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Chapter 12:  Lines in 2D
(Regression and Correlation)

�Vertical Lines
�Horizontal Lines
�Oblique lines
�Increasing/Decreasing
�Slope of a line
�Intercept
�Y=α X + β, in general.

Math Equation for the Line?
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Chapter 12:  Lines in 2D
(Regression and Correlation)

�Draw the following lines:
�Y=2X+1
�Y=-3X-5
�Line through (X1,Y1) and 
(X2,Y2). 
�(Y-Y1)/(Y2-Y1)= 

(X-X1)/(X2-X1). 

Math Equation for the Line?
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Approaches for modeling data relationships
Regression and Correlation

�There are random and nonrandom variables
�Correlation applies if both variables (X/Y) are 
random (e.g., We saw a previous example, systolic vs. 
diastolic blood pressure SISVOL/DIAVOL) and are 
treated symmetrically.
�Regression applies in the case when you want to 
single out one of the variables (response variable, Y) 
and use the other variable as predictor (explanatory 
variable, X), which explains the behavior of the 
response variable, Y.
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Causal relationship? 
– infant death rate (per 1,000) in 14 countries
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Predict behavior of Y (response)
Based on the values of X
(explanatory var.) Strategies for
uncovering the reasons (causes)
for an observed effect.

Strong evidence (linear pattern)
of death rate increase with 
increasing level of breastfeeding (BF)?
Naïve conclusion breast feeding is
bad? But high rates of BF is 
associated with lower access to H2O.
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Regression relationship = trend + residual scatter

9000 10000 11000 12000
Disposable income ($)

9000 10000 11000 12000

(a)  Sales/income

Disposable income ($)

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 1999.
� Regression is a way of studying relationships between 

variables (random/nonrandom)  for predicting or explaining 
behavior of 1 variable (response) in terms of others 
(explanatory variables or predictors).
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x x

y y

 (a) Which line?  (b) Flatter line gives
better predictions.

Figure 3.1.8 Educating the eye to look vertically.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Looking vertically

Flatter line gives better prediction, since it approx. goes through the
middle of the Y-range, for each fixed x-value (vertical line)
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Correlation Coefficient 

Correlation coefficient (-1<=R<=1): a measure of linear 
association, or clustering around a line of multivariate 
data. 

Relationship between two variables (X, Y) can be 
summarized by: (µX, σX), (µY, σY) and the correlation 
coefficient, R. R=1, perfect positive correlation (straight 
line relationship),   R =0, no correlation (random cloud 
scatter), R = –1, perfect negative correlation.  

Computing R(X,Y): (standardize, multiply, average)
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X={x1, x2,…, xN,}
Y={y1, y2,…, yN,}
(µX, σX), (µY, σY)

sample mean / SD. 
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Correlation Coefficient 

Example:
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Correlation Coefficient 

Example:
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Correlation Coefficient - Properties

Correlation is invariant w.r.t. linear transformations of X or Y
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Correlation Coefficient - Properties

Correlation is Associative

Correlation measures linear association, NOT an association in 
general!!! So, Corr(X,Y) could be misleading for X & Y related in 
a non-linear fashion.
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Correlation Coefficient - Properties

1. R measures the extent of
linear association between
two continuous variables. 

2. Association does not imply
causation - both variables
may be affected by a third
variable – age was a 
confounding variable.
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Trend and Scatter - Computer timing data

� The major components of a regression relationship 
are trend and scatter around the trend.

� To investigate a trend – fit a math function to data, or 
smooth the data.

� Computer timing data: a mainframe computer has X users, 
each running jobs taking Y min time. The main CPU swaps 
between all tasks. Y* is the total time to finish all tasks. Both 
Y and Y* increase with increase of tasks/users, but how?

X = Number of terminals: 40 50 60 45 40 10 30 20
Y* = Total Time (mins): 6.6 14.9 18.4 12.4 7.9 0.9 5.5 2.7
Y = Time Per Task (secs): 9.9 17.8 18.4 16.5 11.9 5.5 11 8.1

X = Number of terminals: 50 30 65 40 65 65
Y* = Total Time (mins): 12.6 6.7 23.6 9.2 20.2 21.4
Y = Time Per Task (secs): 15.1 13.3 21.8 13.8 18.6 19.8
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Trend and Scatter - Computer timing data
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X = Number of terminals

Linear
trend?!?

Quadratic
trend?!?

We want to find reasonable
models (descriptions) for

these data!
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Equation for the straight line –
linear/affine function

x

y

0

unitsw

w   units

0

1

β0=Intercept (the y-value at x=0)
β1=Slope of the line (rise/run), change of y for every 

unit of increase for x.
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The quadratic curve

positive2 negative2

Quadratic Curve

Y=β0+ β1x+ β2x2
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Other Non-linear model curves 
(trigonometric, piece-wise polynomial)

� Data from the Keck telescope in Hawaii (red points) show the 
variation over time of the radial velocity of the star Gliese
876. The white curve is the best fit to the data points, 
implying that there are two unseen planets perturbing the 
motion of the star and each other.

Nature, Jack Lissauer 419, 355 - 358 (Sept. 26, 2002);
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yi

yi
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x 1 x 2 xi xn. . . . .

Prediction
error

ith data point
(x  ,i y  )i

(a)  The data (b)  Which line?

Least-squares line

Choose line with smallest
sum of squared
prediction errors

Min   Σ

Its parameters are denoted:

   Intercept:

   Slope:

y   -i yi
^

(c)  Prediction errors

Figure 12.3.1 Fitting a line by least squares.

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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(y  −i y  )i

^

^
0

^
1

Choosing the
“best-fitting”
line
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Fitting a line through the data

(a)  The data (b)  Which line?
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The idea of a residual or prediction error

yi

yi
^

Data point

Trend

(x  ,i y  )i

Predicted

Observed
Residual     u  =i

^y   -i yi
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Least squares criterion:  Choose the values of the 
parameters to minimize the sum of squared 
prediction errors (or sum of squared residuals),

(yi − ˆ y i)
2

i =1

n

�

Least squares criterion
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Least-squares line: ˆ y = ˆ β 0 + ˆ β 1x

The least squares line

yi

yi
^

x 1 x 2 xi xn. . . . .

Prediction
error

ith data point
(x  ,i y  )i

Least-squares line

Choose line with smallest
sum of squared
prediction errors

Min   Σ

Its parameters are denoted:

   Intercept:

   Slope:

y   -i yi
^

(c)  Prediction errors

2(y  −i y  )i
^

^
0

^
1

STAT 13, UCLA, Ivo DinovSlide 41

Least-squares line: ˆ y = ˆ β 0 + ˆ β 1x

The least squares line

[[[[ ]]]]
xyn

i
xix

n

i
yiyxix

10
ˆˆ     ;

1
2)(

1
))((

1
ˆ ββββββββββββ −−−−====

����

====
−−−−

����

====
−−−−−−−−

====



5

STAT 13, UCLA, Ivo DinovSlide 42

Computer timings data – linear fit

10 20 30 40 50 60
5

10

15

20

X = Number of terminals

3 + 0.25x

7 + 0.15x

(Sum sq’d err = 37.46)

(Sum sq’d err = 90.36)

Figure 12.3.2 Two lines on the computer-timings data.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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TABLE 12.3.1 Prediction Errors

x y
40 9.90 13.00 -3.10 13.00 -3.10
50 17.80 15.50 2.30 14.50 3.30
60 18.40 18.00 0.40 16.00 2.40
45 16.50 14.25 2.25 13.75 2.75
40 11.90 13.00 -1.10 13.00 -1.10
10 5.50 5.50 0.00 8.50 -3.00
30 11.00 10.50 0.50 11.50 -0.50
20 8.10 8.00 0.10 10.00 -1.90
50 15.10 15.50 -0.40 14.50 0.60
30 13.30 10.50 2.80 11.50 1.80
65 21.80 19.25 2.55 16.75 5.05
40 13.80 13.00 0.80 13.00 0.80
65 18.60 19.25 -0.65 16.75 1.85
65 19.80 19.25 0.55 16.75 3.05

              Sum of squared errors 37.46 90.36

3 + 0.25x 7 + 0.15x
ˆ y ˆ y  y − ˆ  y  y − ˆ  y  

Computer timings data
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Adding the least squares line
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X = Number of terminals

y  =     +     x^
0

^
1

^

^
0

Here       = 3.05,       = 0.26^
0

^
1

(x, y)

Some Minitab regression output
The regression equation is
timeper = 3.05 + 0.260 nterm
Predictor Coef ...
Constant 3.050 ...
nterm 0.26034 ...

Figure 12.3.3 Computer-timings data with least-squares line.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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Review, Fri., Oct. 19, 2001

1. The least-squares line passes through 
the points (x = 0,    = ?) and (x =    ,     = ?). Supply 
the missing values.

x
ˆ y = ˆ β 0 + ˆ β 1x

ŷŷ
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Hands – on worksheet !

1. X={-1, 2, 3, 4},  Y={0, -1, 1, 2}, 
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Hands – on worksheet !

1. X={-1, 2, 3, 4},  Y={0, -1, 1, 2}, 

32.2541.5224

0.50.2510.5113
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β0=y^-β1*x^
β0= 0.5-10/14

β1=5/14
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Course Material Review

1. ===========Part I=================

2. Data collection, surveys.

3. Experimental vs. observational studies

4. Numerical Summaries (5-#-summary)

5. Binomial distribution (prob’s, mean, variance)

6. Probabilities & proportions, independence of events and 
conditional probabilities

7. Normal Distribution and normal approximation

STAT 13, UCLA, Ivo DinovSlide 49

Course Material Review – cont.

1. ===============Part II=================

2. Central Limit Theorem – sampling distribution of 

3. Confidence intervals and parameter estimation

4. Hypothesis testing

5. Paired vs. Independent samples

6. Analysis Of Variance (1-way-ANOVA, one categorical var.)

7. Correlation and regression

8. Best-linear-fit, least squares method

X


