identify parameter of interest.  Describe it in context.
z 2. Determine Null Value and State Null Hypothesis.
z 3. Determine alternative value/region and state null hypothesis.
z 4. Write Test Statistic without entering sample quantities.
z 5. State α and rejection region.
z 6. Calculate Test Statistic using necessary sample quantities.
z 7. State conclusion (reject or fail to reject) and interpret in context. 

Hypothesis Testing - Motivation 
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z What Test Do I Use when … ?

z 1. X ~ N(µunknown, σ2
known) → one-sample Z

z 2. X ~ N(µunknown, σ2
unknown) → one-sample T

z 3. X ~ D(µunknown, σ2
unknown), where D is fairly symmetric and n 

is moderately big → one-sample T

z 4. X ~ D(µunknown, σ2
unknown), where D is not symmetric and n is 

really big → one-sample T

z 5. X ~ D(µunknown, σ2
unknown), where D is not symmetric and n is 

not big → non-parametric, e.g. sign test.  
z 6. X ~ Bin(nknown, punknown) → Z test for proportions

Hypothesis Testing - Motivation 
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z The above situations each have their corresponding power 
calculations and confidence intervals.  In cases 1-4, the 
confidence intervals can be used to answer the hypothesis testing 
question.  However, in case 6 the confidence intervals should not 
be used to answer the hypothesis testing question.

Hypothesis Testing - Motivation 
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Hypothesis Testing – Statistical vs. 
Practical Significance
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                       First and Second Births by Sex

Second Child

Male Female
       First Child Male 3,202 2,776

Female 2,620 2,792
Total 5,822 5,568

Is a second child gender influenced by the 
gender of the first child, in families with >1 kid?

z Research hypothesis needs to be formulated first 
before collecting/looking/interpreting the data that 
will be used to address it. Mothers whose 1st child is 
a girl are more likely to have a girl, as a second child, 
compared to mothers with boys as 1st children.

z Data: 20 yrs of birth records of 1 Hospital in Auckland, NZ.
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Group Number of births Number of girls
1 (Previous child was girl) 5412 2792 (approx. 51.6%)
2 (Previous child was boy) 5978 2776 (approx. 46.4%)

Second Child

Analysis of the birth-gender data –
data summary

z Let p1=true proportion of girls in mothers with girl as 
first child, p2=true proportion of girls in mothers with 
boy as first child. Parameter of interest is p1- p2.

z H0: p1- p2=0 (skeptical reaction). Ha: p1- p2>0
(research hypothesis)
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                               Decision Making

Decision made H0 is true H0 is false
Accept H0 as true OK Type II error
Reject H0 as false Type I error OK

Actual situation

Hypothesis testing as decision making

z Sample sizes: n1=5412, n2=5978, Sample proportions 
(estimates) 

z H0: p1- p2=0 (skeptical reaction). Ha: p1- p2>0
(research hypothesis)
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Analysis of the birth-gender data

z Samples are large enough to use Normal-approx. 
Since the two proportions come from totally diff. 
mothers they are independentÆ use formula 8.5.5.a
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Analysis of the birth-gender data

zWe have strong evidence to reject the H0, and hence 
conclude mothers with first child a girl a more likely
to have a girl as a second child.

z How much more likely? A 95% CI:

CI (p1- p2) =[0.033; 0.070]. And computed by:
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Hypothesis Testing –
the Likelihood Ratio Principle

z Let {X1, …, Xn} be a random sample from a density f(x; p), 
where p is some population parameter. Then the joint density is 
f(x1,…, xn; p) = f(x1; p)x… xf(xn; p). 
z The likelihood function L(p) = f(X1,…, Xn; p) 
z Testing: Ho: p is in Ω vs Ha: p is in Ωa, where Ω Ωa= 0
zFind max of L(p) in Ω.
zFind max of L(p) in Ωa.
zFind likelihood ratio
zReject Ho if likelihood-ratio statistics λ is small (λ<k)

I

)(max

)(max
),...,( 1 pL

pL
xx

ap

p
n

Ω∈

Ω∈=λ

Stat 110B, UCLA, Ivo DinovSlide 27

Hypothesis Testing –
the Likelihood Ratio Principle Example

z Let {X1, …, Xn}={0.5, -0.3, -0.6, 0.1, 0.2} be IID N(µ, 1) Î
f(x;µ). The joint density is f(x1,…,xn; µ)=f(x1;µ)x… xf(xn;µ). 
z The likelihood function L(p) = f(X1,…,Xn; p) 
z Testing: Ho: σ>0.9 is in Ω vs Ha: σ<=0.9
z Reject Ho if likelihood-ratio statistics λ is small (λ<k)
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ln(numer) = quadratic in µ!
ln(deno) = quadratic in µ!
Maximize both Æ find ratio

Let P(Type I) = α
to=1/λο ~ tα,df=4
Îone-sample T-test
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Test Procedure

1. Calculate a Test Statistic (Example: zo)

2. Specify a Rejection Region (Example:                 )

3. The null hypothesis is rejected iff the computed value 
for the statistic falls in the rejection region

2
αzzo >
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Type I and Type II Errors

 true}is HHReject Pr{ 00=α
False} is HHReject   toFailPr{ 00=β

• The value of α is specified by the experimenter

• The value of β is a function of α, n, and δ (the 
difference between the null hypothesized mean and the true 
mean).  For a two sided hypothesis test of a normally 
distributed population 

• It is not true that α =1- β (RHS=this is the test power!)
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Type I and Type II Errors

z Let µ denote the tread life of a certain type of tire.  We would 
like to test  whether the advertised tread life of 50,000 miles is 
accurate based on a sample of n=25 tires from a normally 
distributed population with σ = 1500.  What are the null and 
alternative hypothesis?  From these samples, we computed 

z Perform this hypothesis test at a level of significance 
α=0.05 (type I error).  What is our conclusion?  Now, 
assume that the true mean is actually 49,250 miles.  
Given samples of size n=25, what is the probability 
of a type II error, i.e. Pr(fail to reject the null 
hypothesis given that it is false)?

49000=x
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Type I and Type II Errors

z Ho: µ= 50,000 miles, sample-size n=25, Normal distribution with 
σ = 1500. H1: µ < 50,000. 

z α=0.05 (type I error). Assume true µ =49,250 miles.  
What is the P(type II error)? X- ~ N(50,000; 3002)
� α=0.05 Î Z=(X- - µ)/σ = -1.64 Î X- = Z*σ + µ = 49,508
� β = P(fail to reject Ho | given that Ho is false) = ?
� There is a different β for each different true mean µ .

� β = P(X- = avg.miles > µ = 49,508 |X- ~N(49,250; 1,5002/25) )= 
� Z=(49,508 - 49,250)/300 = 0.86 Î

� β = P( Z > 0.86) = 0.1939

� Power of Test = 1- β = 0.8061
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Another Example –Type I and Type II Errors

z One type of car is know to sustain no visible damage in 
25% of 10-mph crash tests.A new bumper is proposed 
that increases this proportion. Let p be the new 
proportion of cars with no damage using the new 
bumpers. Ho: p=0.25, H1: p>0.25. 
z X = number of crushes/test with no damage in n=20 

experiments. Under Ho we expect to get about n*p=5 
no damage tests. Suppose we’d invest in new bumper 
technology if we get > 8 no damage tests Î rejection 
region R={8,9,…20}.
z Find α and β. How powerful is this test?
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Another Example –Type I and Type II Errors

z Ho: p=0.25, H1: p>0.25. X = number of crushes/test with no 
damage in n=20 experiments. 

z X~Binomial(20, 0.25). Rejection region R={8,9,…20}.

z Find α =P(Type I) = P(X>=8 when X~Binomial(20, 0.25)).
z Use SOCR resource Î α =1-0.898 = 0.102
z Find β(p=0.3) =P (Type II) = 
� P(can’t reject Ho | X~Binomial(20, 0.3))=P(X<7 | X~Binomial(20,0.3))
� Use SOCR resource Î β =0.772

z Find β(p=0.5) =P (Type II) = 
� P(can’t reject Ho | X~Binomial(20, 0.5))=P(X<7 | X~Binomial(20,0.5))
� Use SOCR resource Î β =0.132
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Comparing Population Means

• Generalize confidence intervals and tests for a single 
population parameter to that of two population parameters

• Consider two populations with means µ1 and µ2.  We want to 
estimate µ1- µ2, or possibly test Ho: µ1= µ2

• Examples:

• µ1 = average crop yield using fertilizer 1

µ2 = average crop yield using fertilizer 2

• µ1 = women’s average height

µ2 = men’s average height
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Assumptions

• X1,X2,…,Xm is a random sample from a population with mean 
µ1 and variance σ1

2

• Y1,Y2,…,Yn is a random sample from a population with mean 
µ2 and variance σ2

2

• The X and Y samples are independent of one another

We will investigate using 

as an estimator of the difference in the means µ1 - µ2 

YX −
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Expectation and Variance of YX −
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Test Procedures and Confidence Intervals for 
Normal Populations with Known Variances 

(9.1)

If both samples have a normal distribution, then the test 
statistic            has a normal distribution as well.  It may be 
standardized by

YX −
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Test Procedures and Confidence Intervals for 
Large Samples (9.1)

When both samples are large (n>30 and m>30):

• The CLT guarantees that regardless of the distribution of the 
data,     and      will have a Normal distribution.

•The estimated standard deviations will be close to the 
population standard deviations 

X Y
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Example

Use the following data to construct a 95% confidence interval 
for µ1 - µ2. 

1900,40400,45,2200,42500,45 21 ====== synsxm
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Example

Consider the following data regarding boredom.  The following 
table records the sample mean and standard deviation of the 
Boredom Proneness Rating for 97 male and 148 female college 
students surveyed.  Test the hypothesis that the mean rating is 
higher for men than women at a .05 level of significance.   

Gender N Avg SamplSD 
Male 97 10.4 4.83

Female 148 9.26 4.68

Stat 110B, UCLA, Ivo DinovSlide 41

Two Sample t Test and Confidence 
Interval (9.2)

• The population variances are unknown 

• At least one of the samples has a small sample size

• Assume each population is normally distributed.  
Experimentally, this may be established through normal 
probability plots.

• and      are standardized and distributed according to a t 
distribution
X Y
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Example

Consider the following stress limits for different types of woods.  
Test the hypothesis that the true average stress limit for red oak 
exceeds that of Douglas fir by 1MPa

Type N Avg SamplSD 
Red Oak 14 8.48 0.79

Douglas Fir 10 6.65 1.28
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Pooled t Procedures

• Not covered by the current edition of the book

• Assumes that the population variances are equal, i.e. σ1
2=σ2

2

• Outperforms the two sample t-test in β for a given level of α
if the hypothesized equality of variances is true.  Same is true
for the confidence intervals

• May give erroneous results, however, if the variances are not 
equal, i.e. not robust to violations of this assumption
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Comparing two means for independent samples

Suppose we have 2 samples/means/distributions as 
follows: {                  } and {                    }. We’ve 
seen before that to make inference about              we 
can use a T-test for H0: with 

And CI(        ) =

If the 2 samples are independent we use the SE formula

with                                .
This gives a conservative approach for hand calculation of an 

approximation to the what is known as the Welch procedure, 
which has a complicated exact formula.
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Means for independent samples –
equal or unequal variances?

Pooled T-test is used for samples with assumed equal 
variances. Under data Normal assumptions and equal 
variances of   

is exactly Student’s t distributed with

Here sp is called the pooled estimate of the variance, 
since it pools info from the 2 samples to form a 
combined estimate of the single variance σ1

2= σ2
2 =σ2. 

The book recommends routine use of the Welch unequal variance method.
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Analysis of Paired Data (9.3)

Paired Data - One set of individuals or objects; 
two observations made on each individual.  

Unpaired Data -Two independent sets of 
individuals or objects; one observation per 
individual 
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Example

Consider testing whether a new drug   
significantly lowers blood pressure using 20 
randomly selected patients

Unpaired Data – Randomly select 10 patients 
for the drug (1) and 10 for the placebo (2).  
Observe the magnitude of the reduction in 
blood pressure after taking medication.  Test 
Ho: µ1 = µ2 vs. Ha: µ1 > µ2 using two-sample t-
test 
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What about the age of the persons selected?  
Younger people may be more susceptible to a 
decrease in blood pressure than are older 
people.  Can use pairing to “block” out age 
effect.
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The Paired t-test

Assume that the data consists of n independently 
selected pairs (X1,Y1), (X2,Y2),…,(Xn,Yn)

Define D1=X1-Y1, D2=X2-Y2,…, Dn=Xn-Yn.  The 
Di’s are the differences within pairs.  Check 
that the Di’s are normally distributed using a 
normal probability plot.
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Let YXD −=

Then =Dµ

Hence testing Ho: µD=∆

is equivalent to testing Ho: µ1- µ2 =∆

Since the Di’s are independent and normally 
distributed R.V’.s, we can use a one sample 
t-test to test the above hypothesis
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Let      and sD be the sample mean and sample 
standard deviation.  It follows that the 
Confidence Interval and Hypothesis Test for 
the paired t-test are

d
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Paired t- vs. Two-Sample t-test

The paired t-test has fewer degrees of freedom 
than the two-sample t-test.  Hence, the two-
sample t-test has a smaller β error for a fixed 
level of α than does the paired t-test.  
However, if there is a positive correlation 
between experimental units, the paired t-test 
will reduce the variance accordingly resulting 
in a more significant T statistic, where the 
two-sample t-test does not.  
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Paired t- vs. Two-Sample t-test

Use paired t-test if:

• There is great heterogeneity between 
experimental units and a large correlation 
within pairs

Use Two-Sample t-test if:

• The experimental units are relatively 
homogenous and the correlation between pairs 
is small
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Inferences Concerning the Difference in 
Population Proportions (9.4)

• Previous sections (9.1,2,3): We compared the 
difference in the means (µ1 - µ2) of two different 
populations

• This section (9.4): We compare the difference 
in the proportions (p1 – p2) of two different 
populations


