UCLA STAT 110B REVIEW
Applied Statistics for Engineering Estimation (ch. 6, 7)
and the Sciences Hypothesis Testing (ch. 8)

elnstructor: Ivo Dinov,
Asst. Prof. In Statistics and Neurology

eTeaching Assistants: Brian Ng, UCLA statistics

University of California, Los Angeles, Spring 2003
http://www.stat.ucla.edu/~dinov/courses_students.html

Confidence Interval for p from a Normally

e T — Distributed Population, ¢ known
for the Mean, p




Distributed Population, c unknown

>>
B B e el

for p from an Arbitrarily Distributed
Population

Apply Central Limit Theorem

« Since n is large, the T-distribution limits to the
standard normal. Hence, use a standard normal when
computing confidence intervals regardless of whether
o is known or unknown.
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Parameter (Point) Estimation
T

® (6.2) Two Ways of Proposing Point Estimators

® Method of Moments (MOMs):
® Set your k parameters equal to your first k moments.
® Solve. (e.g., Binomial, Exponential and Normal)

® Method of Maximum Likelihood (MLEs):

® ]. Write out likelihood for sample of size n.

® 2. Take natural log of the likelihood.

® 3. Take partial derivatives with respect to your k parameters.

® 4. Take second derivatives to check that a maximum exists.

® 5. Set It derivatives equal to zero and solve for MLEs. e.g.,
Binomial, Exponential and Normal




Parameter (Point) Estimation

® Suppose we flip a coin n=8 times and observe
{T,H,T,H,H,T,H,H}. Estimate the value p = P(H).
® Method of Moments Estimate p”:
® Set your k parameters equal to your first k moments.
® Let X = {# T’s} = np=8p=E(X)= Sample#H’s = 5 = p”=5/8.
® Method of Maximum Likelihood Estimate p”:
® |.f(x|p)= @ 50— p7 likelihood function.
o 2. ln((i]pS(l - p)3] = ln((i]}r 5xIn(p)+3xIn(l-p)
3. d[ln[[ijj+5xln(p)+3x]n(]—p)] s
dp p 1-p
5(1-p)-3p=0=>p=

Hypothesis Testing

® In any problem there are two hypotheses:
® Null Hypothesis, H,
® Alternative Hypothesis, H,

® We want to gain inference about H,, that is we want to
establish this as being true.

® Our test results in one of two outcomes:

® Reject H, — implies that there is good reason to believe H,
true

® Fail to reject H, — implies that the data does not support
that H, is true; does not imply, however, that H is true

Hypothesis Testing - Motivation

® Hypothesis Testing Steps in General:

® 1. Identify parameter of interest. Describe it in context.

® 2. Determine Null Value and State Null Hypothesis.

® 3. Determine alternative value/region and state null hypothesis.
® 4. Write Test Statistic without entering sample quantities.

® 5. State o and rejection region.
® 6. Calculate Test Statistic using necessary sample quantities.
® 7. State conclusion (reject or fail to reject) and interpret in context.

Hypothesis Testing —
the Likelihood Ratio Principle Example

® Let {X,, ..., X,}={0.5,0.3, 0.6, 0.1, 0.2}, weights, be IID N(y, 1)
2 f(x;p). Joint density is f(X;,....X,; p)=f(x ;)% .. xf(X5p).
® The likelihood function L(p) = f(X,,....X,; p)
L) = Axt,r ) =
(0.5-42) +(0.3—0)* +(0.6= 1) +(0.1- 1) +(0.2~p2)*
=e 2

In(Z) = (0.5— 11)* + (0.3— 12)> + (0.6 — ) + (0.1 12)> + (0.2 — u)?
_din(l) _
T
=+l0ou—-3.4= =034

0 —2(0.5— )= 2(0.3= 1) = 2(0.6— 1) = 2(0.1— 1) = 2(0.2— ) =

Hypothesis Testing - Motivation

® Point Estimates don’t mean a thing unless you know how reliable

the measurement is. Reporting an interval estimate at a certain
level of confidence is a simple way to express uncertainty in your
estimates.

® Hypothesis testing is about making one of two conclusions, reject
or fail to reject, about a specified hypothesis, while knowing
something about the probabilities of the two types of errors in
your conclusion. The type I error you control by choosing o and
your rejection region. If the sample size is fixed, the probability
of a type II error can be found assuming a certain alternative is
true. If the sample size hasn’t been determined, you can find a
sample size sufficient to ensure the probability of a type II error is
below a desired level for a certain alternative.

Hypothesis Testing - Motivation

® What Test Do I Use when ... ?

® 1. X ~ N(Hymicnown> Oknown) —> ONE-sample Z

® 2. X ~ N(Hynnowro O unknown

® 3. X~ Dltyp 0
is moderately big — one-sample T

® 4. X~ D(pyoume 0°
really big — one-sample T

@ 5. X~ D(tpone ©

not big — non-parametric, e.g. sign test.

) — one-sample T
), where D is fairly symmetric and n

2
unknown

), where D is not symmetric and n is

unknown

) . . .
ko) Where D is not symmetric and n is

® 6. X ~Bin(n, .. Punknown) —> Z test for proportions




Hypothesis Testing - Motivation

® The above situations each have their corresponding power
calculations and confidence intervals. In cases 1-4, the
confidence intervals can be used to answer the hypothesis testing
question. However, in case 6 the confidence intervals should not
be used to answer the hypothesis testing question.

Is a second child gender influenced by the
gender of the first child, in families with >1 kid?

First and Second Births by Sex

Second Child
Male Female
First Child Male _| 3,202 2,776
Female _| 2,620 2,792
Total 5,822 5,568

® Research hypothesis needs to be formulated first
before collecting/looking/interpreting the data that
will be used to address it. Mothers whose 1% child is
a girl are more likely to have a girl, as a second child,
compared to mothers with boys as 15 children.

® Data: 20 yrs of birth records of 1 Hospital in Auckland, NZ.

Hypothesis testing as decision making

Decision Making

Actual situation

Decision made H, is true H, is false

Accept Hy as true OK Type Il error

Reject Hj as false Typel error OK

® Sample sizes: n,=5412, n,=5978, Sample proportions
(estimates) 7, =2792/5412%0.5159, p_ =2776/5978 = 0.4644,

® H: p,- p,=0 (skeptical reaction). H : p,- p,>0
(research hypothesis)

Hypothesis Testing — Statistical vs.
Practical Significance

Analysis of the birth-gender data —
data summary

Second Child
Group Number of births Number of girls
1 (Previous child was girl) 5412 2792 (approx. 51.6%)
2 (Previous child was boy) 5978 2776 (approx. 46.4%)

® et p,=true proportion of girls in mothers with girl as
first child, p,=true proportion of girls in mothers with
boy as first child. Parameter of interest is p ;- p,.

® H: p,- p,=0 (skeptical reaction). H,: p,- p,>0
(research hypothesis)

Analysis of the birth-gender data

® Samples are large enough to use Normal-approx.
Since the two proportions come from totally diff.
mothers they are independent = use formula 8.5.5.a
_ Estimate - HypothesizedValue
0 SE

S 5 0 o
PR )

=5.49986 =

P—value=Pr(T2t0)=1‘9x10_8




Analysis of the birth-gender data

® We have strong evidence to reject the H, and hence
conclude mothers with first child a girl a more likely
to have a girl as a second child.

® How much more likely? A 95% CI:

CI (p;- p,) =[0.033; 0.070]. And computed by:

estimate£zxSE=p —p x1.96xSE| p —p |=
pl p2 (pl p2)

p —p £1.96x
pl p2

0.0515£1.96%0.0093677 =[3% ;7%]

Hypothesis Testing —
the Likelihood Ratio Principle Example

© B e Tothe densin i X o 200 6k ).

® The likelihood function L(p) = f(X,....X,; p)

® Testing: H.: 6>0.9 is in Q vs H,: 6<=0.9

® Reject H,, if likelihood-ratio statistics A is small (A<k)

max L(p) In(numer) = quadratic in p!

A0 = A ) e L) In(deno) = quadratic in p!
Py Maximize both = find ratio

[e (0.5—;:)*+(—0.3—;z)2+(—0.§—;z)'+<0.1—u)2+(0}2—u)2

max|

Let P(Type ) =
>0

=1/ ~ty 4ea

one-sample T-test ||

max| 2

1=0)

{ (0.57/1)2+(70.37/1)2+(70.67;:)1+(0.17/1)%(0.27/1)2]
e

pe I and Type II Errors

a =Pr{Reject HO‘HO is true}
3= Pr{Fail to Reject H,|H, is False}

* The value of a is specified by the experimenter

* The value of B is a function of @, N, and & (the
difference between the null hypothesized mean and the true
mean). For a two sided hypothesis test of a normally
distributed population

ﬁ:d{zg +5‘/;]—c1>[—za

o

2

2]

» It is not true that o =1- B (RHS=this is the test power!

Hypothesis Testing —
the Likelihood Ratio Principle

® Let {X, ..., X,} be a random sample from a density f(x; p),
where p is some population parameter. Then the joint density is

(X500 X5 p) = (X5 Px... xE(Xp5 P)-

® The likelihood function L(p) = f(X,,..., X,; p)

® Testing: H: p is in Q vs H,: p is in Q,, where QN Q=0
® Find max of L(p) in Q. max L(p)
®Find max of L(p) in Q. A(xy,..ox,) = LE2

B . max L(p)

® Find likelihood ratio peQ,

®Reject H, if likelihood-ratio statistics A is small (A<k)

Test Procedure

Type I and Type II Errors

® Let p denote the tread life of a certain type of tire. We would
like to test whether the advertised tread life of 50,000 miles is
accurate based on a sample of n=25 tires from a normally
distributed population with ¢ = 1500. What are the null and
alternative hypothesis? From these samples, we computed

x =49000

® Perform this hypothesis test at a level of significance
a=0.05 (type I error). What is our conclusion? Now,
assume that the true mean is actually 49,250 miles.
Given samples of size n=25, what is the probability
of a type Il error, i.e. Pr(fail to reject the null
hypothesis given that it is false)?




Type I and Type II Errors

® H : p= 50,000 miles, sample-size n=25, Normal distribution with
6 =1500. H;: p <50,000.

® 0=0.05 (type I error). Assume true p =49,250 miles.
What is the P(type II error)? X~ ~ N(50,000; 300?)

B 0=0.05> Z=(X - p)/o=-1.64 D X =Z*c +p=49,508

B (3 = P(fail to reject H, | given that H, is false) = ?

B There is a different B for each different true mean u .

B B =P(X =avgmiles>p=49,508 X ~N(49,250; 1,500%/25) )=

B 7=(49,508 - 49,250)/300 = 0.86 >

BB =P(Z>0.86)=0.1939

B Power of Test = 1- § = 0.8061

Another Example —Type I and Type II Errors

® H: p=0.25, H;: p>0.25. X = number of crushes/test with no
damage in n=20 experiments.

® X~Binomial(20, 0.25). Rejection region R={8,9,...20}.

® Find o =P(Type I) = P(X>=8 when X~Binomial(20, 0.25)).

® Use SOCR resource = o =1-0.898 =0.102

® Find B(p=0.3) =P (Type II) =
B P(can’t reject H, | X~Binomial(20, 0.3))=P(X<7 | X~Binomial(20,0.3))
W Use SOCR resource = 3 =0.772

® Find B(p=0.5) =P (Type II) =

B P(can’t reject H, | X~Binomial(20, 0.5))=P(X<7 | X~Binomial(20,0.5))

W Use SOCR resource = 3 =0.132

Assumptions

Another Example —Type I and Type II Errors

® One type of car is know to sustain no visible damage in

25% of 10-mph crash tests.A new bumper is proposed
that increases this proportion. Let p be the new
proportion of cars with no damage using the new
bumpers. H,: p=0.25, H,: p>0.25.

® X = number of crushes/test with no damage in n=20

experiments. Under H, we expect to get about n*p=>5
no damage tests. Suppose we’d invest in new bumper
technology if we get > 8 no damage tests =» rejection
region R={8,9,...20}.

® Find o and 8. How powerful is this test?

Comparing Population Means

Expectation and Variance of Y _y



Test Procedures and Confidence Intervals for Test Procedures and Confidence Intervals for
Normal Populations with Known Variances Large Samples (9.1)
9.1)

Interval (9.2)




Pooled t Procedures

Means for independent samples —
equal or unequal variances?

Pooled T-test is used for samples with assumed equal
variances. Under data Normal assumptions and equal
variances of (¥ —¥.-0)/SE(x, - ¥.), where

is exactly Student’s t distributed with 4 = (n1 oS 2)

Here s, is called the pooled estimate of the variance,
since it pools info from the 2 samples to form a

combined estimate of the single variance o,>= 6,> =62,
The book recommends routine use of the Welch unequal variance method.

Example

Comparing two means for independent samples

Suppose we have 2 samples/means/distributions as
follows: {X ,N(u .o )} and {fz,N(# ,02) }. We’ve
seen before that to make inference a%bout l‘l _”2 we
can use a T-test for Hy: # —#_ =0 with , _ (¥ =%:)=0

1 72 fo=— T
And Cl( -#) = X = X: £ 1 x SE(¥,~ X.) SE(x %)

If the 2 samples are independent we use the SE formula
2 2

SE=_[s“/n +s°/n ith df = Min(n —1:n —

A T, withdf m(n1 n, D

This gives a conservative approach for hand calculation of an

approximation to the what is known as the Welch procedure,

which has a complicated exact formula.

Analysis of Paired Data (9.3)




\\\\\\\\\\\\\\\\\\\§ \\\\\\\\\\\\\\\\\\ S
Paired t- vs. Two-Sample t-test i




