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Paired Comparisons

1. What is a paired-comparison experiment? (obs d dataare
matched in pairs).

2. In apaired-comparison experiment, why is it wrong
to treat the two sets of measurements as independent
data ﬁsf? (data are usually taken from the same unit under diff. Treatments, so obs's
should be related).

3. How do you analyze the data from a paired-

comparison experiment? (anayze the diference).

4. What situations is appropriate to use the paired-

comparison method to analyze the data? (pre- and post-
metrifonate study using FDG PET imaging).

Urinary androsterone levels cont.

Two Sample T-Test and Confidence Interval
Two sanple T for androsterone
N Mean St Dev SE Mean X .
hetero 11 3.518 0.721 0.22 Confidenceinterval
honose 15 2.500 0.923 0.24
95% Cl for nu (hetero) - nu (honpse): ( 0.35, 1.69)
T-Test nu (hetero) = mu (honpbse) (vs not=):
T=3.16 P=0.0044 DF=23

1 !
t-test statistic  P-value

Minitab 2-sample t-output for the androst data

ANOVA. The F-test.

®One-sampleissues
®Two independent samples
®Morethan 2 samples

®Blocking, stratification and related
samples

Analysis of two independent samples

Urinary androsterone levels — data, dot-plots and 95% Cl. Relations
between hormonal levels and homosexuaity, Margolese, 1970.
Hormonal levels are lower for homosexuals. Samplesare
independent, as unrelated. Results, P-value of t-test 0.004 with a
Cl (e Muom=[0.4:1.7]. Normal hypothesis satisfied? Skewed?

Urinary Androsterone Levels(mg/24 hr)

Homosexud: 25, 1.6, 3.9, |34, 23, 16, 25 34, 16, 43 20,
18, 22, 31, 13
Heterosexud: 3.9, 4.0, 38, |39, 29, 32 |46, 43, 31, 27, 23
——

O§00008 08 [e] o

Homosexuals

Heterosexuals

Androsterone (mg/24 hrs)

Comparing two meansfor independent samples

Suppose we have 2 samples/means/distributions as
follows: {Xl,N(u ,al)} and{XZ,N(u ,02)}. We've
seen before that %o make inference gbout K ~H, we
canuseaT-test for Hy: e = Owith, _(%-Xx)-0

And Cl( ~#) = %= X: £t x SE(X. - X;) SErR=R)

If the 2 samples are independent we use the SE formula

2 2
SE=[s“/n +s°/n ; =Mi -1n -
V11T e with df Mm(n1 J,n2 1

This gives a conservative approach for hand calculation of an
approximation to the what is known as the Welch procedure,
which has a complicated exact formula




Means for independent samples—
equal or unequal variances?

Pooled T-test is used for samples with assumed equal
variances. Under data Normal assumptions and equal
variances of (x1-x2-0)/ SE(X1-x2), where

(n-Ds2+(ny -D)s3
SE=sp,/1/n]_+1/n2;s‘2) = %

is exactly Student’s t distributed with df = (n1+ M= 2)
Heres, is called the pooled estimate of the variance,
sinceit poolsinfo from the 2 samplesto form a

combined estimate of the single variance 0,%= 0,2 =0%.
Another technique is to use the Welch unequal variance method.

We know how to analyze 1 & 2 sample data.
How about if we have than 2 samples—
One-way ANOVA, F-test

One-way ANOV A refersto the situation of having one
factor (or categorical variable) which defines group
membership — e.g., comparing 4 reading methods, effects
of different reading methods on reading comprehension,
data: 50 — 13/14 y/o students tested.

Hypothesesfor the one-way analysis-of-variance F-test

Null hypothesis: All of the underlying true means are identical.
Alternative:  Differences exist between some of the true means.

Increasein Reading Age

Both: 01 32 43 -05 19 33 25 36 04 23 -14 -07
-01 02 04 09 12 14 18 18 24 31

Map Only: 10 -05 10 06 06 10 10 -14 22 36 31 26

Scan Only: 10 33 14 -09 10 00 06

Neither: -03 -13 16 -04 -07 06 -18 -20 -07
——
Map and scan o o0 0ow8 000 & aw oo o
Map only
Scan only
Neither
oo
2 1 0 1 2 3 2 5

Increase in reading age

Increases in reading ages with individua 95% Cls.

From Chance Encounters by C.J Wild and G.A - Seber, © John Wiley & Sons. 2000.

Comparing two means for independent samples

1. How sensitive is the two-sampl e t-test to non-Normality
in the data? (The 2-sample T-tests and CI’ s are even
more robust than the 1-sample tests, against non-
Normality, particularly when the shapes of the 2
distributions are similar and n,=n,=n, even for small n,
remember df= n,+n,-2.

3. Arethere nonparametric aternatives to the two-sample

t;ltestf (Wilcoxon rank-sum-test, Mann-Witney test, equivalent tests, same P-
values.

4. What difference is there between the quantities tested
and estimated by the two-sampl e t-procedures and the
nonparametric equivalent? (Non-parametric tests are based on
ordering, not size, of the data and hence use median, not mean,
for the average. The equality of 2 meansistested and CI(p, - [y ).

Comparing 4 reading methods

Comparing 4 reading methods, effects of different reading
methods on reading comprehension, data: 50 — 13/14 y/o
students tested.

-Mapping: using diagrams to relate main pointsin text;
-Scanning: reading the intro and skimming for an
overview before reading details;

-Mapping and Scanning;

-Neither.

Table below shows increasesin test scores, of 4 groups of
students taking similar exams twice, w/ & w/o using a
reading technique.

Research question: Are the results better for students
using mapping, scanning or both?

—.—
Map and scan o 00 ow8 000 &b aw awo o
——
Map only o 8 § 00 o o
——
€=y ° o o080 o
—.—
Neither
00 o 8w ° °
2 1 0 1 2 3 4
Increase in reading age

One-way Analysis of Variance

Anal ysi s of Variance for Incr easeI F-Saﬁﬁiq I)_D-value I

Source  DF Ss VB F P

ap 3 27.06 9.02 4.45  0.008 > AnovaTable
Error 46 93.35 2.03

Tot al 49 120. 41

I ndividual 95%Cls For Mean
Based on Pool ed StDev
Level N Mean StDev ------ Hmmmmmmaen o — +-

Neither 9 -0.556 1,135 (-------- eemeiin )

= 1,425 -1.0 0.0 1.0 2.0
Show SYSTAT: DATA:
C:\lvo.dir\Research\Data.dir\ReadingTechniquesStatData.sys




Interpreting the P-value from the F-test

(The null hypothesisisthat all underlying true means are identical.)

® A large P-value indicates that the differences seen
between the sample means could be explained simply
in terms of sampling variation.

® A small P-value indicates evidence that real
differences exist between at least some of the true
means, but gives no indication of where the
differences are or how big they are.

® To find out how big any differences are we need
confidence intervals.

Wheredid the F-statistics came from?

® Let’'slook at this example comparing groups. How do
we obtain intuitive evidence against H,? Far separated
sample means + differences of sample means are large
compared to their internal (within) variability! Which of
the following examples indicate group diff’s are “large’ ?

[} ocoo 9| o o o Gp 1
Examplel o o o o | @ o o Gp2
@ oo | o oo o Gp3
om¢oo O p 1
Example 2 oomjo Gp 2
© o o p 3
% p 1
Example 3 P Gp 2
L p 3

T T T T

What are x;, X.., X , €tc.?

' One-Way Anova (Sources of Variability)

between treatments vanablhty J-ind

)

Response

EPEWEA 51U UHED T U

Treaments | _i n

Form of atypical ANOVA table

Typical Analysis-of-Variance Table for One-Way ANOVA

Sum of Mean sum
Source squares df of Squares®  F -statistic P-value
- _g\2 2 _ 2,2
Between 2 %) k-1 Ss fo=5/s, pr(F2 fo)
2 2
Within 2(n-1s N - K Sw

Tota 220 =% Ng -1

*M ean sum of squares = (sum of squares)/df

® The F-test statistic, f,, applies when we have
independent samples each from k Normal
populations, N(u;, 0), note same variance is assumed.

M ore about the F-test

® <% isameasure of variability T n% _X“)z
of sample means, how far apart 2= :
they are. B k-1
® &, reflects the avg. internal Z(n _1)5
Variability within the samples. §N -

Mot ~K

® The F-test statistic, f,, tests Hy by comparing the
variability of the aample means numerator) with the
variability within the samples (denominator).

® Evidence against H, is provided by values of f;
which would be unusually largeif Hy was true.

ANOVA —the WM, GM, CSF volumes
M anual vs. Automated extraction techniques.
We have two ways of computing the WM, GM CSF
volumes for MRI brain data:

B Manual method — extremely labor intensive
B Semi-automated — atlas based

® Ten individua’s MRI volumes were segmented into
the three different tissue types using methods 1 & 2.

® Results arein: c:ivo.dinResearch\Data.dinWM_GM_CSF _tissueMaps.dir

® SYSTAT: ATLAS IVO al.xls (all 3 tissue types)

® DIR: c:\Ivo.dinResearch\Data.dinWM_GM_CSF tissueMaps.dir




What arex;, x.., X {» €tC.2
Do the WM, GM, CSF volumetric measur es!

Clty 1 Gty 2 Clty 2
Conunos @ uallty Frige
CRl 204

Applejuice sales a5z gz
(units per week) — e i
a8e are

Tip am4

i1 azn

Hy: 0= 1= 13 I
628 16

H,: atleast 2 a5 Tis
= an4 rar

means differ ane ius
428 6T 2

Xijs 1<:i<:nj; 1<j<=3 res e
BET aE4

6437 620

ai14 a24

What are x;, X.., X j, etc.?
Sum of squaresfor the Error

Sum of Squares for Error:

s =33, -]

SSE = 10010,774.44) + 10(7,238.61) + 19(8,669.47)
= 506,067.88

What are x;, X.., X j, tc.?
One-Way Design ANOVA Table

Degrees Sum of Mean F
Sour ce of Freedom Sguares Squares Statistic
Treatments k-1 SST MST MST/MSE
Error n-k SS5E MSE
Total n-1 SS(Total)

Note: MST=8ST/{k 1)
MSE=SSE/in-k)

What are x;, X.., X j, etc.?
Sum of Squaresfor treatments (cities)

k

SST =Y n (X, -%)°

i=

88T =20(377.55- 6§13.07¢

+ 20(653.00 - 613.07)

+ 20(608.65 - 613.07)2

=5751223

What are x;, X.., X j, tc.?
F-test

_ MST _ 8STH(k-1)
" MSE  SSE/(n-k)
57,512.23/3-1)

 506,967.8%/(60-3)
=3.23

Test Statistic:

Rejection Region: F=F 1 1 037F g5 25=3.15
Conclusion: Reject Hy

‘ Ftest a$umpt|ons

. Samples arelndependent physically independent
subjects, units, objects are being studies.

2. Sample Normal distributions, especially sensitive
for small n;, number of observations, N(i;, 0).

3. Standard deviations should be equal within all
samples, 0,= 0,= 05=... Op = O- (V2 <=0,/0/<=2)

How to check/validate these assumptions for your data? |
For the reading-score improvement data:
independence is clear since different groups of students are used.
Dot-plots of group data show no evidence of non-Normality.

Sample SD’s are very similar, hence we assume population SD’s are
similar.



Bonferroni Correction | Bonferroni Correction |
1. Customarily the alphalevel is set at 0.05, or, in no more than

1. What if the number of comparisons, a positive ) onein twenty statistical tests the test will show 'something’
| integer number without decimals, is large? while in fact there is nothing. In the case of more than one
Bonferroni correction concerns the question if, in |  statistical test the chance of finding at |east one test

statistically significant due to chance fluctuation, and to
incorrectly declare a difference or relationship to be true,
increases.

the case of more than one test in a particular study,
the alphalevel should be adjusted downward to

consider chance capitalization/accumulation. . . )
2. Infivetests the chance of finding at |east one difference or

2. Thealphalevd isthe chance taken by researchersto relationship significant due to chance fluctuation equals
makeaType| error. The Type| (false-positive) 0.25, or onein four. In ten tests this chance increases to 0.5,
error is the error of incorrectly declaring a which isonein two. Using the Bonferroni method the alpha

. . . level of each individual test is adjusted downwards to ensure
difference, effect or relationship to betrue due to that the overall risk for a number of tests remains 0.05. Even

chance producing a particular state of events. if more than one test is done the risk of finding a difference
or effect incorrectly significant continues to be 0.05.

Bonferroni Correction -
Nonparametric (distribution-free) methods
1. Although thelogic is beautiful, there is a serious drawback. If
the chance of incorrectly producing a difference, making a " .
Type | error, on anindividual test is reduced, the chance of ® less sensitiveto outliers
making a Type |l error isincreased, that no effect or difference g T
is declared, while in fact there is an effect. Thus, by reducing e d9 n,Ot assume any particular distribution for the
for individual tests the chance on type one errors, i.e. the original observations
chance of introducing ineffective medical treatments or i
ineffective improvements; the chance on a Type Il errorsis ® do assume random samples from the populations of
increased, i.e. the chance that effective treatments, effective interest
educational methods, or improved production methods, are not
discovered. So, when is Bonferroni correction used correctly ® measure of center isthe median rather than the mean
and when isit used incorrectly? There are three basic scenarios. ) .
2. Perneger, TV. What is wrong with Bonferroni adjustments. British Medical Journal ® tend to be somewhat |ess effective at detecting
TRV, departures from anull hypothesis and tend to give
3. Sankoh AJ, Hugue MF, Dubey SD. Soi ts on f tly used multipl : ; ;
endpoint aciustments methoc i diinical trials. Statitics n Medicine 1997:16:2529- wider confidence intervals
2542,

Normal Theory Techniques— Paired data
One sample methods
| Two-sided t-tests and t-intervals for asingle mean | | ® Wehave to distinguish between independent and
are related samples because they require different
Hquite robust against non-Normality methods of analysis.

M can be sensitive to presence of outliersin small to

moderate-sized samples ® Paired datais an example of related data.

@ One-sided tests are reasonably sensitive to ® With paired data, we andlyze the differences
skewness, | this converts the initial problem into a one-sample
problem.

® Normality can be checked

mGraphically: Normal quantile—quantile (Q-Q) plots ® Thesign test and Wilcoxon rank-sum test are
m formally, e.g. the Kolmogoroff-Smirnof, nonparamelric alternatives to the one-sample or
Wilk-Shapiro tests. paired t-test.




2-samplet-tests and intervalsfor differences
between means -,

Assume
B statistically independent random samples from the two
populations of interest
Uboth samples come from Normal distributions
B Pooled method also assumesthat 0,=0,
Welch method (unpooled) does not
Two-sample t-methods are
Uremarkably robust against non-Normality
Ucan be sensitive to the presence of outliersin small to moderate-
sized samples
JOne-sided tests are reasonably sensitive to skewness.
B The Wilcoxon or Mann-Whitney test is a nonparametric
dternative to the two-sample t-test.

More than two samples and the F-test

| ® For testing whether more than two means are

different we use the F-test.

® The method of comparing several meansisreferred
to asaone-way analysis of variance.

® Theformal null hypothesis (H,) tested isthat all k
(k= 2) underlying population means 4 are
identical.

® The aternative hypothesis (H,) isthat differences
exist between at least some of the z4's.

The F-test cont.

Assumptions of the F-test cont.

The numerator of the F-statistic f, reflects how far
apart the sample means are. The denominator
reflects average variability within the samples

® Evidence against H, is provided by
B sample means that are further apart than expected from the
internal variability of the samples.
M |arge values of the F-statistic.

® A small P-value demonstrates evidence that
differences exist between some of the true means

B To estimate the size of any differences we use confidence
intervals

® Assumptions of the F-test
B independent samples;
B Normality;
M equal population standard deviations.

® Thetest
M isrobust to non-Normality
B sreasonably robust to differences in the standard deviations
when there are equal numbers in each sample, but not so robust
if the sample sizes are unequal

B can be used if the usual plots are satisfactory and the largest
sample standard deviation is no larger than twice the smallest

B jsnot robust to any dependence between the samples.

2-Way ANOVA analysis

2-Way ANOVA analysis

@ Contrasts
® Multiple comparisons for means

® Multiple comparisons for pair-wise
comparisons

® Simultaneous confidence intervals

@ Sample size computations

® Definition: In the one-way ANOV A layout, alinear
function of the sample means iy, Wy , ..., U, iS

0=Cy + Cly+ Gyt .. +Cl,




2-Way ANOVA analysis

Sampling distribution of linear function of sample
means: Let Y1,Y2,Y3,..., Yk, bethe means of
independent random samples of sizesn,, n,, ng,..., Ny,
with mean Yy, Yy, ..., 1, ad variances 6,2, 0;2,..., G2,

Then | et 8 =c +c,;u;+ G+ ... +C M,

where ¢, C,,..., C,, are known constants and
0 =co+cYq +CoYo +...+ Yy,

The sampling distribution of fis

2-Way ANOVA analysis

® | nference about linear function of population means:
N =n;+ ny+...+n,

CI’s: 100(1-a)% CI(8), when common variances, O.

’9 ~t(N-k,a/2)05 SO<O+YN-k,a/2)05

where: 6= Co +C1Yp +CoYo +...+ ¢ Y,

2 2 2
5= @ 4+%2, & x Mean_Sasin
6 n N N

2-Way ANOVA analysis

® Examplelinear function of population means:

The following data come from a study investigating the
fraction of antibioticsinjected into the bloodstream
which bind to serum proteins. (Bovine serum was used.)

Antibiotic Binding Percentage | Sample mean
Penicillin G 29.624.328.532 28.6
Tetracyclin 27.332630.834.8 (314
Streptomycin 5.86.21183 7.8
Erythromycin 21.617.418.319 19.1

Chloramphenicol |29.232.8 25 24.2 27.8

2-Way ANOVA analysis

® Sampling distribution of linear function of sample means:
6 =Cg+0Yg +CoYo +...+Ck Yk,
Mean: /Je =

2.2 2.2 2.2
' 2_9% %%, | %%
Variance: G@ n n oo

If target popul’ s are Normal, fis Normal, too.

2-Way ANOVA analysis

® | nference about linear function of population means:

Hypothesis Testing: H,: 6=6, can be tested by:

6-6
t:—o~t _
a_}\ (N k,a/2)

6

2-Way ANOVA analysis

® Examplelinear function of population means:

In the study, n; = 20 independent samples of bovine serum
were used. These were assigned at random to one of 5
antibiotic treatments in such away that there would be
n=4 samples for each antibiotic. This experimental
design is caled a completely randomized design (CRD).

Theideaisto compare the variability among these
treatment means: (28.6; 31.4; 7.8; 19.1; 27.8)




2-Way ANOVA analysis

|| ® Examplelinear function of population means:

|| For the binding fraction data, consider atest of the equality

of the binding fractions of thefirst two antibiotics:
Penicillin and Tetracyclin. This can be carried out by
estimating the appropriate simple contrast:

O=py~ Ko = (1)t (=1) it (0)ps+(0) U+ (0) s

0=28.6 -31.4;

Source d.f. | Sum Square |Mean Square |F
ANOVA |Treatments 4 1481 370 41
Table

Error 15 136 9.05

Total 19 1617

2-Way ANOVA analysis

|| ® Examplelinear function of population means:

0=~ =L+ (= D)ie+ (O)ps*(O) K +(O)ps
0=28.6-31.4; 8"=-2.8; TestingH,: 6=6,=0

2 2 2
6. - (Lghj&
o \m n

N

2 2
Jx Mean_ﬁmhin = \/[];1 + %}.05 =2.127

9-6 ANOVA Table
= G4 ’ Source d.f. | Sum Square | Mean Square | F
t~t20-4008/2 || | redments) 4 1481 370 4

-28 Error 15 136 9.05
t=—"7-=-132

2127 Total 19| 1617 ]

2-Way ANOVA analysis

® Definition: In the one-way ANOV A layout, alinear
function of the group means ,, W, , ..., K, of theform

0 = Ccypy+ Collpt ... +C
where  Cy+Cyt...4C = 0, iscalled acontrast.

® Definition: Ck’s are called coefficientsin the contrast.

® Definition: Contrastsin which only two of the
coefficients are nonzero (and are often —%2; +Y%) are
called simple contrasts.

Orthogonal contrasts

® Definition: Suppose we have 2 contrasts (n,z=n,=...=n,):
61 =Cyph +Copp + ...+ Cpfin

02 = dypy +dppp +...+dpip
The two contrasts 8, and 6, are mutually
orthogonal if the products of their coefficients
sumto zero: ¢y + Codso +...+Crd =0
® Consider severa contrasts, say k of them:
0,,0,,..., 6. The set ismutually orthogonal if al
pairs are mutually orthogonal .

2-Way ANOVA analysis

Definition: An estimator for a contrast of
interest can be obtained by substituting
treatment group sample means Vi for treatment

population means ; in the contrast :

0 =c1yp +C¥2 +...+ Cn¥n
® Example._

=y1-Y2, for pg—puo=0.

Orthogonal contrasts

® Examples: Which of these are orthogonal ?
(-110,00) and (0,0,-110)
(1,-1/2,-1/2,0,0) and (0,0,0,-11)
(-11,0,0,0) and (0,-110,0)




Orthogonal contrasts - importance

@ \Why are orthogonal contrasts of interest?

oLet{6," 0, ..., 6. beasetof (k-1)
orthogonal contrasts (comparisons) between k
sample means and let SST be the treatment-sum-
of-squares (between variability). Then

SST =596, +S§6,"] +...+ S§6,,"]
®|.E. between-treatment-sum-of-squaresis
subdivided (decomposed) into (k-1) terms which

each provide variability info about observed diff’s
between 2 specific subgroups of treatment means.

AT 251

Orthogonal contrasts - importance

® SST = S50, + S§6,"] +...+ SY6, ;"]

®|.E. between-treatment-sum-of-squaresis
subdivided (decomposed) into (k-1) terms which
each provide variability info about observed diff’s
between 2 specific subgroups of treatment means.

Ewhere R 62
S§el=——— 3
a,%2, +%

Contrasts

® Sums of squares for contrasts

® Multiple Comparisons
W Scheffe
EBonferroni
ETukey
Present from: ANOVA_Ch9.pdf

PDF_lectures\

Orthogonal contrasts - importance

® \Why are orthogonal contrasts of interest?

©® Remember that the whole variability of the datais
separated into Within & Between treatment
variabilities. If there are k-treatments, and (k-1)
orthogonal contrasts the SST (between) variance
can be expressed in terms of the individual
variances of the (k-1) contrasts. And you can not
have more than k orthogonal contrasts explaining
the SST variance, since the following equation
actually would introduce a relation between them

SST = S§6,"] + S§6,"] +...+ S§6,,"]  (+S§6,])

Orthogonal contrasts - importance

@ SST = S50, + S§6,"] +...+ SY6, ,"]

2 NOTE:
41= G SS(8") is scale
S I] > 2 2 IndI?pelndent—
multiplying
Q + & +  + Ck all coefficients by

aconstant leaves
nl n2 nk SS(6") unchanged!!!

® And Statistics for testing significance (67!=0) is

2 _ S54]
c,df 1=1,df 2=n-k MSE

2-Way ANOVA

®Factorial designs: study designs where responses
are measured at different combinations of levels of one
or more experimental factors.

OEX. Treatments{A, B, C} withlevels

{2y, &,...a}, {by, by,... by} and {c;, C,,... ¢},
respectively — axbxc factorial experiment.

O EX. { H=Hemisphere, T=TissueType, M=Method}
for the human brain manual vs. automatic
delineations. H={L,R}; T={ WM, GM, CSF};
M={Manual, Auto}.




2-Way ANOVA
@3 types of Factorial EffeCtSZsimple,interaction,main.

® EX. { H=Hemisphere, M=Method} for the human
brain manual vs. automatic delineations.
H={L,R}; M={Manual, Auto}.

® Simple effects: Let y; denote the expected
response to treatment h;m;. Simple effect of H at
level m, of M isdefined by: m[HM ;1= £, — 4.
Thisis the amount of change in the expected

response when the level of H is changed from

h, to h,, and thelevel of M isfixed at m,.

2-Way ANOVA

® EX. {H=Hemi, M=Method} for the human brain manual vs.
automated delineations. H={L,R}; M={Manual, Auto}.

® Simple effects: Let y; denote the expected
response to treatment h;m;. Simple effects are:

Level of — |-Factor M Simple Effects of M
Level of H m, m, HHM]
h; Hi M HMH M=, -ty

H, Hxn M HH M=, —
Simple effects MHM ] = | (HM ] =
ot oy =ty | Mo~y

Main effects

® Thereare 2 waysto find a main effect
B First, inspect thetable

B |f the values of the marginal means differ acrosslevels of
afactor, then thereisamain effect of that factor

The marginal means differ across levels
of Factor A: Main effect for Factor A

2-Way ANOVA

® |nteraction effects: (f{HM]=1/2(L{HM ,]-t{HM ,]).

® |dentity: f{HM] == V/2(t{H ,M]-L{H M]).

® There's no interaction between H & M €=>
HMHMI=0. | tflHM]| measures the intensity
(degree) of interaction.

® Testing for interactions: H,: f{HM]=0vs. H,:
HHM]!=0 E.Q. l{HM = Yapbo-rofty - Yoy + Yoldys;

® This contrast is estimated by:

QO =N [HMI= %Y, -6Y Ty -WaY 5 + 1Y
[ S Ry m—

2-Way ANOVA

Main effects: g{H] = Y(U{HM J+{HM ]) =
=Yallyy=/oh o Yoo~ Yophs;

® Similarly: Z{M] = Ya(t{H,M]+g{H,M]) =
=Yalloo ol 2l Vophs;

® /[H] isthe avg. change in the expected response
(population mean response) when the level of M
goes from Manual - Auto.

® Different means across the levels of afactor are referred
to asthe main effect of that factor

Inspect thetable

‘ ® |f the values of the marginal means do not differ across
levels of afactor, then there is no main effect of that factor

No Differences across
the marginal means of Factor B:
No main effect for Factor B

10



Plot the data— M ain Effects

® The second way to detect a main effect isto plot the
data
B X axis = thelevels of afactor
MY axis = the observed data

® Plot the data 2 ways

MW To find amain effect of Factor A,
plot Factor B on the X axis

MW To find amain effect of Factor B,

plot Factor A onthe X axis

One main effect: Factor A

Main Effect for Factor A

90

80

medium
Levels of Factor B

No main effect: Factor B

No Main Effect

for Factor B [~@—high medium —s— low
90

80
70
so|{ No Differences?

Eso No B-factor main effect

o

high low
Levels of Factor A

Plot thedata

® To find amain effect of
Factor A, plot Factor B
on the X axis

® Y axis = the observed
data

Main Effect for Factor A?

medium
Levels of Factor B

low high

Plot the data— M ain Effects

Main Effect for Factor B? 3 q
® To find amain effect of

90 Factor B, plot Factor A
80 on the X axis
70

o0 ® Y axis = the observed

data

In class exercise

® |sthere amain effect in these data?
B |nspect the table
B Plot the data 2 ways




Interaction Interaction

® When the effect of one factor depends on the
different levels of a second factor, then thereisan
inter action between the factors

® When the effect of one factor depends on the
different levels of a second factor, then thereisan
interaction between the factors

M In this example, the effect of factor A at the low level of B
is50. Itis 30 at the medium level of B and only 10 at the
high level of B.

Plot the data — I nteraction Effects | nteracti
nteraction
Main Effect for Factor A7 1l @ To find amain effect of @ \When the effect of one factor depends on the
%0 F?Ctz:t A a“dft'?;:t A different levels of asecond factor, then thereis an
80 Interaction o ors A A
o and B, plot Factor B on interaction between the factors
E :g the X axis
2 ;‘g ® Y axis = the observed
2 data
B ® Data e
T ow medium high B Similarly, the effect of factor B at the low level of A is60
Levels gtiastont - but isonly 20 at the high level of A.

Interaction

Pot the data — I nteraction Effects

Main Effect for Factor B? N p B g s
® To find amain effect of ® |f thelinesare NOT parallél, thereSan interaction
%0 Factor B and the
80 interaction of Factors A
70 and B, plot Factor A on ) ) ) )
60 N Interaction & Main Effect for Interaction & Main Effect for
E. the X axis Factor A Factor B
90 90
2 o ® Y axis = the observed 80 80 e
% data . ZZ / E Zg
0] ® Data g g
high
CFactorB

low medium

Levels of Factor B

high low high

Levels of Factor A
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No I nteraction

® |f thelinesare parallel, thereisNO interaction

Analysis of 2x2 Factorial Design

® First test if thereisinteraction between the 2 factors:
B YESthereis statistically significant interaction >
examine separately the simple effects for each factor;
TEST: H,: ffHM]=0 vs. H.: f{HM] != 0, where the
interaction effect is measured by the contrast:
N HM]=%Y o oY 1, oY 5 + Y
UIf thereisinteraction present (effects of Hemi on

the M ethods are significant) =» study the simple
effects of the M ethods on each of the2 Hemi’s

HHM]=Y =Yy M HMI=Y =Y 5

Orthogonal contrasts

® Definition: Suppose we have 2 contrasts:
61 =Cipn +Copp + ...+ Cpfin
G2 =dyy +dppp +...+dpsiy
The two contrasts 6, and 8, are mutually
orthogonal if the products of their coefficients
Sumto z&ro: ¢, gy +cpdp +...+cpdp =0
® Consider severd contrasts, say k of them:

6., 0,,..., 6, Thesetismutually orthogonal if &l
pairs are mutually orthogonal.

No interaction

@ |n this example, the effect of factor A is always 30

® The effect of factor B isaways 10 from low to
medium and aways 10 from medium to high

Analysis of 2x2 Factorial Design

® First test if thereisinteraction between the 2 factors:
W |f there' s statistically significant interaction >
examine separately the simple effects for each factor;

W |f thereis N0 inter action make inference about each
of the 2 main effects, using the following contrasts.

L H] = Yo [HM I+ [HM D) = 96Y Y Y Y
2 IMIZUN HMIHAHIMT) =3 Y 00 Y Y %Y g

Analysis of 2x2 Factorial Design

2 2 2

&G, L%, 2
_3_90

== ~tN-ka/2)

94

" Where § = Cii + Cofly + ...+ G, and

6=c%+cYp +..+ Y

B Two-sded 0=

B Aswe ve seen: \/[
T-test

t

13



Analysis of 2x2 Factorial Design

® How dowe actually test these contrastsfor significance?
B Two-sided T-test E.Q. to
B Onesided Ftest =Yy +CyoYy +...+ C Y

2 2 2
aE (01+%+"_+Ck]xMean_s%Mhm

. m Nk

é 2

F=ti=| =
94

Fe~ I:(df _num=1, df deno=N-k-1, a)

ANOVA of 2x2 Factorial Design

® Thesignificance of these contrasts? Use the F-test:

B Effects coding used for categorical variables in
nodel .~ Categori cal val ues encountered  during
processing are:

B METHOD(2 | evels); HEM SPH(2 | evels); Dep Var: VALUE
Lasasl Squanes Mians

Liagst Squaas Meaia

S0E0E.0 ngran ®
Lrns % ETasi o | >
TS | < SETIOD ' §
L ER > a0 g |
L] Lol A5a0a 4 |
D 38T

i 2 ) 12

HEMISFH No Interaction =»
Study Main Effects

KETHOU

ANOVA of 2x2 Factorial Design

® How about if ther € s significant inter action between

treatments?

Anal ysis of Variance
[ ]
B Source Sum of - Squar es df Mean-Square F-ratio P
]
W SUBJECTNO 7.41024E+08 9 8.23360E+07 2.15937 0.05517
B T| SSUETYP 3. 36033E+10 2 1.68016E+10 440.64521 0.0
B SUBJECTNO
B *T| SSUETYPE

1.54916E+09 18 8.60644E+07 2.25715 0. 02354

Error 1. 14389E+09 30 3.81296E+07

ANOVA of 2x2 Factorial Design

° Thesuqnmcance of these contrasts? Use the F-test:
Effects coding used for categorical variables in

nodel . Cat egori cal val ues encountered  during
processing are:

H METHOD (2 levels) 1, 2

B HEM SPH (2 |l evel s) 1, 2

B Dep Var: VALUE N 119
Anal ysi s of Variance

Sour ce Sumof-Sq’s df Mean-Square F-ratio P

METHOD 2.97424E+08 1 2.97424E+08 0.39813 0. 52931
HEM SPH 8. 65479E+06 1 8.65479E+06 0.01159 0. 91447
METH*HEM 7. 11598E+06 1 7.11598E+06 0.00953 @
Error 8.59114E+10 115 7.47056E+08 Not-Signif.Interaction

- Study Main eff’s

ANOVA of 2x2 Factorial Design

® How about isther€e ssignificant inter action between

treatments?

B |’ve conpleted UNSCI ENTIFI C study (knowing I'Ill get
significant interaction) as follows:

For _the sane data set:

Cat egori cal values are:
SUBJECT NO (10 | evel s)
1, 2, 3, 4 5 6, 7, 8 9, 10
TI SSUETYPE (3 | evels)
1, 2, 3
Dep Var: MANUAL N: 60

ANOVA of 2x2 Factorial Design

® How about isthere'ssignificant interaction between
treatments? (examine separately the simple effects for each factor)

WMHMIEY =Y i HMI=Y -V, LS- Mean SE N
SUBJECTNO=1 TI SSUETYPE=1 68777.00000  4366. 32845
SUBJECTNO=1 TI SSUETYPE=2 93775. 00000 4366. 32845
SUBJECTNO=1 TI SSUETYPE=3 21443. 00000 4366. 32845
SUBJECTNO=2 Tl SSUETYPE=1 61799.50000  4366. 32845
SUBJECTNO=2 TI SSUETYPE=2 74314. 00000 4366. 32845
SUBJECTNO=2 TI SSUETYPE=3 16831. 00000 4366. 32845
SUBJECTNO=3 Tl SSUETYPE=1 55413.00000  4366. 32845

E R EEEERN
NNNNDNNN

SUBJECTNO=10 TI SSUETYPE=1 51925.50000 4366. 32845 2
SUBJECTNO=10 TI SSUETYPE=2 79457.50000  4366. 32845 2
B SUBJECTNO=10 TI SSUETYPE=3 27190.50000 4366.32845 2
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