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UCLA  STAT 251
Statistical Methods for the Life and 

Health Sciences

�Instructor:   Ivo Dinov, 
Asst. Prof. In Statistics and Neurology

University of California, Los Angeles,  Winter 2003
http://www.stat.ucla.edu/~dinov/
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Multiple Regression Analysis
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Correlation Coefficient 

Correlation coefficient (-1<=R<=1): a measure of linear 
association, or clustering around a line of multivariate 
data. 

Relationship between two variables (X, Y) can be 
summarized by: (µX, σX), (µY, σY) and the correlation 
coefficient, R. R=1, perfect positive correlation (straight 
line relationship),   R =0, no correlation (random cloud 
scatter), R = –1, perfect negative correlation.  

Computing R(X,Y): (standardize, multiply, average)
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Correlation Coefficient 

Example:
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Correlation Coefficient 

Example:
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Correlation Coefficient - Properties

Correlation is quasi-invariant w.r.t. linear transformations of X or Y
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Correlation Coefficient - Properties

Correlation is Associative

Correlation measures linear association, NOT an association in 
general!!! So, Corr(X,Y) could be misleading for X & Y related in 
a non-linear fashion.
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Correlation Coefficient - Properties

1. R measures the extent of
linear association between
two continuous variables. 

2. Association does not imply
causation - both variables
may be affected by a third
variable – age was a 
confounding variable.
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Fitting a line through the data

(a)  The data (b)  Which line?

Show the Regression-Line Simulation Applet
RegressionApplet.html
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The idea of a residual or prediction error

yi
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^

Data point

Trend

(x  ,i y  )i

Predicted

Observed
Residual     u  =i

^y   -i yi

STAT 251, UCLA, Ivo DinovSlide 12

Least squares criterion:  Choose the values of the 
parameters to minimize the sum of squared 
prediction errors (or sum of squared residuals),

(yi − ˆ y i)
2

i =1

n

�

Least squares criterion
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Least-squares line: ˆ y = ˆ β 0 + ˆ β 1x

The least squares line
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Prediction
error

ith data point
(x  ,i y  )i

Least-squares line

Choose line with smallest
sum of squared
prediction errors

Min   Σ

Its parameters are denoted:

   Intercept:

   Slope:
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^

(c)  Prediction errors
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Least-squares line: ˆ y = ˆ β 0 + ˆ β 1x

The least squares line
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Computer timings data – linear fit

10 20 30 40 50 60
5

10

15

20

X = Number of terminals

3 + 0.25x

7 + 0.15x

(Sum sq’d err = 37.46)

(Sum sq’d err = 90.36)

Figure 12.3.2 Two lines on the computer-timings data.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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Adding the least squares line
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y  =     +     x^
0

^
1
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^
0

Here       = 3.05,       = 0.26^
0

^
1

(x, y)

Some Minitab regression output
The regression equation is
timeper = 3.05 + 0.260 nterm
Predictor Coef ...
Constant 3.050 ...
nterm 0.26034 ...

Figure 12.3.3 Computer-timings data with least-squares line.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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Example – Method/Hemi/Tissue/Value

1. C:\Ivo.dir\Research\Data.dir\WM_GM_CSF_tissueMaps.dir

2. SYSTAT: � regression Value = c0+ c1M+ c2H+ c3T

3. Results:
Effect Coefficient SE t P(2 Tail)

CONSTANT 1.02231E+05 9087 11.24911 0.00000

METHOD -3703.77667 3635 -1.01887 0.31038 ���� Insignif
TISSUE -22623.47875 2226 -1.01E01 0.00000
HEMISPH -2.13667 3635 -0.00059 0.99953

Effect Coeff. Lower < 95%> Upper
CONSTANT 1.02231E+05 84231.33157 1.20231E+05
METHOD -3703.77667 -10903.69304 3496.13971
TISSUE -22623.47875 -27032.50908 -18214.44842
HEMISPH -2.13667 -7202.05304 7197.77971
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� We extend the concept of simple linear regression as 
we investigate a response y which is affected by 
several independent variables, x1, x2, x3,…, xk. 

� Our objective is to use the information provided by the 
xi to predict the value of y.

Introduction – Multiple Regression Analysis
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� Let y be a student’s college achievement, measured by 
his/her GPA. This might be a function of several 
variables:
� x1 = rank in high school  class
� x2 = high school’s overall rating
� x3 = high school GPA
� x4 = SAT scores

� We want to predict y using knowledge of x1, x2, x3 and 
x4.

Example
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� Let y be the monthly sales revenue for a company. This 
might be a function of several variables:
� x1 = advertising expenditure
� x2 = time of year
� x3 = state of economy
� x4 = size of inventory

� We want to predict y using knowledge of x1, x2, x3 and 
x4.

Example

STAT 251, UCLA, Ivo DinovSlide 21

� How well does the model fit?

� How strong is the relationship between y and the 
predictor variables?

� Have any assumptions been violated?

� How good are the estimates and predictions?

We collect information using n observations on the 
response y and the independent variables, x1, x2, x3, 
…xk.

We collect information using n observations on the 
response y and the independent variables, x1, x2, x3, 
…xk.

Some Questions
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��y = y = ββββββββ00000000+ β+ β+ β+ β+ β+ β+ β+ β11111111xx11 + + ββββββββ22222222xx22 +…+ +…+ ββββββββkkxxkk ++ εεεεεεεε
� where

� y is the response variable you want to predict.

��ββββββββ00000000, β, β, β, β, β, β, β, β11111111, β, β, β, β, β, β, β, β22222222,..., ,..., ,..., ,..., ,..., ,..., ,..., ,..., ββββββββkk are unknown constants

��xx11111111, , , , , , , , xx22222222,..., ,..., ,..., ,..., ,..., ,..., ,..., ,..., xxkk are independent predictor variables, 
measured without error.

The General Linear Model
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� The deterministic part of the model, 

��E(y) = E(y) = ββββββββ00000000+ β+ β+ β+ β+ β+ β+ β+ β11111111xx11 + + ββββββββ22222222xx22 +…++…+ ββββββββkkxxkk ,,

�describes average value of y for any fixed values 
of xx11111111, , , , , , , , xx22222222,...,,...,,...,,...,,...,,...,,...,,..., xxkk . The population of measurements 
is generated as y deviates from the line of meansline of means
by an amount ε. ε. ε. ε. ε. ε. ε. ε. We assume
��ε ε ε ε ε ε ε ε are independent
�Have a mean 0 and common variance σ2 for any set 

x1, x2,...,xk ..
�Have a normal distribution.

The Random Error
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�Consider the model E(y) = β0+ β1x1 + β2x2

�This is a first order model first order model (independent 
variables appear only to the first power).

� β0 = yy--interceptintercept = value of E(y) when x1=x2=0.

� β1 and β2 are the partial regression partial regression 
coefficientscoefficients—the change in y for a one-unit 
change in xi when the other independent when the other independent 
variables are held constantvariables are held constant.

�Traces a plane plane in three dimensional space.

Example
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�The best-fitting prediction equation is calculated 
using a set of n measurements (y, x1, x2 ,… xk) 
as

�We choose our estimates b0, b1,…, bk to 
estimate β0, β1,…, βk to minimize

The Method of Least Squares
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� A computer database in a small community contains the 
listed selling price y (in thousands of dollars), the 
amount of living area x1 (in hundreds of square feet), 
and the number of floors x2, bedrooms x3, and 
bathrooms x4, for n = 15 randomly selected residences 
currently on the market. 

………………

34221209.915

23110116.53

22110118.52

1

x4

2

x3

1

x2

6

x1

69.01

yProperty
Fit a first order 
model to the data 
using the method 
of least squares.

Fit a first order 
model to the data 
using the method 
of least squares.

Example
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�The first order model is 
E(y) = ββββ0000+ β+ β+ β+ β1111x1 + ββββ2222x2 + ββββ3333x3 + ββββ4444x4

fit using Splus with the values of y and the 
four independent variables entered into 
five columns of the output worksheet. 

Example

Regression Analysis: ListPrice versus SqFeet, NumFlrs, Bdrms, Baths
The regression equation is
ListPrice = 18.8 + 6.27 SqFeet - 16.2 NumFlrs - 2.67 Bdrms + 30.3 Baths

Predictor Coef SE Coef T P
Constant 18.763 9.207 2.04 0.069
SqFeet 6.2698 0.7252 8.65 0.000
NumFlrs -16.203 6.212 -2.61 0.026
Bdrms -2.673 4.494 -0.59 0.565
Baths 30.271 6.849 4.42 0.001

Regression equation

Partial regression 
coefficients
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� The total variation in the experiment is measured by the total total 
sum of squaressum of squares:

The Total SSTotal SS is divided into two parts:
�� SSRSSR (sum of squares for regression): measures 

the variation explained by using the regression 
equation.

�� SSESSE (sum of squares for error): measures the 
leftover variation not explained by the 
independent variables.

2)yySyy −�== (  SS Total

The Analysis of Variance
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Total df = Mean Squares
Regression df = 
Error df = 

n -1

k

n –1 – k = n – k -1

MSR = SSR/k

MSE = SSE/(n-k-1)

Total SSn -1Total

SSE/(n-k-1)SSEn – k -1Error

MSR/MSESSR/kSSRkRegression

FMSSSdfSource

The ANOVA Table
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Another portion of the SYSTAT printout 
shows the ANOVA Table, with n = 15 
and k = 4. 

S = 6.849 R-Sq = 97.1% R-Sq(adj) = 96.0%

Analysis of Variance
Source DF SS MS F P
Regression 4 15913.0 3978.3 84.80 0.000
Residual Error 10 469.1 46.9
Total 14 16382.2

Source DF Seq SS
SqFeet 1 14829.3
NumFlrs 1 0.9
Bdrms 1 166.4
Baths 1 916.5

MSE

Sequential Sums of squares:
conditional contribution of 
each independent variable 
to SSR given the variables 
already entered into the 
model.

Sequential Sums of squares:
conditional contribution of 
each independent variable 
to SSR given the variables 
already entered into the 
model.

The Real Estate Problem
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• The first question to ask is whether the regression model 
is of any use in predicting y. 

• If it is not, then the value of y does not change, 
regardless of the value of the independent variables, x1, 
x2 ,…, xk. This implies that the partial regression 
coefficients, β1, β2,…, βk are all zero.

zeronot  is  oneleast at  :H
 versus0...:H

ia

210

β
βββ ==== k

Testing the Usefulness of the Model
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� You can test the overall usefulness of the model 
using an F test. If the model is useful, MSR will be 
large compared to the unexplained variation, MSE. 

0...:H
  toequivalent is  predictingin  useful is model:H test To

210

0

==== k

y
βββ

. 1- and with FF if HReject 

 
MSE
MSRF :StatisticTest 

0 dfk-nk α>

=

The F Test

STAT 251, UCLA, Ivo DinovSlide 33

SS Total
SSR

:iondeterminat oft coefficienMultiple

2 =R

Measuring the Strength of the Relationship

• If the independent variables are useful in 
predicting y, you will want to know how well 
the model fits. 

• The strength of the relationship between x and 
y can be measured using:
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Measuring the Strength of the Relationship

• Since Total SS = SSR + SSE, R2 measures
�the proportion of the total variation in the 

responses that can be explained by using the 
independent variables in the model.

�the percent reduction the total variation by 
using the regression equation rather than just 
using the sample mean y-bar to estimate y.

)1/()1(
/

MSE
MSR and    

SS Total
SSR 2

2
2

−−−
===

knR
kRFR
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0:H  versus0:H a0 ≠= ii ββ

)SE(
0 :statisticTest 
i

i

b
bt −=

which has a t distribution with error df = n – k –1.

Testing the Partial Regression Coefficients

• Is a particular independent variable 
useful in the model, in the presence of all 
the other independent variables? The test 
statistic is function of bi, our best 
estimate of βi. 
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Is the overall model useful in predicting list 
price? How much of the overall variation in 
the response is explained by the regression 
model?

S = 6.849 R-Sq = 97.1% R-Sq(adj) = 96.0%

Analysis of Variance
Source DF SS MS F P
Regression 4 15913.0 3978.3 84.80 0.000
Residual Error 10 469.1 46.9
Total 14 16382.2

Source DF Seq SS
SqFeet 1 14829.3
NumFlrs 1 0.9
Bdrms 1 166.4
Baths 1 916.5

F = MSR/MSE = 84.80 with 
p-value = .000 is highly 
significant. The model is very 
useful in predicting the list 
price of homes. 

F = MSR/MSE = 84.80 with 
p-value = .000 is highly 
significant. The model is very 
useful in predicting the list 
price of homes. 

R2 = .971 indicates that 
97.1% of the overall 
variation is explained by 
the regression model.

The Real Estate Problem
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� In the presence of the other three independent 
variables, is the number of bedrooms significant in 
predicting the list price of homes? Test using α = .05.

The Real Estate Problem

Regression Analysis: ListPrice versus SqFeet, NumFlrs, Bdrms, Baths
The regression equation is
ListPrice = 18.8 + 6.27 SqFeet - 16.2 NumFlrs - 2.67 Bdrms + 30.3 Baths

Predictor Coef SE Coef T P
Constant 18.763 9.207 2.04 0.069
SqFeet 6.2698 0.7252 8.65 0.000
NumFlrs -16.203 6.212 -2.61 0.026
Bdrms -2.673 4.494 -0.59 0.565
Baths 30.271 6.849 4.42 0.001

To test H0: β3 = 0, the test statistic is t
= -0.59 with p-value = .565. 

The p-value is larger than .05 and H0 is 
not rejected. 

We cannot conclude that number of 
bedrooms is a valuable predictor in the 
presence of the other variables.

Perhaps the model could be refit 
without x3.
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The strength of a regression model is 
measured using R2 = SSR/Total SS. 
This value will only increase as 
variables are added to the model.

• To fairly compare two models, it is 
better to use a measure that has been 
adjusted using df:

   100% 
)1SS/( Total

MSE1)adj( 2
��
�

�
��
�

�
−=

n-
R

Comparing Regression Models
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� ε ε ε ε are independent
� Have a mean 0 and common variance σ2 for 

any set x1, x2,...,xk .
� Have a normal distribution.

�� ε ε ε ε ε ε ε ε are independent
� Have a mean 0 and common variance σ2 for 

any set x1, x2,...,xk ..
� Have a normal distribution.

•Remember that the results of a regression 
analysis are only valid when the necessary 
assumptions have been satisfied.

Checking the Regression Assumptions
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1. Normal probability plot of residuals
2. Plot of residuals versus fit or 

residuals versus variables

1. Normal probability plot of residuals
2. Plot of residuals versus fit or 

residuals versus variables

•We use the same diagnostic tools used in 
Chapter 11 and 12 to check the normality 
assumption and the assumption of equal 
variances.

Diagnostic Tools
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� If the normality 
assumption is 
valid, the plot 
should resemble 
a straight line, 
sloping upward 
to the right. 

� If not, you will 
often see the 
pattern fail in 
the tails of the 
graph.

� If the normality 
assumption is 
valid, the plot 
should resemble 
a straight line, 
sloping upward 
to the right. 

� If not, you will 
often see the 
pattern fail in 
the tails of the 
graph.

Normal Probability Plot
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� If the equal 
variance 
assumption is 
valid, the plot 
should appear as 
a random scatter 
around the zero 
center line. 

� If not, you will 
see a pattern in 
the residuals.

� If the equal 
variance 
assumption is 
valid, the plot 
should appear as 
a random scatter 
around the zero 
center line. 

� If not, you will 
see a pattern in 
the residuals.

Residuals versus Fits
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• Once you have
� determined that the regression line is useful
� used the diagnostic plots to check for 

violation of the regression assumptions.
• You are ready to use the regression line to

� Estimate the average value of y for a given 
value of x

� Predict a particular value of y for a given 
value of x.

Estimation and Prediction
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• Enter the appropriate values of x1, x2, …, xk
in SoftPackage to calculate

• and both the confidence interval and the 
prediction interval.

• Particular values of y are more difficult to 
predict, requiring a wider range of values 
in the prediction interval. 

kk xbxbxbby ++++= ...ˆ 22110

Estimation and Prediction
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� Estimate the average list price for a home with 1000 
square feet of living space, one floor, 3 bedrooms 
and two baths with a 95% confidence interval. 

Predicted Values for New Observations
New Obs Fit SE Fit 95.0% CI 95.0% PI
1 117.78 3.11 ( 110.86, 124.70) ( 101.02, 134.54)

Values of Predictors for New Observations
New Obs SqFeet NumFlrs Bdrms Baths
1 10.0 1.00 3.00 2.00

We estimate that the average list 
price will be between $110,860 
and $124,700 for a home like 
this.

We estimate that the average list 
price will be between $110,860 
and $124,700 for a home like 
this.

The Real Estate Problem
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Using Regression Models
When you perform multiple regression analysis, use a step-

by step approach:
1. Obtain the fitted prediction model.
2. Use the analysis of variance F test and R 2 to determine 

how well the model fits the data.
3. Check the t tests for the partial regression coefficients to 

see which ones are contributing significant information in 
the presence of the others.

4. If you choose to compare several different models, use 
R 2(adj) to compare their effectiveness.

5. Use diagnostic plots to check for violation of the 
regression assumptions.
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� When k = 2, the model is quadraticquadratic:

εββββ +++++= k
k xxxy ...2

210

• A response y is related to a single independent 
variable x, but not in a linear manner. The 
polynomial model is:

• When k = 3, the model is cubiccubic:

εβββ +++= 2
210 xxy

εββββ ++++= 3
3

2
210 xxxy

A Polynomial Model
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� A market research firm has observed the sales (y) as a 
function of mass media advertising expenses (x) for 10 
different companies selling a similar product.

Since there is only one 
independent variable, you 
could fit a linear, quadratic, or 
cubic polynomial model. 
Which would you pick?

Since there is only one 
independent variable, you 
could fit a linear, quadratic, or 
cubic polynomial model. 
Which would you pick?

23.0

6.0

9

5.3

4.0

5

5.0

3.0

4

2.7

2.5

3

2.6

1.6

2

14.8

5.0

7

9.1

4.6

6

17.5

5.7

8

28.02.5Sales, y

7.01.0Expenditure, x

101Company

Example
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A straight line model: 
y = β0 + β1x + ε

A quadratic model: 
y = β0 + β1x + β2x2 + ε

Printout for the straight line:
Regression Analysis: y versus x
The regression equation is
y = - 6.47 + 4.34 x
Predictor Coef SE Coef T P
Constant -6.465 2.795 -2.31 0.049

x 4.3355 0.6274 6.91 0.000

S = 3.725 R-Sq = 85.6% R-Sq(adj) = 83.9%

Analysis of Variance
Source DF SS MS F P
Regression 1 662.46 662.46 47.74 0.000
Residual Error 8 111.00 13.88
Total 9 773.46

Overall F test is highly 
significant, as is the t-test of 
the slope. R2 = .856 suggests a 
good fit. Let’s check the 
residual plots…

Overall F test is highly 
significant, as is the t-test of 
the slope. R2 = .856 suggests a 
good fit. Let’s check the 
residual plots…

Two Possible Choices
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There is a strong 
pattern of a “curve” 
leftover in the residual 
plot.

This indicates that there 
is a curvilinear 
relationship 
unaccounted for by your 
straight line model.
You should have used 
the quadratic model!

There is a strong 
pattern of a “curve” 
leftover in the residual 
plot.

This indicates that there 
is a curvilinear 
relationship 
unaccounted for by your 
straight line model.
You should have used 
the quadratic model!

Use SYSTAT to fit the 
quadratic model: 

y = β0 + β1x + β2x2 + ε

Example
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Regression Analysis: y versus x, x-sq
The regression equation is
y = 4.66 - 3.03 x + 0.939 x-sq

Predictor Coef SE Coef T P
Constant 4.657 2.443 1.91 0.098
x -3.030 1.395 -2.17 0.067
x-sq 0.9389 0.1739 5.40 0.001
S = 1.752 R-Sq = 97.2% R-Sq(adj) = 96.4%

Analysis of Variance
Source DF SS MS F P
Regression 2 751.98 375.99 122.49 0.000
Residual Error 7 21.49 3.07
Total 9 773.47

Overall F test is highly significant, 
as is the t-test of the quadratic term 
β2. R2 = .972 suggests a very good 
fit. 

Let’s compare the two models, and 
check the residual plots.

Overall F test is highly significant, 
as is the t-test of the quadratic term 
β2. R2 = .972 suggests a very good 
fit. 

Let’s compare the two models, and 
check the residual plots.

The Quadratic Model
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Use R2(adj) to compare the models: 
The straight line model: y = β0 + β1x + ε
The quadratic model: y = β0 + β1x + β2x2 + ε

%9.83adj)(2 =R

%4.96adj)(2 =R

The quadratic model is 
better. 

There are no patterns in the 
residual plot, indicating 
that this is the correct 
model for the data.

The quadratic model is 
better. 

There are no patterns in the 
residual plot, indicating 
that this is the correct 
model for the data.

Which Model to Use?
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Using Qualitative Variables

�Multiple regression requires that the response y
be a quantitative variable.

�Independent variables can be either quantitative 
or qualitative. 

��Qualitative variablesQualitative variables involving k categories 
are entered into the model by using k-1 dummy dummy 
variablesvariables.

�Example: To enter gender as a variable, use
• xi = 1 if male; 0 if female
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� Data was collected on 6 male and 6 female assistant 
professors. The researchers recorded their salaries (y)
along with years of experience (x1). The professor’s 
gender enters into the model as a dummy variable: x2
= 1 if male; 0 if not.

51555,59011

00149,5102

111$50,7101

0

…

Interaction, x1x2

0

…

Gender, x2

5

…

Experience, x1

53,20012

……

Salary, yProfessor

Example
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� We want to predict a professor’s salary based on years of 
experience and gender. We think that there may be a 
difference in salary depending on whether you are male 
or female. 

� The model we choose includes experience (x1), gender 
(x2), and an interaction term (x1x2) to allow salary’s for 
males and females to behave differently.

εββββ ++++= 21322110 xxxxy

Example
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Computer Output

Regression Analysis: y versus x1, x2, x1x2
The regression equation is
y = 48593 + 969 x1 + 867 x2 + 260 x1x2

Predictor Coef SE Coef T P
Constant 48593.0 207.9 233.68 0.000
x1 969.00 63.67 15.22 0.000
x2 866.7 305.3 2.84 0.022
x1x2 260.13 87.06 2.99 0.017

S = 201.3 R-Sq = 99.2% R-Sq(adj) = 98.9%

Analysis of Variance
Source DF SS MS F P
Regression 3 42108777 14036259 346.24 0.000
Residual Error 8 324315 40539
Total 11 42433092

What is the regression 
equation for males? For 
females?
For males, x2 = 1, 
y = 49459.7 + 1229.13x1

For females, x2 = 0, 
y = 48593.0 + 969.0x1

Two different straight line 
models.

What is the regression 
equation for males? For 
females?
For males, x2 = 1, 
y = 49459.7 + 1229.13x1

For females, x2 = 0, 
y = 48593.0 + 969.0x1

Two different straight line 
models.

Is the overall model useful 
in predicting y?
The overall F test is F = 
346.24 with p-value = 
.000. The value of R2 = 
.992 indicates that the 
model fits very well.

Is the overall model useful 
in predicting y?
The overall F test is F = 
346.24 with p-value = 
.000. The value of R2 = 
.992 indicates that the 
model fits very well.

Is there a difference in the relationship between salary and years of 
experience, depending on the gender of the professor?
Yes. The individual t-test for the interaction term is t = 2.99 with p-
value = .017. This indicates a significant interaction between 
gender and years of experience.

Is there a difference in the relationship between salary and years of 
experience, depending on the gender of the professor?
Yes. The individual t-test for the interaction term is t = 2.99 with p-
value = .017. This indicates a significant interaction between 
gender and years of experience.
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�Have any of the regression assumptions been 
violated, or have we fit the wrong model?

ExampleIt does not appear from the 
diagnostic plots that there 
are any violations of 
assumptions. 

The model is ready to be 
used for prediction or 
estimation.

It does not appear from the 
diagnostic plots that there 
are any violations of 
assumptions. 

The model is ready to be 
used for prediction or 
estimation.
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Testing Sets of Parameters
� Suppose the demand y may be related to five independent variables, 

but that the cost of measuring three of them is very high.
� If it could be shown that these three contribute little or no 

information, they can be eliminated.
�You want to test the null hypothesis 
�H0 : ββββ3 = ββββ4 = ββββ5 = 0 —

that is, the independent variables x3, x4, and x5 contribute no 
information for the prediction of y—versus the alternative 
hypothesis:   
�Ha :  At least one of ββββ3, ββββ4, or ββββ5 differs from 0 —

that is, at least one of the variables x3, x4, or x5 contributes 
information for the prediction of y.
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�To explain how to test a hypothesis concerning a set of 
model parameters, we define two models:
� Model One (reduced model)

�Model Two (complete model)

� terms in model 1       additional terms in model 2

rr xxxyE ββββ ++++= �22110)(

kkrrrrrr xxxxxxyE βββββββ ++++++++= ++++ �� 221122110)(

Testing Sets of Parameters
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• The test of the hypothesis 
• H0 : ββββ3 = ββββ4 = ββββ5 = 0
• Ha :  At least one of the ββββi differs from 0
• uses the test statistic 

where F is based on df1 = (k - r ) and df2 = 
n -(k + 1).
The rejection region for the test is identical to 
other analysis of variance F tests, namely F > Fα.

( ) ( )
2

21

MSE
SSESE rkSF −−=

Testing Sets of Parameters
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� A stepwise regression analysis fits a variety 
of models to the data, adding and deleting variables as 
their significance in the presence of the other variables is 
either significant significant or nonsignificantnonsignificant, respectively.

� Once the program has performed a sufficient number of 
iterations and no more variables are significant when 
added to the model, and none of the variables are
nonsignificant when removed, the procedure stops.

� These programs always fit firstalways fit first--order modelsorder models and are 
not helpful in detecting curvature or interaction in the 
data.

Stepwise Regression
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Important Points

�� Causality: Causality: Be careful not to deduce a causal 
relationship between a response y and a variable 
x.

�� MultiMulti--collinearitycollinearity: : Neither the size of a 
regression coefficient nor its t-value indicates the 
importance of the variable as a contributor of 
information. This may be because two or more of 
the predictor variables are highly correlated with 
one another; this is called multimulti--collinearitycollinearity.
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�� MulticollinearityMulticollinearity can have these effects on 
the analysis:
�The estimated regression coefficients will 

have large standard errorslarge standard errors, causing 
imprecision in confidence and prediction 
intervals.

�Adding or deleting a predictor variable 
may cause significant changes in the 
values of the other regression 
coefficients.

Multicollinearity

STAT 251, UCLA, Ivo DinovSlide 64

Multicollinearity
� How can you tell whether a regression analysis 

exhibits multicollinearitymulticollinearity?
� The value of  R 2 is large, indicating a good fit, 

but the individual t-tests are nonsignificant.
� The signs of the regression coefficients are 

contrary to what you would intuitively expect 
the contributions of those variables to be.

� A matrix of correlations, generated by the 
computer, shows you which predictor 
variables are highly correlated with each 
other and with the response y.
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I.I. The General Linear ModelThe General Linear Model

1.

2. The random error ε has a normal distribution with 
mean 0 and variance σ2.

II.II. Method of Least SquaresMethod of Least Squares

1. Estimates b 0, b 1, …, b k for β 0, β1, …, β k , are chosen 
to minimize SSE, the sum of squared deviations about 
the regression line

2. Least-squares estimates are produced by computer.

Basic  Concepts

.ˆ 22110 kk xbxbxbby ++++= �

εββββ +++++= kk xxxy �22110
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III.III. Analysis of VarianceAnalysis of Variance

1. Total SS = SSR + SSE, where Total SS = Syy.
The ANOVA table is produced by computer.

2. Best estimate of σ2 is

IV.IV. Testing, Estimation, and PredictionTesting, Estimation, and Prediction

1. A test for the significance of the regression, 
H0 : β1 = β2 = … = βk = 0, can be implemented using the 
analysis of variance F test:                                       

Basic Concepts

1
SSEMSE

−−
=

kn

MSE
MSR=F
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2. The strength of the relationship between x and y can be measured 
using

which gets closer to 1 as the relationship gets stronger.

3. Use residual plots to check for nonnormality, inequality of 
variances, and an incorrectly fit model.

4. Significance tests for the partial regression coefficients can be 
performed using the Student’s t test with error d f = n − k − 1:

Basic Concepts

( )i

ii

b
bt
SE

β−=

SS Total
SSR2 =R
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Basic Concepts
5. Confidence intervals can be generated by 

computer to estimate the average value of y, E(y), 
for given values of x1, x2, …, xk. Computer-
generated prediction intervals can be used to 
predict a particular observation y for given value 
of x1, x2, …, xk. For given x1, x2, …, xk, prediction 
intervals are always wider than confidence 
intervals.
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Basic Concepts – Model Building
1. 1. The number of terms in a regression model cannot exceed 

the number of observations in the data set and should be 
considerably less!

2. To account for a curvilinear effect in a quantitative variable, use 
a second-order polynomial model. For a cubic effect, use a third-
order polynomial model.

3. To add a qualitative variable with k categories, use (k − 1) 
dummy or indicator variables.

4. There may be interactions between two qualitative variables or 
between a quantitative and a qualitative variable. Interaction terms 
are entered as βxixj .

5. Compare models using R2(adj).


