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Analysis of Variance - ANOVA

Use to analyze data -

1. That involves sampling from more than two
populations, or

2. From experiments in which more than two
treatments have been used

Use to compare more than two treatment or 
population means
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Definitions

Factor – The characteristic that distinguishes 
the treatments or populations from one another

Levels – This refers to the different treatments 
or populations

Single-Factor ANOVA (chapter 10) 

Multi-Factor ANOVA (chapter 11)
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Example

An experiment to study the effects of four 
different brands of gasoline (Exxon, Conoco, 
Shell, Texaco) on the fuel efficiency (mpg) of 
a car

• Factor – Gasoline Brand

• Levels – the 4 brands (Exxon, Conoco, Shell, 
Texaco)

• Single-Factor ANOVA
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Example

An experiment to study the effects of four 
different brands (Exxon, Conoco, Shell, Texaco) 
and three different types of gasoline (regular, 
midgrade, premium) on the fuel efficiency (mpg) 
of a car

• Factor – Gasoline Brand, Gasoline Type

• Levels – the 4 brands (Exxon, Conoco, Shell, 
Texaco), the 3 types (Regular, midgrade, 
premium)

• Two-Factor ANOVA
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Mathematical Specification – 1 Way ANOVA

I = Number of Populations or Treatments 
being Compared
µi =The mean of population i or the true 
average when treatment i is applied

The hypotheses of interest are:

Ho:µ1= µ2 = …… = µi

Ha: at least two of the µi’s are different



2

Stat 110B, UCLA, Ivo DinovSlide 7

Single-Factor ANOVA

J = Number of observations in each sample; 
Assume each sample has same # observations

Xi,j = jth measurement from the ith population 
or treatment
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Single-Factor Cont’d

Individual Sample Means:
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Single-Factor Cont’d

Grand Mean:
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Example: Gasoline
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Assumptions

1. The I population or treatment 
distributions are each Normal

2. Each of these distributions has 
(approximately) the same variance, i.e. 
σ1

2 = σ2
2 = …. = σn

2 = σ2

),(~ 2σµiij NX
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F-distribution

F-distribution is the ratio of two χ2 random variables.

Snedecor's F distribution is most commonly used in 
tests of variance (e.g., ANOVA). The ratio of two 
chi-squares divided by their respective degrees of 
freedom is said to follow an F distribution 
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F-distribution

F-distribution is the ratio of two χ2 random variables.

Snedecor's F distribution is most commonly used in tests of 
variance (e.g., ANOVA). The ratio of two chi-squares divided 
by their respective degrees of freedom is said to follow an F 
distribution 

{Y1;1, Y1;2, ………….., Y1;N1}  IID from a Normal(µ1;σ1)
{Y2;1, Y2;2,.., Y2;N2}  IID from a Normal(µ2;σ2)
.,..
{Yk;1, Yk;2, ….., Yk;N2}  IID from a Normal(µ2;σ2)

σ1= σ2= σ3=… σnk
= σ. (1/2 <= σk/σj<=2)

Samples are independent!

k
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F-distribution

F-distribution k-samples of different sizes

s2
B is a measure of variability  of

sample means, how far apart they are.
s2

W reflects the avg. internal
variability within the samples.

                                Typical Analysis-of-Variance Table for One-Way ANOVA

Sum of Mean sum
Source squares df of Squaresa F -statistic P -value

Between k -1 pr(F    f 0)

Within n tot - k

Total n tot - 1
aMean sum of squares = (sum of squares)/df

ni(x i . − x ..)2∑
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Development of Test Statistic

( )∑
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⋅⋅⋅ −
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11

MSTr = Mean Sum-square due to Treatment
describes “between-samples” variation

I
SSSMSE I

22
2

2
1 ...+++

=

MSE = Mean Sum-square due to Error
describes “within-samples” variation
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Computational Formulas Cont’d

Identity:  SST = SSTr + SSE
• Partition total variation into two pieces

• SSE (within) measures variation that would be 
present even if Ho true (unexplained by Ho when 
true or false)

• SSTr (between) measures amount of variation 
that can be explained by possible differences in 
the µi’s (explained by Ho when false)
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Example

One manufacturing firm in interested in the 
concentration of impurities in steel obtained 
from 4 different vendors.  Test the hypothesis 
that the mean concentration of impurities is the 
same for all vendors at a 0.01 level of 
significance (LOS). 
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Example Data:   I=4, J=10

Demo: SYSTAT CopyNPasteData_Sheet2 Statistics ANOVA 

Vendor1 Vendor 2 Vendor 3 Vendor 4
20.5 26.3 29.5 36.5
28.1 24 34 44.2
27.8 26.2 27.5 34.1

27 20.2 29.4 30.3
28 23.7 27.9 31.4

25.2 34 26.2 33.1
25.3 17.1 29.9 34.1
20.5 26.8 29.5 32.9
31.3 23.7 30 36.3
23.1 24.9 35.6 25.5
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Example Data:   I=4, J=10

Demo: SYSTAT CopyNPasteData_Sheet2 Statistics ANOVA

Categorical values encountered are:
INDEX (4 levels)1,   2,    3,   4
Dep Var: VAR00002   N: 40   Multiple R: 
0.69460   Squared multiple R: 0.48247
Analysis of Variance
Source  SS  df Mean-Square F-ratio    P
INDEX 530.80200 3 176.9  11.18   0.00002
Error 569.37400 36 15.8
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Example Data:   I=4, J=10

Demo: SYSTAT CopyNPasteData_Sheet2 Statistics ANOVA

1 2 3 4
19

24

29

34

39
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Multiple Comparisons (10.2)

Assume that the null hypothesis of a single-
factor ANOVA test is rejected. 

Ho: µ1 = µ2 = …. = µn

Ha: at least two of the µi’s differ

Which µi’s differ?    

Use one of: Least Significant Difference 
Procedure, Tukey’s Procedure, Newman-Keuls 
Procedure, Duncan’s Multiple Range Procedure
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Tukey’s Procedure (Conservative) –T Method

• Used to obtain simultaneous confidence 
intervals for all pair-wise differences µi - µj

• Each interval that does not contain zero yields 
the conclusion that µi and µj differ significantly 
at level α

• Based on the Studentized Range Distribution, 
Qα,m,ν; m=d.f. numerator, ν = d.f. of deno; for 
Tukey’s Proc. m = I, ν=I(J-1)
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Tukey’s Procedure Cont’d

1. Select α and find Qα,I,I(J-1), using tables or SOCR

2. Determine w = Qα,I,I(J-1) (MSE/J)1/2

3. List the sample means in increasing order. 
Underline those pairs that differ by less than w. 
Any pair not underscored by the same line are 
judged significantly different.
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Example (10.11)

Compare the spreading rates of (I=5) different 
brands of Latex paint using (J=4) gallons of each 
paint.  The sample average spreading rates were 

482.8   ,1.532
,3.469  ,5.437

8.512  ,0.462

..5
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⋅⋅
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Example Cont’d

From an ANOVA test on the equality of means, the 
computed value of F was found to be significant at α
= 0.05 with MSE = 272.8, use Tukey’s procedure to 
investigate significant differences in the true average 
spreading rates between brands.

MSTr= 5,900/4 = 1475

F=MSTr/MSE = 5.4  ~ F(0.05, 4, 20-5)

SOCR P-value = 0.006746436876727799 signif.
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Example Cont’d

MSTr= 5,900/4 = 1475

F=MSTr/MSE = 5.4  ~ F(0.05, 4, 20-5)

SOCR P-value = 0.006746436876727799 signif.

Five sample means in increasing order:

-------------------------------------- ----------------------

w= Q0.05, 5, 15 (272.8 /4)1/2= 4.37x8.3 = 36.1

532.1x   512.8,x  469.3,x   462.0,x   437.5,x 52413 ===== ⋅⋅⋅⋅⋅
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A Caution About Interpreting α

α` = experiment wise error rate. This is the 
confidence level for the entire set of 
comparisons of means

α =  comparison wise error rate. This is the 
confidence level for any particular individual 
comparison.

α` = Pr{at least 1 false rejection among the c 
comparisons} = 1 – Pr{no false rejections} =       
1-(1-α)c
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Example Cont’d

We used Tukey’s procedure to compare 5 
different population (α=0.05) means resulting in

= 10 = c pairwise comparisons of means

Real error if no correction (Tukey) is applied!  









2
5

59.)05.1(1` 10 =−−=α
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Contrasts

• Elementary Contrasts:   µ1- µ2 

• General Contrasts: c1µ1+ c2µ2+ … +cnµn; 
where c1+c2+…+cn=0

We would like to form a CI on a general 
contrast, For example, construct  a CI on the 
contrast µ1+ µ2 - 2µ3
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Contrasts (cont’d)

Let θ = ΣciµI. Since the Xij’s are (independent) 
normally distributed and the contrast is a linear 
combination,                            is normally 
distributed since

∑ ⋅= ii Xcθ̂
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Example (cont’d)

Assume that brands 2 and 5 were bought at 
a local paint store and 1, 3, and 4 were 
bought at a discount hardware store.  Is 
there evidence that the quality of paint 
varies by type (classification) of store?
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Interpreting α and α` for Multiple 
Comparisons Revisited

α` = “experiment wise error rate” =

= “composite error rate”

α` = Pr{at least 1 false rejection among the c
comparisons} = 

= 1 – Pr{no false rejections} =  1-(1-α)c

• In obtaining the above expression, we assumed 
that each of the c comparisons was independent

Stat 110B, UCLA, Ivo DinovSlide 33

• These c comparisons, however, generally 
are dependent

• It follows that the α` computed previously 
assuming independence serves as an upper 
bound to the “True” experiment wise error 
rate that accounts for the dependence 
between the c comparisons. 

Interpreting α and α` for Multiple 
Comparisons Revisited
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Single-Factor ANOVA – Sample Sizes Unequal

• Let J1,J2,…,Jn denote the I sample sizes

• Let the total number of observations n = Σi Ji
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Example (10.26)

Samples of six different brands of imitation 
margarine were analyzed to determine the level of 
PAP fatty acids (pyelonephritis-associated pilus). 

Use ANOVA to test for differences among the true 
average PAP fatty acids percentages for the 
different brands
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Imperial®, 14.1, 13.6, 14.4, 14.3
Parkay®, 12.8, 12.5, 13.4, 13.0, 12.3
Blue Bonnet®, 13.5, 13.4, 14.2, 14.3
Chiffon®, 13.2, 12.7, 12.6, 13.9
Mazola®, 16.8, 17.2, 16.4, 17.3, 18.0
Fleischmann’s®, 18.1, 17.2, 18.7, 18.4
Mazola and Fleischmann’s are corn-based 
where the others are soybean-based.

Example (10.26)
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Multiple Comparisons when Sample Sizes 
are Unequal

• Use the following modified Tukey’s 
procedure when the I sample sizes J1,J2,…,JI 
are reasonably close.

• The computed wij depends on Ji and Jj
respectively.  That is, each CI(µi - µj) has an 
associated wij that varies between i and j 
according to their respective sample size.
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Example Cont’d

• Use the modified Tukey’s procedure to 
determine which means differ

• wi,j = Qα, I, n-I (MSE x (1/Ji +1/Jj) / 2)1/2

• Then

( )jijijijiji wXXwXX ,..,..Pr1 +−≤−≤−−=− µµα
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Example Cont’d

Compute a C.I. for the contrast
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Model Equation

• Alternative description of ANOVA model

Xij = each observation or response

µi = the mean of the ith population or treatment

εij = deviation of the jth observation from the ith

population or treatment mean

Xij = µi + εij
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• Assume that εij are independent and 
normally distributed RV’s such that E[εij ] = 0 
and Var[εij ] = σ2,  i.e., εij ~ N(0, σ2).

• It follows that: Xij ~ N(µi , σ2) as specified by 
the ANOVA assumptions.

Model Equation
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Linear Model

Define a new parameter µ by: 

∑
=

=
I

i
iI 1

1 µµ

Define new parameters α1,…, αn by:

µµα −= ii
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• Expressing the model equation in terms of 
these new parameters yields

Xij = µ + αi + εij ;  Σ αi = 0

• The null hypothesis for the ANOVA test 
that Ho: µ1=…= µI is equivalent to              
Ho: α 1=…= α I 

Linear Model
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Fixed vs. Random Effects 

• Fixed Effects Model – The experiment was 
conducted using all treatments of interest to 
the researcher

• Random Effects Model – A researcher 
wants to inferences about a set of treatments 
larger than that used in the sample.  The 
treatments used in the experiment represent a 
random sample of all treatments of interest
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Fixed vs. Random Cont’d

• Fixed effects model: αi’s are unknown 
parameters

• Random effects model: Replace αi’s with 
Ai’s where E[Ai]=0 and Var[Ai]=σ2.  

• The ANOVA test for Fixed and Random 
effects models does not differ, even though the 
form of the null hypothesis does. 
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ANOVA Assumptions

Consider the linear model Xij = µ + αi + εij

i) µ is a fixed constant common to all 
observations

ii) The εij are independent and normally 
distributed with E[εij ]=0 and Var[εij ]=σ2

iii) The deviations from the overall mean for 
the I treatments are such that Σ αi = 0
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Under these assumptions:

• E[Xij]=µi

• Var [Xij]=σ2

• and Xij is normally distributed

which facilitates the use of ANOVA for testing 
hypothesis about the equality of the  means 

ANOVA Assumptions
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In real world experiments, however, either the 
normality and/or equal variances assumptions 
are often violated.  How robust is the 
ANOVA test to these violations?

ANOVA Assumptions
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Normality Assumption

• It was established by Cochran and Hay that 
the ANOVA test is very robust with respect to 
non-normality. 

• Regardless, the plausibility of a normal 
assumption for Xij under a fixed i may be 
established through Normal Probability Plots 
(NPP) or quantile-quantile plots (Q-Q Plot)
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Normal Probability Plots (4.6)

A NPP is a plot of the observed data values 
against the z-percentiles of the standard 
normal distribution.

• If the plotted points do not deviate greatly 
from a straight 45o line, then it is plausible to 
assume that our data is normally distributed
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• If the plotted points fall in an S shape, then it is 
plausible to assume that our data from a heavy-
tailed distribution

• If the plotted points fall in a backwards S 
shape, then it is plausible to assume that our data 
from a light-tailed distribution

• If the plotted points fall in a middle curved 
shape, then it is plausible to assume that our data 
from a positively skewed distribution

Normal Probability Plots (4.6)
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Equal Variances Assumption

• It was established by Welsh and Box that the 
ANOVA procedure is robust to mild departures
from the equal variances assumption for equal 
replications

• If there is a large departure from the equal 
variances assumption and/or mild departures with 
extremely unequal replications, a variance 
stabilizing transformation should be used if 
possible 
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Variance Stabilizing Data Transformations

If Var [Xij] = g(µi) (that is the variance is a 
known function of the mean) then the 
transformation h(Xij) such that Var [Xij] is 
approximately the same for each i is given by 

[ ] dxxgxh
2/1

)()( ∫∝

Stat 110B, UCLA, Ivo DinovSlide 54

Common Transformations
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Common variance stabilizing transformations

If the response is a Poisson count, so that the variance is 
proportional to the mean, use the square root transformation:  

yyy ==′ 2
1

If the response is a binomial proportion, use the arcsine 
square root transformation:  

( )pp ˆsinˆ 1−=′
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Common variance stabilizing transformations

If the variance is proportional to the mean squared, use the 
natural log transformation:  

( )yy elog=′

If the variance is proportional to the mean to the fourth power,
use the reciprocal transformation:  

yy 1−=′
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Knowing functional relationship 
is of the power form

If the relationship between x and y is of the power form:

βαxy =

taking log of both sides transforms it into a linear form: 

xy eee logloglog βα +=
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Knowing functional relationship 
is of the exponential form

If the relationship between x and y is of exponential form:

xey βα=

taking log of both sides transforms it into a linear form: 

xy ee βα += loglog
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Further Comments on Data Transformations

Does a data transformation destroy the other 
needed properties such as normality and 
independence?  

Answer: Generally No! In fact, the presence of 
non-normality and unequal variances are often 
related.  It has been shown that 
transformations to stabilize the variance often 
helps to correct non-normality in the data
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Example

A small restaurant chain has 4 different 
locations in the local area.  The management is 
interested in whether the true average of 
complaints received per restaurant differs by 
location.  The number of complaints at each 
restaurant was counted and recorded for 30 
consecutive months.  Test the appropriate 
hypothesis at α=0.05 los. 
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Location1:{1,1,2,2,2,2,3,3,3,3,3,3,3,4,4,
4,4,4,4,4,5,5,5,6,6,6,6,6,7,8}

Location2:{3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,
6,6,6,7,7,7,7,8,8,8,9,10,10,12,13}

Location3:{1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,4,
4,4,4,4,4,5,5,5,6,7,7,7,8,9}

Location4:{0,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,
3,3,3,3,3,3,4,4,4,4,4,5,5,5}
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Plot of the Data Sets
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Location1:{1,1,1.41421,1.41421,1.41421,1.41
421,1.73205,1.73205,1.73205,1.73205,1.7320
5,1.73205,1.73205,2.,2.,2.,2.,2.,2.,2.,2.23607,2
.23607,2.23607,2.44949,2.44949,2.44949,2.44
949,2.44949,2.64575,2.82843}

Location2:{1.73205,1.73205,1.73205,1.73205,2.
,2.,2.,2.,2.23607,2.23607,2.23607,2.23607,2.449
49,2.44949,2.44949,2.44949,2.44949,2.44949,2.
64575,2.64575,2.64575,2.64575,2.82843,2.8284
3,2.82843,3.,3.16228,3.16228,3.4641,3.60555}

Transformed (x0.5) Data Sets
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Location4:{0,1,1,1,1,1.41421,1.41421,1.41421,1
.41421,1.41421,1.73205,1.73205,1.73205,1.7320
5,1.73205,1.73205,1.73205,1.73205,1.73205,1.7
3205,1.73205,1.73205,2.,2.,2.,2.,2.,2.23607,2.23
607,2.23607}

Location3:{1,1,1,1.41421,1.41421,1.41421,1.41
421,1.73205,1.73205,1.73205,1.73205,1.73205,
1.73205,1.73205,1.73205,2.,2.,2.,2.,2.,2.,2.2360
7,2.23607,2.23607,2.44949,2.64575,2.64575,2.6
4575,2.82843,3.}
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Two- Factor ANOVA Kij=1 (11.1) 

• Two Factors of Interest (A) and (B)

• I = number of levels of factor A

• J = number of levels of factor B

• Kij = number of observations made on 
treatment (i,j)
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Example

Consider an experiment to test the effect of 
heat and pressure on the strength of a steel 
specimen.  Specifically, the test will 
consider the temperatures 100,120,130,140 
degrees Celsius and the pressures 
100,150,200 psi.  Each temp/pressure 
combination will be observed once

• Factor A = Temp, B =Pressure

• I=4, J=3, Kij=1
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The Model

Xij=µij + εij

• This model has more parameters than 
observations

• A unique additive (no interactions) linear 
model is given by

Xij=µ + αi + βj + εij

Where Σαi=0,  Σβj=0, εij~N(0,σ2)
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Additive Model

• Necessary assumption since Kij=1

• The difference in mean responses for two 
levels of factor A(B) is the same for all 
levels of factor B(A); i.e. The difference in 
the mean responses for two levels of a 
particular factor is the same regardless of the 
level of the other factor
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Plots for Checking Additivity (no interactions)

When the effect of one factor depends on the 
different levels of a second factor, then there is an 
interaction between the factors

Similarly, the effect of factor B at the low level of A is 60 
but is only 20 at the high level of A.

Factor A Factor B
low medium high

low 10 40 70 40
high 60 70 80 70

35 55 75

Interaction & Main Effect for
Factor B   .

0

10

20

30

40

50

60

70

80

90

low high
Levels of Factor A

low medium high

If the lines are NOT
parallel, there IS an
interaction 
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Interpretation of the Model

• µ = The true grand mean

• αi = The effect of factor A at level i

• βj = The effect of factor B at level j

⋅⋅⋅

⋅⋅⋅

⋅⋅
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Hypothesis of Interest

1. HoA: α1 = α2=…= αi =0

HaA: at least one αi ≠ 0 

2. HoB: β1 = β2=…= βj =0

HaB: at least one βj ≠ 0 
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Multiple Comparisons

Use only after HoA and/or HoB has been rejected
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Example – Two-Factor ANOVA (11.2)

A study on the type of coating and type of 
soil on the corrosion of a metal pipe is 
considered (4 types of coatings (A) and 3 
types of soil (B)).  12 pieces of pipes are 
selected and each receives one of the factor 
level combinations.  After a fixed time, the 
amount of corrosion is measured for each 
pipe.  The data is as follows:
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Under single-factor ANOVA, we assumed that 
our IJ experimental units are homogeneous 
with respect to other variables that may affect 
the observed response

If there is heterogeneity, however, the 
calculated F may be affected by these other 
variables; use blocking to “block out” this 
extraneous variation     

Randomized Block Experiments
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Blocking Cont’d

• Form “blocks” such that the units are 
homogeneous within each group (block) with 
respect to the extraneous factor

• Divide the IJ units into J groups (blocks) with I 
units in each group. 

• Within each homogenous group (block), the I 
treatments are randomly assigned to the I units

• When I=2, either the paired t-test or F test may 
be used, the results are the same
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Example “Blocking”

A soil and crops scientist is interested in 
comparing the effect of four different types 
of fertilizer on the yield of a specific type of 
corn.  He has 4 different plots of land (each 
sub dividable into 4 lots) at his disposal 
scattered throughout the state.  The ph level 
of the soil is know to affect the yield of corn 
and this varies at each plot. 
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Example Cont’d

• I=4 (types of fertilizer – A,B,C,D)

• Block on soil PH level, I.e J=4 groups with 
the I=4 treatments assigned to I=4 units 
(subdivided lots) at within each group
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Example Cont’d

Xij=µ + αi + βj + εij

• αi = effect of the fertilizer factor at level i 
(deviations due to fertilizer factor at level i)

• βj = effect of the block at level j (variability 
by block)

• εij = random error of the i,jth observation 
(variability around the block)
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Additional Comments on Blocking

Blocking may reduce the value of the 
parameter σ2 as estimated by the MSE, 
resulting in a larger calculated f test statistic

The probability of a type II error is decreased, 
however, only if the gain in the calculated f 
offsets the loss in the denominator degrees of 
freedom for the critical F value; that is I(J-1) d.f 
under single-factor ANOVA vs. (I-1)(J-1) 
under blocked two-factor ANOVA  
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Additional Comments on Blocking Cont’d

• If the number of IJ observations is small, 
care should be taken in deciding whether 
blocking is warranted in reducing the Type 
II error probability
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Example – Blocking (11.6)

A particular county has 3 assessors who 
determine the value of residential property.  
To test whether the assessors systematically 
differ, 5 houses are selected and each assessor 
is asked to determine their value. Explain 
why blocking is used in this experiment rather 
than a one-way ANOVA test
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Random Effects Model

Fixed Effects Model:

Xij=µ + αi + βj + εij

Random Effects Model:

Xij=µ + Ai + Bj + εij

• Ai ~ N(0,σA
2)

• Bj ~ N(0,σB
2)

• εij ~ N(0,σ2)
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Random Effects Model Cont’d

Hypotheses:

HoA: σA
2 = 0, HoB: σB

2 = 0

HaA:σA
2 > 0 , HaB: σB

2 > 0

• E(MSA) = σ2+JσA
2

• E(MSB) = σ2+JσB
2

• E(MSE) = σ2

fA= E(MSA) / E(MSE) 

fB= E(MSB) / E(MSE)
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Mixed Effects Model

Xij=µ + αi + Bj + εij

HoA: α1=…=αn= 0 , HoB: σB
2 =0

HaA: at least one αi differs , HaB:σB
2 > 0

• E(MSA) = σ2+(J/I-1)Σαi

• E(MSB) = σ2+JσB
2

• E(MSE) = σ2
fA= E(MSA) / E(MSE) 

fB= E(MSB) / E(MSE)
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Example – Blocking 
(Fixed and Random Effects) (11.6,12)

A particular county has 3 assessors who 
determine the value of residential property.  To 
test whether the assessors systematically differ, 5 
houses are selected and each assessor is asked to 
determine their value.  Let factor A denote the 
assessor and factor B denote the the houses.  We 
compute SSA=11.7, SSB=113.5, and SSE = 25.6
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Example Cont’d

Suppose that the 6 houses in the previous 
example had been selected at random from 
among those of a certain age and size.  It 
follows that factor B is random rather than 
fixed  

Stat 110B, UCLA, Ivo DinovSlide 88

Two-Factor ANOVA, Kij>1  (11.2)

• When Kij>1, an estimator of the the variance 
σ2 (MSE) of εmay be obtained without 
assuming additivity.

• This allows for our model to include an 
interaction parameter

• Assume that Kij = K >1 for all i,j
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The Model

Let :

• µij = The true average response when factor 
A is at level i and factor B at level j

• µ = (Σj Σj µij)/IJ = The true grand mean

• µi· = (Σj µij)/J = The expected response of 
factor A at level i averaged over factor B

• µ·j = (Σi µij)/I = The expected response of 
factor B at level j averaged over factor A
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The Model Cont’d

• αi = µi· - µ = The effect of factor A at level i 
(main effects for factor A)

• βj = µ·j - µ = The effect of factor B at level j 
(main effects for factor B)

• γij = µij – (µ + αi + βj ) = interaction effect of 
factor A at level i and factor B at level j 
(interaction parameters)

µij = µ + αi + βj + γij
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The Model Cont’d

Xijk=µ + αi + Bj + γij + εijk ,   εijk ~ N(0,σ2)

Hypotheses:

HoAB: γij = 0, HaAB = at least one γij ≠ 0

HaA: α1=…=αn= 0 , HaA: at least one αi ≠ 0

HaB: β1=…= βn= 0 , HaB: at least one βi ≠ 0
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The Test

• Test the no-interaction hypothesis HoAB first

• If HoAB is not rejected

• Test the other hypothesis HoA and HoB

•If HoAB is rejected

• Do not test the other hypothesis HoA and HoB

• Construct an interaction plot to visualize how 
the factors interact
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The Test Cont’d

Assume that we reject HoAB and then go on to 
test HoA and HoB.  Suppose that HoA is 
rejected.  The resulting model would be 

µij = µ + αj + γij

which does not have a clear interpretation.  In 
other words, an insignificant main effect has 
little meaning in the presence of a significant 
interaction effect. 
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The Test Cont’d

•E(MSA) = σ2+(JK/I-1)Σαi
2

• E(MSB) = σ2+(IK/J-1)Σβi
2

• E(MSAB) = σ2+[K/((I-1)(J-1))]ΣΣγij
2

• E(MSE) = σ2
fA= E(MSA) / E(MSE) 

fB= E(MSB) / E(MSE)

fAB= E(MSAB) / E(MSE)
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ANOVA Table 
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Example (11.19)

The accompanying data gives observations of the 
total acidity of coal samples of three different 
types, with determinations made using three 
different concentrations of sodium hydroxide
NaOH.  Assuming fixed effects, construct an 
ANOVA table and test for the presence of 
interactions and main effects at los 0.01
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Example (11.19)

The accompanying data gives observations 
of the total acidity of coal samples of three 
different types, with determinations made 
using three different concentrations of 
NaOH.  Assuming fixed effects, construct an 
ANOVA table and test for the presence of 
interactions and main effects at LOS 0.01
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Multiple Comparisons

* Use if HoAB is not rejected and either or both 
of HoA and HoB are rejected *

To test for differences of the αi’s when HoA is 
rejected

1. Obtain Qα,I,IJ(K-1)

2. Compute w = Q(MSE/(JK))1/2

3. Order the    from the smallest to largest 
and proceed with the underlining method

⋅⋅ix
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To test for differences of the βj’s when HoB is 
rejected

1. Obtain Qα,J,IJ(K-1)

2. Compute w = Q(MSE/(IK))1/2

3. Order the       from the smallest to largest 
and proceed with the underlining method

⋅⋅ jx
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Example Cont’d (11.19)

Use Tukey’s procedure to identify significant 
differences among the types of coal
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Mixed Effects Model

The methods developed under mixed effects  
will naturally extend to the random effects model

Xijk = αi + Bj + Gij + εijk

• αi = Fixed effect of Factor A at level I, Σ αi =0

• Bj = Random effect of Factor B at level j, 
Bj~N(0,σB

2)
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• Gij = Interaction effect of Factor A at level i 
and Factor B at level j , Gij ~ N(0 ,σG

2)

• εijk = Random error of the kth observation with 
Factor A at level i and Factor B at level j
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Hypotheses of Interest

• HoA:α1 = …. = αI=0 ; HaA: at least one αi ≠ 0

• HoB: σB
2 = 0 ; HaB: σB

2 > 0 

• HoG: σG
2 = 0 ; HaB: σG

2 > 0 

* Test HoA and HoB only if HoG is not rejected*
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Development of Test

Compute the Sums of Squares, Mean Squares, 
and ANOVA table identically to that under 
fixed effects

• E[MSE] = σ2 

• E[MSA] = σ2 + K σG
2 +(JK/I-1) Σ αi

2

• E[MSB] = σ2 + K σG
2 + IK σB

2 

• E[MSAB] = σ2 + K σG
2 
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Test of HoG

Fab= E[MSAB]/E[MSE] = (σ2 + K σG
2 )/ σ2 

• Under HoG: fab = 1

• Under HaG: fab = 1+(K σG
2 /σ2) > 1 for    

σG
2 >0

Reject HoG if fab > Fα,(I-1)(J-1),IJ(K-1)

If we fail to reject HoG then test HoA and HoB
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Test of HoA

FA = E[MSA]/E[MSAB] 

= (σ2 + K σG
2 +(JK/I-1) Σ αi

2)/(σ2 + K σG
2)

*Notice that the denominator of FA is 
E[MSAB]; not E[MSE]*

• Under HoA: fA = 1

• Under HaA: fA = 1+ [(JK/I-1) Σ αi
2)/(σ2 + K 

σG
2)] > 1 for  Σ αi ≠ 0

Reject HoA if fA > Fα,I-1,(I-1)(J-1)
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Test of HoB

FB = E[MSB]/E[MSAB] 

= (σ2 + K σG
2 + IK σB

2 )/(σ2 + K σG
2)

*Again the denominator of FB is E[MSAB]; 
not E[MSE]*

• Under HoA: fB = 1

• Under HaA: fB = 1+[(IK σB
2 )/(σ2 + KσG

2)] > 
1 for  Σ αi ≠ 0

Reject HoB if fB > Fα,J-1,(I-1)(J-1)
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Example (11.19 modified)

Assume that the determinations for the level of 
acidity of the three different types of coal were 
to made using 3 levels of a sodium hydroxide  
NaOH factor that could range between 0N and 
1N.  We randomly choose the concentrations 
.404N, .626N, and .786N
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Three Factor ANOVA

I,J,K = Levels of the factors A,B, C

Lijk = The number of obeservations of 
factor A at level i, factor B at level j, and 
factor C at level k

Lijk =  L for all i,j,k – Equal replications 
for all factor level combinations
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The Model

ijklijkijklX εµ +=
I = 1,…,i; J=1,…,j; 

K=1,…,k; L=1,…,l

ijk
BC
jk

AC
ik

AB
ij

kjiijk

γγγγ

δβαµµ

++++

+++=
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BC
jk

AC
ik

AB
ij γγγ ,, = Two Factor Interactions

ijkγ = Three Factor Interactions

kji δβα ++ = Main Effects
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Interpretation of Interactions

ijk
AB
ijkjkkiijk γγµµµµ +=+−− ⋅⋅⋅⋅

The interaction between factor A at level i and 
factor B at level j for factor C at level k

The interaction between factor A at level i and 
factor B at level j averaged over all levels of 
factor C

AB
ijjiki γµµµµ =+−− ⋅⋅⋅⋅⋅⋅⋅⋅
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ANOVA Table
* calculate the Sums of Squares using a computer *

Source     df       Sums of Squares    Mean Square            f

A            I-1           SSA                     MSA          MSA/MSE

B            J-1               SSB                      MSB          MSB/MSE

C            K-1              SSC                     MSC          MSC/MSE

AB      (I-1)(J-1)     SSAB                  MSAB       MSAB/MSE

AC      (I-1)(K-1)    SSAC                  MSAC       MSAC/MSE

BC (J-1)(K-1)       SSBC                   MSBC       MSBC/MSE

ABC (I-1)(J-1)(K-1)   SSABC               MSAC       MSAC/MSE

Error     IJK(L-1)      SSE                     MSE

Total IJKL-1          SST
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Test

1. First, test for the presence of three factor 
interactions 

2. If these are deemed not significant, test for the 
presence of two factor interactions 

• If these are judged not significant, test for the 
presence of the main effects

• If some or all of these are deemed significant, 
construct interaction plots.  (If all two factor 
interaction effects are significant, the plots 
may be difficult to interpret)
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Multiple Comparisons

Use Tukey’s Procedure to perform a pair wise 
comparisons of the means of a significant factor

1. Find Q with the first d.f. equal to the number of 
means being compared and the second d.f equal 
d.f. for the error = IJK(L-1)

2. Compute w = Q(MSE/N)1/2 where N = JKL for 
comparing factor A, N=IKL for comparing 
factor B, N=JKL for comparing factor C

3. Order the means and perform the underlining 
procedure
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Example
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Latin Squares

• Complete Layout – At least one observation 
for each factor level combination

• Incomplete Layout – Fewer than one 
observation for each factor level combination

- A Latin Square is a type of incomplete layout 
that may be analyzed in a straightforward 
fashion
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Significance of Latin Squares

• Focuses on the main effects 

•A complete layout for a three factor ANOVA 
with one observation at each of the IJK=N 
factor-level combinations would require N3

observations.  A Latin Square layout would 
require only N2 observations.  If I=J=K=4, the 
complete layout would require 64 
observations, the Latin Square would require 
16 observations. If data collection is costly, 
this may significantly reduce time and costs.  
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Assumptions of Latin Squares

• Each factor has the same number of levels 
I=J=K with no more than one observation at 
any particular factor-level combination

•The model is completely additive – No 
significant two or three factor interaction 
effects (This is a strong assumption)

• Both the square used and observations in the 
square are taken at random
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Construction of Latin Squares

Consider a table where 

• Rows = Levels of Factor A

• Columns = Levels of Factor B

A Latin Square prescribes that every level 
of factor C appears exactly once in each 
row and column. 
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Construction of Latin Squares Cont’d

There are 12 different 3x3 Latin Squares, the 
number of squares increases rapidly with N
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Example

Suppose a chemical company is interested in 
testing the burning rate of 3 different 
formulations of rocket propellant.  There are 3 
different batches of raw materials from which 
each formulation is mixed, and there are 3 
different lab technicians that prepare the 
batches whose experience greatly differs.  
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The Model

)()( kijkjikijX εδβαµ ++++= i,j,k=1,…,n

ANOVA Table
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Multiple Comparisons

Use Tukey’s Procedure

1. Find Qα,N,(N-1)(N-2)

2. Compute w = Q(MSE/N)1/2

3. Order the means and perform the underlining 
procedure
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Example

Suppose a chemical company is interested in 
testing the burning rate of 3 different 
formulations of rocket propellant.  There are 3 
different batches of raw materials and 3 lab 
technicians, whose experience greatly differs, 
that prepare the formulations.  
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The Model

)()( kijkjikijX εδβαµ ++++= i,j,k=1,…,n

ANOVA Table
Source        d.f.              SS       MS       f

A (rows)       N-1   SSA    MSA   MSA/MSE

B (columns)  N-1    SSB    MSB   MSB/MSE

C (trts)          N-1       SSC    MSC   MSC/MSE

Error        (N-1)(N-2)   SSE    MSE

Total            N2-1        SST
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Multiple Comparisons

Use Tukey’s Procedure

1. Find Qα,N,(N-1)(N-2)

2. Compute w = Q(MSE/N)1/2

3. Order the means and perform the underlining 
procedure
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Example (11.34)

Consider an experiment in which the effect 
of shelf space on food sales is investigated.  
The experiment was conducted over a 6 
week period using 6 different stores.  
Assuming no interactions, construct a Latin 
Square for this experiment
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The data collected for this experiment 
follows.  Test the hypothesis that shelf 
space does not affect sales at a .01 los.

1 2 3 4 5 6
1 27(5) 14(4) 18(3) 35(1) 28(6) 22(2)
2 34(6) 31(5) 34(4) 46(3) 37(2) 23(1)
3 39(2) 67(6) 31(5) 49(4) 38(1) 48(3)
4 40(3) 57(1) 39(2) 70(6) 37(4) 50(5)
5 15(4) 15(3) 11(1) 9(2) 18(5) 17(6)
6 16(1) 15(2) 14(6) 12(5) 19(3) 22(4)


