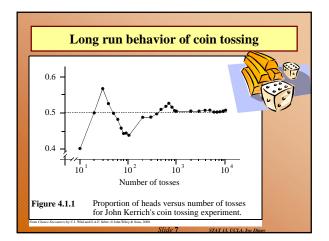
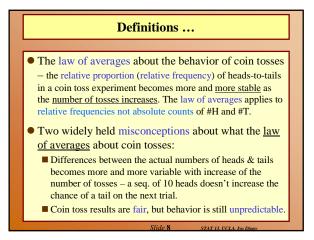
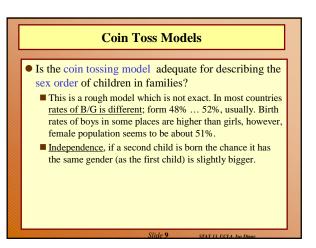
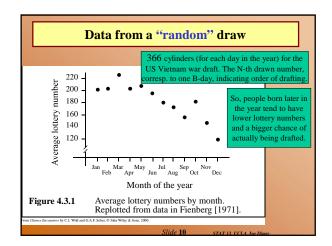


TAT 13 UCLA Ivo Din

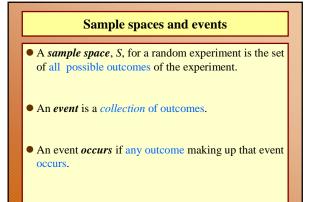

Let's Make a Deal Paradox.


- The *intuition* of most people tells them that each of the doors, the chosen door and the unchosen door, are equally likely to contain the prize so that there is a 50-50 chance of winning with either selection? This, however, is **not the case**.
- The probability of winning by using the switching technique is 2/3, while the odds of winning by not switching is 1/3. The easiest way to explain this is as follows:


STAT 12 LICEA

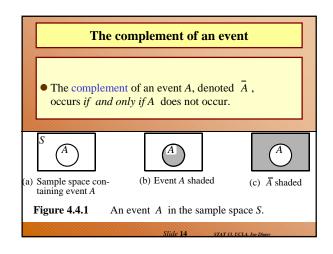

Let's Make a Deal Paradox.

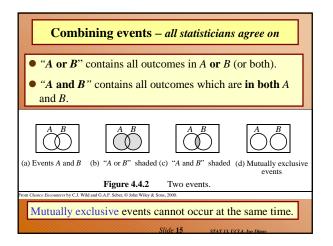
- The probability of picking the wrong door in the initial stage of the game is 2/3.
- If the contestant picks the wrong door initially, the host must reveal the remaining empty door in the second stage of the game. Thus, if the contestant switches after picking the wrong door initially, the contestant will win the prize.
- The probability of winning by switching then reduces to the probability of picking the wrong door in the initial stage which is clearly 2/3.

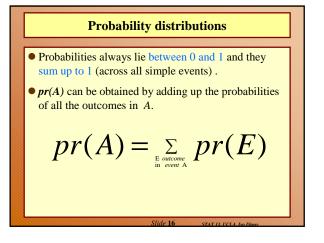


Types of Probability

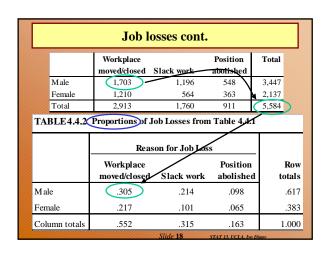
- Probability models have two essential components (*sample space*, the space of all possible outcomes from an experiment; and a list of *probabilities* for each event in the sample space). Where do the outcomes and the probabilities come from?
- <u>Probabilities from models</u> say mathematical/physical description of the sample space and the chance of each event. Construct a fair die tossing came.
- <u>Probabilities from data</u> data observations determine our probability distribution. Say we toss a coin 100 times and the observed Head/Tail counts are used as probabilities.
- <u>Subjective Probabilities</u> combining data and psychological factors to design a reasonable probability table (e.g., gambling, stock market).


Sample Spaces and Probabilities


- When the relative frequency of an event in the past is used to estimate the probability that it will occur in the future, what <u>assumption</u> is being made?
 - The underlying process is stable over time;
 Our relative frequencies must be taken from large numbers for us to have confidence in them as probabilities.
- All statisticians <u>agree</u> about how probabilities are to be combined and manipulated (in math terms), however, <u>not all</u> <u>agree</u> what probabilities should be associated with for a particular real-world event.
- When a weather forecaster says that there is a 70% chance of rain tomorrow, what do you think this statement means? (Based on our past knowledge, according to the barometric pressure, temperature, etc. of the conditions we expect tomorrow, 70% of the time it did rain under such conditions.)



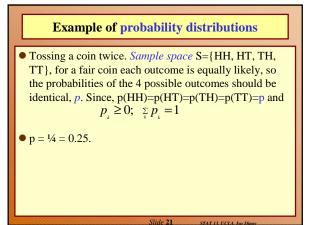
de 13

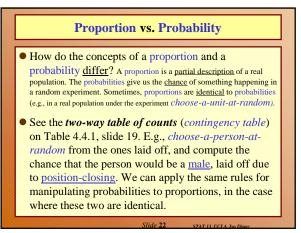

STAT 13 UCLA In

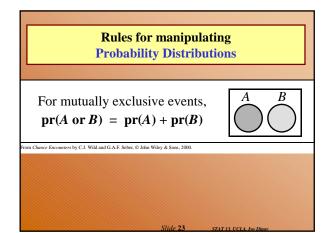
	JOD IO	sses in the	05	
	4.1 Job Losses in	the US (in tho	usands)	
for 1987 to	1991			
	Reas	son for Job Loss		
	Reas Workplace	son for Job Loss	Position	Total
				Total
Male	Workplace		Position	Total 3,447
M ale Female	Workplace moved/closed	Slack work	Position abolished	

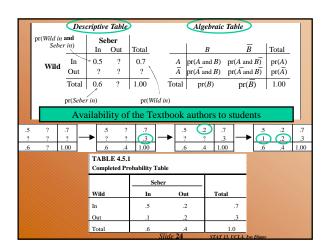
Review

- What is a sample space? What are the <u>two essential</u> <u>criteria</u> that must be satisfied by a possible sample space? (completeness – every outcome is represented; and uniqueness – no outcome is represented more than once.
- What is an event? (collection of outcomes)
- If A is an event, what do we mean by its complement, \overline{A} ? When does \overline{A} occur?
- If *A* and *B* are events, when does *A* or *B* occur? When does *A* and *B* occur?

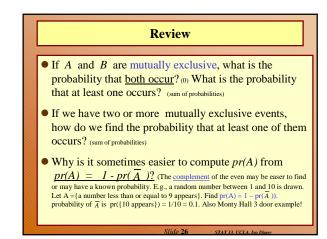

Properties of probability distributions


• A sequence of number $\{p_1, p_2, p_3, ..., p_n\}$ is a probability distribution for a sample space $S = \{s_1, s_2, s_3, ..., s_n\}$, if $pr(s_k) = p_k$, for each $1 \le k \le n$. The two essential properties of a probability distribution $p_1, p_2, ..., p_n$?


 $p_{1} \ge 0; \quad \sum_{k} p_{k} = 1$

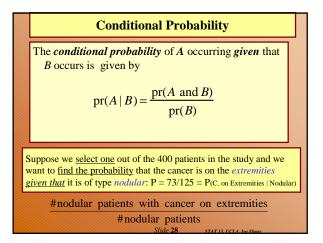

- How do we get the probability of an event from the probabilities of outcomes that make up that event?
- If all outcomes are <u>distinct</u> & <u>equally likely</u>, how do we calculate pr(A)? If $A = \{a_1, a_2, a_3, ..., a_9\}$ and $pr(a_1)=pr(a_2)=...=pr(a_9)=p$; then

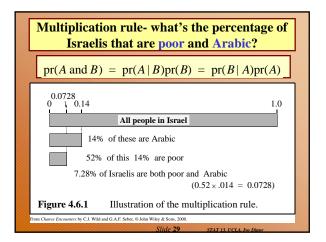
 $pr(A) = 9 \ge pr(a_1) = 9p.$

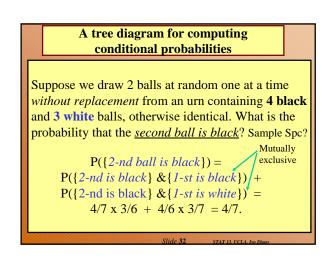

Unmarried co	ouple	S
--------------	-------	---

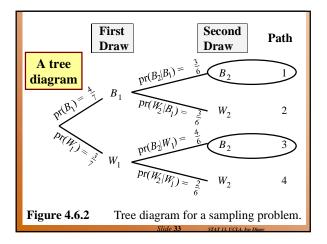
Select an unmarried couple *at random* – the table <u>proportions</u> give us the probabilities of the events defined in the row/column titles.

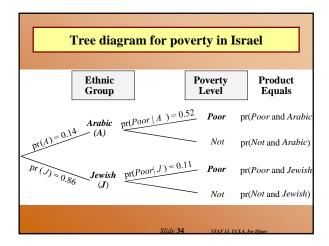
 TABLE 4.5.2
 Proportions of Unmarried Male-Female Couples

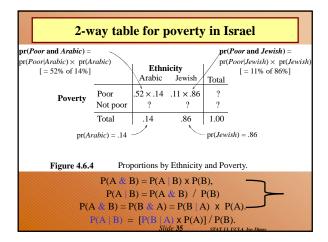

 Sharing Household in the US, 1991

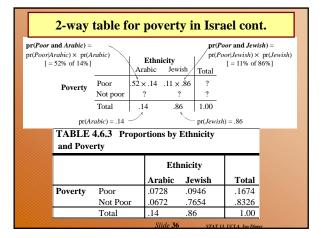

	Female				
Male	Never Married	Divorced	Widowed	Married to other	Total
Never Married	0.401	.111	.017	.025	.554
Divorced	.117	.195	.024	.017	.353
Widowed	.006	.008	.016	.001	.031
M arried to other	.021	.022	.003	.016	.062
Total	.545	.336	.060	.059	1.000
		Slide 2	5 STAT L	B. UCLA. Ivo Dinov	

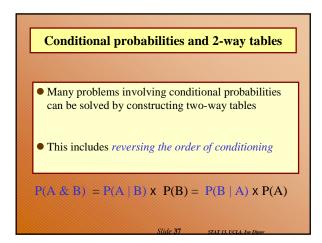


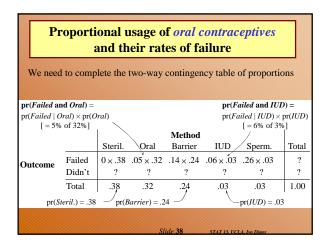

<i>Melanoma</i> – type of skin cancer – an example of <u>laws of conditional probabilities</u>					
TABLE4.6.1: 400 N	Ielanoma Pa	tients by Ty	pe and Site		
		Si	te	_	
	Head and			Row	
Туре	Neck	Trunk	Extremities	Totals	
Hutchinson's					
melanomic freckle	22	2	10	34	
Superficial	16	54	115	185	
Nodular	19	33	73	125	
Indeterminant	11	17	28	56	
Column Totals	68	106	226	400	

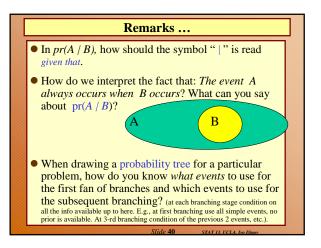

Slide 27 STAT 13 U

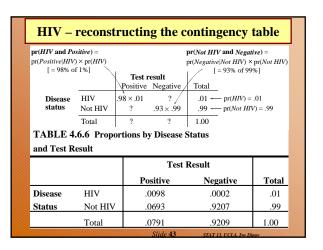




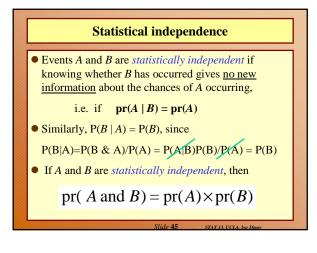






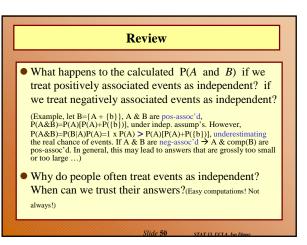


		Oral co	ontrac	eptives	s cont.			
pr(Failed pr(Failed [= 5	· · · · ·	(Oral)	\ \	pr(Failed and IU pr(Failed IUD)> [= 6% of 3 Method /			c pr(IUD)	
		Steril.	Oral	Barrier	IUD /	Sperm.	Total	
Outcome	Failed Didn't		.05×.32 ?	.14×.24 ?	.06 × .03 ?	.26×.03	? ?	
	Total	.38	.32	.24	.03	.03	1.00	
pr(Steril.) = .	38 — pr(<i>E</i>	Barrier) = .2	4 —	\sim	pr(IUD) = .02	3	
TABLE 4.	.6.4 Tab	le Construct	ted from th	e Data in E	xample 4.6.	8		
				Method				
		Steril.	Oral	Barrier	IUD	Sperm.	Tota	1
Outcome	Failed Didn't	0 .3800	.0160 .3040	.0336 .2064	.0018 .0282	.0078 .0222	.0592 .9408	- 6
	Total	.3800	.3200	.2400	.0300	.0300	1.0000)
			S	lide 39	STAT 13. 1	ICLA. Ivo Dinov		



Having a Give	Number of Individ n Mean Absorbance R ELISA for HIV Antibe	Ratio
MAR	Healthy Donor	HIV patients
<2	$202 \} 275$	0 \mathbf{j}_{2} False-
2 - 2.99	$_{73}$ J $_{Tes}^{273}$	t cut-off ² ^{J ² Negati}
3 - 3.99	15	(FNE) 7 Power o
4 - 4.99	³ Fals	7
5 - 5.99	2 > positi	tives ¹⁵ 1-P(FNE
6 -11.99	2	36 1-P(Neg H)
12+	0	<u>21</u> ~ 0.976
Total	297	88
Adapted from Weis	s et al.[1985] Slide 41	STAT 13 UCLA Iso Dimov

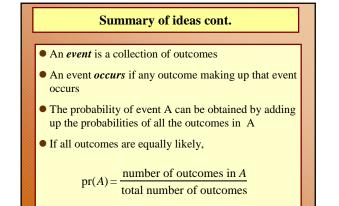
		HIV	⁷ cont.		
r(<i>HIV</i> and <i>Po</i>	,				and <i>Negative</i>) =
r(<i>Positive</i> HIV [= 98% o		Test r Positive	esult Negative		Not HIV) × pr(No = 93% of 99%]
Disease status	HIV Not HIV	.98 × .01 ?	? .93 × .99		pr(<i>HIV</i>) = .01 pr(<i>Not HIV</i>) = .9
	Total	?	?	1.00	
Figure		U	V informati		table.
Chance Encounters by		U			
			Slide 42		T.A. Ivo Dinov

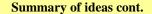

TABLE 4.6.7	Proportions In	fected with HIV		
Country	No. AIDS Cases	Population (millions)	pr(HIV)	Having Test pr(HIV Positive)
United States	218,301	252.7	0.00864	0.109
Canada	6,116	26.7	0.00229	0.031
Australia	3,238	16.8	0.00193	0.026
New Zealand	323	3.4	0.00095	0.013
United Kingdom	5,451	57.3	0.00095	0.013
Ireland	142	3.6	0.00039	0.005

Р	eople	e vs. Collins	
TABLE 4.7.2 Frequence	cies Assu	umed by the Prosecution	
Yellow car	$\frac{1}{10}$	Girl with blond hair	$\frac{1}{3}$
M an with mustache	$\frac{1}{4}$	Black man with beard	$\frac{1}{10}$
Girl with ponytail	$\frac{1}{10}$	Interracial couple in car	$\frac{1}{1000}$
largely on statistical evide was described as a wearin got into a yellow car drive beard. The suspect brough the descriptions. Using the	ence, 196 ng dark cl en by a b ht to trial e <i>produc</i>	ion was made in an American c 64. A woman was mugged and loths, with blond hair in a pony lack male accomplice with mus were picked out in a line-up ar <i>t rule for probabilities</i> an exper n couple meets these characteri	the offender tail who stache and ad fit all of t witness

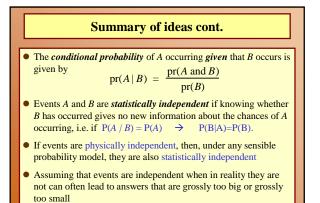
Summary

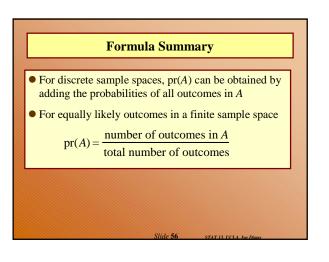
- What does it mean for two events *A* and *B* to be *statistically independent*?
- Why is the working rule under independence, P(A and B) = P(A) P(B), just a special case of the multiplication rule P(A & B) = P(A | B) P(B)?
- Mutual independence of events $A_1, A_2, A_3, ..., A_n$ if and only if $P(A_1 \& A_2 \& ... \& A_n) = P(A_1)P(A_2)...P(A_n)$
- What do we mean when we say two human characteristics are *positively associated*? *negatively associated*? (blond hair – blue eyes, pos.; black hair – blue eyes, neg.assoc.)

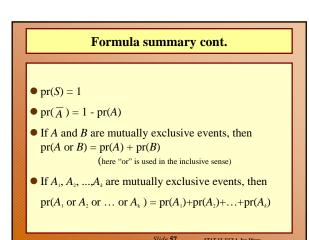


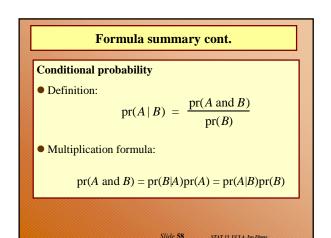

Summary of ideas

- The *probabilities* people quote come from 3 main sources:
 - (i) *Models* (idealizations such as the notion of equally likely outcomes which suggest probabilities by symmetry).
 (ii) *Data* (e.g. relative frequencies with which the event has
 - occurred in the path.
 - (iii) *subjective feelings* representing a degree of belief
- A simple probability model consists of a sample space and a probability distribution.
- A sample space, *S*, for a random experiment is the set of all possible outcomes of the experiment.


A list of numbers p₁, p₂, ... is a *probability distribution* for S = {s₁, s₂, s₃, ...}, provided all of the p_i's lie between 0 and 1, and they add to 1.


- According to the probability model, p_i is the probability that outcome s_i occurs.
- We write $p_i = P(s_i)$.





- The *complement* of an event A, denoted \overline{A} , occurs if A does not occur
- It is useful to represent events diagrammatically using Venn diagrams
- A union of events, A or B contains all outcomes in A or B (including those in both). It occurs if at least one of A or B occurs
- An intersection of events, A and B contains all outcomes which are in both A and B. It occurs only if both A and B occur
- Mutually exclusive events cannot occur at the same time

Formula summary cont.

Multiplication Rule under independence:

• If A and B are independent events, then

pr(A and B) = pr(A) pr(B)

• If A_1, A_2, \ldots, A_n are mutually independent,

 $\operatorname{pr}(A_1 \text{ and } A_2 \text{ and } \dots \text{ and } A_n) = \operatorname{pr}(A_1) \operatorname{pr}(A_2) \dots \operatorname{pr}(A_n)$

STAT 13 UCI

Examples – Birthday Paradox The Birthday Paradox: In a random group of N people, what is the change that at least two people have the same birthday? E.x., if N=23, P>0.5. Main confusion arises from the fact that in real life we rarely meet people having the same birthday as us, and we meet more than 23 people. The reason for such high probability is that any of the 23 people can compare their birthday with any other one, not just you comparing your birthday to anybody else's. There are N-Choose-2 = 20*19/2 ways to select a pair or people. Assume there are 365 days in a year, P(one-particular-pair-same-B-day)=1/365, and P(one-particular-pair-failure)=1-1/365 ~ 0.99726. For N=20, 20-Choose-2 = 190. E={No 2 people have the same birthday is the event all 190 pairs fail (have different birthdays)}, then P(E) = P(failure)¹⁹⁰ = 0.99726¹⁹⁰ = 0.59. Hence, P(at-least-one-success)=1-0.59=0.41, quite high. Note: for N=42 → P>0.9...