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Correlation Coefficient

Correlation coefficient (-1<=R<=1): ameasure of linear
association, or clustering around aline of multivariate
data.

Relationship between two variables (X, Y) can be
summarized by: (L, 0x), (1, Oy) and the correlation
coefficient, R. R=1, perfect positive correlation (straight
linerelationship), R =0, no correlation (random cloud
scatter), R = —1, perfect negative correlation.

Computing R(X,Y): (standardize, multiply, average)

N [y — -
R(X,Y) = Nl—lkz_l()(ka;ﬂ)(yka;yy)

Correlation Coefficient

Example: N _ _
ot L5
N _1k=1 O g,

7 =926=161cm, ,w=322=55kg,

O =, /2;6 =6.573 o= 4/2155'3 =6.563,

Corr(X,Y)=R(X,Y)=0.904

Multiple Regression Analysis

Correlation Coefficient
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Correlation Coefficient - Properties

Correlation is quasi-invariant w.r.t. linear transformations of X or Y

N - -
e & & )
sign(a) x sign(c) x_R(aX +b,cY +d), since

.

a(x—u)+b-b|_ . oo X~ 1
[ axo J‘S‘g“‘a’ 5




Corrélation Coefficient - Properties

Correlation is Associative

N - -
R(X,Y) =£ Y (M)(M) = R(Y, X)
N = o g
k=1
Correlation measures linear association, NOT an association in

general!!! So, Corr(X,Y) could bemisleading for X & Y related in
anon-linear fashion.

a

Least squarescriterion

Least squares criterion: Choose the values of the
parameters to minimize the sum of squared
prediction errors (or sum of squared residuals),

n

Z_l(yi -9)

Corelion Coefficient - Properties |

R(X,Y) =;k§= 1("*;“)("_“) =R(Y,X)

1. Rmeasures the extent of :
linear association between  aths |
two continuous variables. :

2. Association does not imply :

I
I
I
1
1

causation - both variables
may be affected by athird
variable —agewasa

confounding variable.

anas oiZs

Theidea of aresidual or prediction error

Theleast squaresline

(c) Prediction errors

Choose line with smallest ith data point
sum of squared s
prediction errors

Least-squaresline

Min Z (% —i\/i)2 ¥
Its parameters are denoted:

Intercept: ﬁo !
Slope: [/2\1 ;




Theleast squaresline

Least-squaresline:

n
A R
B == . B=y-Bx
_21(4—x)2
i=

Adding the least squaresline

N N

Here §,=3.05, §,=0.26 °
Z
Am‘ N n
8151 y= 54+ px
5 o
2101 o _Some Minitab regression output
= The regression equation is

timeper = 3.05 + 0.260 nterm

I 54 Predictor Coef ...
> Const ant 3.050 ...

M,BO nterm 0.26034 ...

0 T T
0 20 40 60
X = Number of terminas

Computer-timings data with least-squares line.

Introduction —Multiple Regression Analysis

® We extend the concept of smplelinear regression as
we investigate a response y which is affected by
several independent variables, X, X5, X, ..., X

® Our objectiveisto use theinformation provided by the
X; to predict the value of .

Computer timings data —linear fit

3 +0.25x
(Sumsg'd err = 37.46)

151

7 +0.15x
(Sumso'd err = 90.36)

Time per task (s)
(e}

101

Y=

10 20 30 40 50 60
X = Number of terminals

Two lines on the computer-timings data.

1. C:\Ivo.dir\Research\Data.dinWM_GM_CSF_tissueMaps.dir

2. SYSTAT: - regression Value = cy+ ¢;M+ C,H+ 3T

3. Results:

Ef f ect Coef fi ci ent SE t P(2 Tail)

CONSTANT 1.02231E+05 9087  11.24911 0.00000

METHOD - 3703. 77667 3635 -1.01887 0.31038 € Insi gni f
TISSUE -22623.47875 2226 -1.01E01 0.00000

HEM SPH - 2. 13667 3635 -0.00059 0.99953

Ef f ect Coef f . Lower < 95% Upper

CONSTANT 1.02231E+05 84231.33157 1.20231E+05
METHCD -3703. 77667 -10903. 69304 3496. 13971
TI SSUE -22623. 47875 -27032. 50908 -18214. 44842
-2.13667 -7202.05304  7197.77971

Example

® et y be astudent’s college achievement, measured by
his’lher GPA. This might be afunction of several
variables:
B x, = rank in high school class
W X, = high school’s overall rating
B X, = high school GPA
B x, = SAT scores

©® Wewant to predict y using knowledge of X;, X,, X3 and
Xy




Example

® | et y be the monthly sales revenue for acompany. This
might be a function of severa variables:

B x, = advertising expenditure

B x, = time of year

W X, = state of economy

u X, = size of inventory

©® Wewant to predict y using knowledge of X;, X,, X3 and
Xy

The General Linear Model

By = Bot ByXy + BXo +.. + BX + €
® where

vy isthe response variable you want to predict.

Y Bos Bys Bos--- By are unknown constants

v Xqy X9y1.0y Xy A€ independent predictor variables,
measured without error.

Some Questions

©® How well does the modd fit?

® How strong is the relationship between y and the
predictor variables?

® Have any assumptions been violated?

® How good are the estimates and predictions?

We collect information using n observations on the
response y and the independent variables, X;, X,, X3,

Example |

Consi der the model E(y) = Byt BiX, + BoX,

® Thisisafirst order modd (independent
variables appear only to the first power).

® (3, = y-intercept = value of E(y) when x,;=x,=0.

® (3, and 3, are the partial regression
coefficients—the changein y for a one-unit
change in x; when the other independent
variables are held constant.

® Traces a planein three dimensional space.

The Random Error

® The deterministic part of the model,

BE(Y) = B+ By + BoXo +...+ BeXy.

@ describes average value of y for any fixed values
Of Xq, Xa4ee04 %, - The population of measurements
is generated as 'y deviates from the line of means
by an amount &, We assume

v'g are independent
v"Have amean 0 and common variance o2 for any set

X Yo X
v"Have anormal distribution.

The Method of Least Squares

® The best-fitting prediction equation is calcul ated
using a set of N measurements (Y, X;, Xy ;... %)

as =
y=bo+bl><1+---+bKXk

® We choose our estimates by, b,,..., b, to
estimate 3y, B,,..., B, to minimize

SSE =X(y-9)?
=2(y-by—bx -.

..—xk)2




Example

® A computer database in a small community contains the
listed selling pricey (in thousands of dollars), the
amount of living areax, (in hundreds of square feet),
and the number of floors x,, bedrooms x5, and
bathrooms x,, for n = 15 randomly selected residences
currently on the market.

e | 4% % | Fit afirst order

: @ & T2 | model to the data
2 185 |10 [1 |2 |2 using the method
3 1165 |10 [1 |3 |2 of least squares.

The Anaysis of Variance

® Thetota variation in the experiment is measured by the total

sum of squares

The Total SSisdivided into two parts:

v SSR (sum of squares for regression): measures
the variation explained by using the regression
equation.

v' SSE (sum of squares for error): measures the

leftover variation not explained by the

independent variables.

The Real Estate Problem

1other portion of the SYSTAT printout
the ANOVA Table, withn = 15

JMsE

R-Sq = 97.1%

R-Sq(adj) = 96.0%
Anal ysis of Variance
Sour ce DF Ss M5
Regr essi on 4 15913.0 4 .
Resi dual Error 10 469.1 Seqqumal Sums_of S_quaes‘
Tot al 14 16382. 2 conditional contribution of
each independent variable
to SSR given the variables
0.9 already entered into the
model.

Sour ce
SqFeet
NunFl rs
Bdr s
Bat hs

Seq SS

IR
N
IS
©
R
©
w

Example

|®Thefirst

order model is

E(Y) = Bo+ BXy + BXo + BaXs + BaXy

fit using Spluswith the values of y and the
four independent variablesentered into
five columns of the outp!!

Regression equation
TNV en Tt -

Regression Analysis: ListPrice versus
he regression equation I s

ITJ—\_

ListPrice = 18.8 + 6.27 SqgFeet -

SqFeet MurFlrs, Bdrms, Baths

16.2 NunFlrs -

2.67 Bdrns + 30.3 Baths

Predi ct or
Const ant
SqFeet
Nunfl rs
Bdr s

Bat hs

SE Coef T
9. 207 2.04
8. 65

. 5 0
Partial regression R
coefficients |k

P
0.069
0.000

. 026

The ANOVA Table

Total df =
Regression df
Error df =

=

Mean Squares

MSR = SSR/k
M SE = SSE/(n-k-1)

Source

df Ss MS

Regression

SSRIk

MSR/MSE

SSE/(n-k-1)

Testing the Usefulness of the Model

isof any use

Thefirst question to ask is whether the regression model

in predicting y.

« If itisnot, then the value of y does not change,
regardless of the value of the independent variables, X;,
X5 ..., X Thisimplies that the partial regression

coefficients, B4, B, ..., By areall zero.




TheF Test

® You can test the overall usefulness of the model
using an F test. If the model is useful, MSR will be
large compared to the unexplained variation, M SE.

Totest H, : model isuseful in predicting yisequivalent to
Ho:B=B,=..=5,=0
TestStatistic F=

RejectH, if F>F, withk andn-k-Ldf.

Measuring the Strength of the Relationship

* Since Total SS =SSR + SSE, R? measures
v'the proportion of the total variation in the
responses that can be explained by using the
independent variablesin the model.
v'the percent reduction the total variation by
using the regression equation rather than just
using the sample mean y-bar to estimatey.
. SR FoMSR _ R2/k
Total SS MSE  (1-R?»)/(n-k-1)

The Real Estate Problem

overall model useful in predicting list
much of the overall variation in
is explained by the regression

R-Sq(adj) = 96.0%

Y3 F P
84.80  0.000

R2=.971 indicates that
97.1% of the overall
variation is explained by
the regression model.

{ F= MSR/MSE = 84.80 with
p-value = .000 is highly
significant. The model is very
useful in predicting the list
price of homes.

Measuring the Strength of the Relationship

If the independent variables are useful in
predicting y, you will want to know how well
the model fits.

 The strength of the relationship between x and
y can be measured using:

Multiple coeffici nation :
R2 = ﬂ
Total SS

Testing the Partial Regression Coefficients

* Isaparticular independent variable
useful in the model, in the presence of all
the other independent variables? The test

statistic is function of b, our best

estimate of 3;.

To test Hy: B3 = 0, thetest statisticist
=-0.59 with p-value = .565.

The p-valueislarger than .05 and Hy is 3 ndependent

not rejected. homs significant in

We cannot conclude that number of 7R EESRTTale el o:oY
bedrooms is a valuable predictor in the
presence of the other variables. Bdrms, Baths

B Perhaps the model could be refit - 2.67 Bdrms + 30.3 Baths

CY without X;. P
Const ant 18. 763 0.069

SqFeet 6. 2698 0.7252 8. 65 0.000
lrs -16,203 6,212 -2.61 0.026
rms -2.673 4. 494 -0.59 0. 565|

Barm 30271 5. 84Y Eo U 00T




Comparing Regression Models
ssion model is

MSE

R?(adj) = [1— 7J 100%
Total SS/(n-1)

Diagnostic Tools

1. Normal probability plot of residuals

2. Plot of residuals ver susfit or
residuals versus variables

v If the equal Residuals versus Fits
variance
assumption is \
valid, the plot e
should appear as
arandom scatter . i
aroundthezero | | - -
center line. )

v If not, you will I - =
see apatternin —

Checking the Regression Assumptions

aregression

v g are independent

v" Have amean 0 and common variance a2 for
any set Xy, Xo,..., X

v' Have anormal distribution.

v If the normality | Normal Probability Plot

assumption is
valid, the plot
should resemble
astraight line,
sloping upward
to the right.

v If not, you will
often see the
pattern fail in

the tails of the
graph.

®

Esti mi on and Prediction

* Onceyou have
v' determined that the regression line is useful

v/ used the diagnostic plots to check for
violation of the regression assumptions.

* You areready tousetheregression lineto
v Estimate the average value of y for agiven | |
value of x

v Predict aparticular value of y for agiven
value of x.




\ Estimation and Prediction

. Enter the appropriate values of x;, X,, ..., X,
in SoftPackageto calculate

9:b0+blxl+b2X2+“'+kak

e and both the confidence interval and the
prediction interval.

e Particular values of y are more difficult to
predict, requiring awider range of values
in the prediction interval.

Using Regression Models

Whenu perform multiple regression analysis, use a step-
by step approach:

1. Obtain the fitted prediction model.

2. Usethe analysis of variance F test and R 2 to determine
how well the model fits the data.

3. Check thet tests for the partial regression coefficients to
see which ones are contributing significant information in
the presence of the others.

4. If you choose to compare several different models, use
R 2(adj) to compare their effectiveness.

5. Use diagnostic plots to check for violation of the
regression assumptions.

©® A market research firm has observed the sales (y) asa
function of mass media advertising expenses (x) for 10
different companies selling a similar product.

Company 1 |2 3 4 |5 6 |7 8 9 10

Expenditure, x 10 |16 |25 |30 |40 |46 |50 57 |60 7.0

Sdes,y 91 | 148 |[175 |230 280

Since thereis only one
independent variable, you
could fit alinear, quadratic, or
cubic polynomia model.
Which would you pick?

1

1

® Estimate the average list price for a home with 1000
sguare feet of living space, onefloor, 3 bedrooms
and two baths with a 95% confidence interval.

Predicted Values for New Qbse
New Cbs

Val ues of Predictors for New Cbservations
New Cbs

The Real Estate Problem

We estimate that the average list
price will be between $110,860
and $124,700 for ahomelike

| this.

Fit SE Fit 95. 0% CI
117.78 3.11 |( 110.86, 124.70)

95. 0% PI
( 101.02, 134.54)

SqFeet Nunflrs Bdr ms Bat hs
10.0 1. 00 3.00 2.00

® When k = 2, themodd is quadratic:

A Polynomial Model

nsey isrelated to a single independent
, but not in alinear manner. The
del is:

y=,30+131X+:82X2 +---+18ka +é

y:ﬁ0+ﬂlx+ﬁ2X2+£

Regression Analysis: y versus x residual PIOtS- 0o

The regression equation is

y = - 6.47 + 4.34 x

Predictor Coef SE Coef T P

Const ant -6. 465 2.795 -2.31 0. 049

X 4.3355 0.6274 I 6.91 0. 000 I

S = 3.725 | R-Sq = 85.6% | R-Sq(adj) = 83.9%

Anal ysi s of Variance

Sour ce DF Ss Ms F P
Regr essi on 1 662. 46 662. 46 47.74 0. 000
Residual Error 8 111.00 13.88

Tot al

Two Possible Choices

eI Overall Ftestis highly
B2+ e significant, asis the t-test of
. = thesope R?=.856 suggestsa
ling: o0 fit. Let's check the

9 773. 46




Example

Thereisastrong
pattern of a“curve”
leftover in theresidual
plot.

Thisindicatesthat there

unaccounted for by your
straight line model.

Y ou should have used
the quadratic model!

Which Model to Use?

R?(adj) = 96.4%

. The quadratic model is
better.

There are no patternsin the
residual plot, indicating
that thisis the correct
model for the data.

Example

@ Datawas collected on 6 male and 6 femal e assistant
professors. The researchers recorded their salaries (y)
along with years of experience (x,). The professor’s
gender enters into the model as adummy variable: x,
=1if male; 0if not.

Professor Experience, x;

1 $50,710 1 1 1

Interaction, X;X,

2 49,510 1 0 0

The Quadratic Model

Regression Analysis: y versus X, x-sq
The regression equation is
y = 4.66 - 3.03 x + 0.939 x-sq

Predictor Coef SE Coef T P
Const ant 4. 657 2.443 1.91 0.098

X -3.030 1.395 I_z_;]umll
X-sq 0. 9389 0.1739 5. 40 0.001
S = 1.752 | R-Sq = 97.2% | R-Sq(adj) = 96.4%
Overall Ftestis highly significant,
asisthet-test of the quadratic term

[,. R? =.972 suggests a very good
fit.

Vs P
375. 99 122. 49 0. 000
3.07

Let's compare the two models, and
check the residual plots.

Using Qualitative Variables

©® Multi plegr on requires that the response y
be a quantitative variable.

® |ndependent variables can be either quantitative
or qualitative.

@ Qualitative variablesinvolving k categories
are entered into the model by using k-1 dummy
variables.

® Example: To enter gender asavariable, use
- % =1if mae Oif female

Example

® Wewant to predict a professor’s salary based on years of
experience and gender. We think that there may be a
differencein salary depending on whether you are male
or female.

©® The model we choose includes experience (x,), gender
(x), and an interaction term (X,x,) to allow salary’sfor
males and females to behave differently.

(0] = 181)<1 + 182X2 + :83X1X2 te




Computer Cutt What is the regression

Isthe overall model useful
in predicting y?
Regression Analysis: y versus x1, x2, x1x2 ILASCE NSRS S
The regression equation is 346.24 with p—val ue=
y = 48593 + 969 x1 + 867 x2 + 260

.000. Thevalue of R? =
Predi ct or Coef S4SEl 09?2 indicates that the
Const ant 48593. 0 207.9
969. 00

866.7
260. 13

Isthere adifference in the relationship between salary and years of
experience, depending on the gender of the professor?

Yes. Theindividual t-test for the interaction term ist = 2.99 with p-
value = .017. Thisindicates a significant interaction between
gender and years of experience.

Testing Sets of Parameters

Suppose the demand y may be related to five independent variables,
but that the cost of measuring three of them is very high.

B | it could be shown that these three contribute little or no
information, they can be eliminated.

B v ou want to test the null hypothesis

| . —Q = —
Ho:Bs=PBs=PBs =0—
that is, the independent variables x5, x,, and x5 contribute no
information for the prediction of y—versus the aternative
hypothesis:

= H,: Atleast oneof B, B,, or Bsdiffersfrom 0 —
that is, at least one of the variables x;, X,, Or X contributes

information for the prediction of y.

Testing Sets of Parameters

The test of the hypothesis

- Ho:Bs=PB,=Bs =0

- H,: Atleast oneof the B, differsfrom O
- usesthetest statistic |  (SSE, ~SSE,)/(k-r)
MSE,
where F isbased on df, = (k- r ) and df, =
n-(k+1).

The rejection region for the test isidentical to
other analysis of variance F tests, namely F > F,.

It does not appear from the
diagnostic plots that there
are any violations of

® Have any of the regreGalaEls
violated, or have we fiECERE CE AT o

used for prediction or
estimation.

Exan

Testing Sets of Parameters

10 explain how to test a hypothesis concerning a set of
model parameters, we define two models:

¥ Model One (reduced model)
E(Y) =B+ Bx +BoX ++ BX

®Model Two (complete model)

E(Y) =B+ BX + BoXo +ooo+ BX + BrnXes ¥ BragXewa ¥+ BX
termsin model 1 additional termsin modd 2

Stepwise Regression

v A stepwiseregression analysisfitsavariety
of models to the data, adding and deleting variables as
their significance in the presence of the other variablesis
either significant or nonsignificant, respectively.

v Once the program has performed a sufficient number of
iterations and no more variables are significant when
added to the modd, and none of the variables are
nonsignificant when removed, the procedure stops.

v These programs alwaysfit first-order models and are

not helpful in detecting curvature or interaction in the
data

10



Important Points

v Causality: Be careful not to deduce a causal
relationship between aresponse y and a variable
X.

v Multi-collinearity: Neither the size of a
regression coefficient nor its t-value indicates the
importance of the variable as a contributor of
information. This may be because two or more of
the predictor variables are highly correlated with
one another; thisis called multi-collinearity.

Multicollinearity

v How can you tell whether aregression analysis
exhibits multicollinearity?
vThevaueof R?islarge, indicating a good fit,
but the individual t-tests ar e nonsignificant.
v The signs of the regression coefficients are
contrary to what you would intuitively expect
the contributions of those variables to be.

v A matrix of correlations, generated by the
computer, shows you which predictor
variables are highly correlated with each

other and with the responsey.

| Basic Concepts |

111, Analysisof Variance

1. Total SS=SSR + SSE, where Total SS= Sy
The ANOVA tableis produced by computer.

_SSE
n-k-1

2. Best estimate of 62is M SE =

IV.  Testing, Estimation, and Prediction

1. A test for the significance of the regression,
Ho: By =B, =" =B =0, can beimplemented using the
analysis of variance F test: MSR

Multicollinearity

v Multicollinearity can have these effects on
the analysis:

v The estimated regression coefficients will
have |large standard errors, causing
imprecision in confidence and prediction
intervals.

v Adding or deleting a predictor variable
may cause significant changesin the
values of the other regression
coefficients.

| Basic Concepts |

|I. The General Linear Model

L oy=B+BXx+ L%+ -+ BX +E
2. Therandom error £ has anormal distribution with
mean 0 and variance 62.

I1. Method of Least Squares

1. Estimates b, b, ..., b for B, By, ..., By, arechosen
to minimize SSE, the sum of squared deviations about

theregression Iiney = bo L b.l.xl + bzx2 4.4 Q()(k
2. Least-sguares estimates are produced by computer.

Basic Concepts
2. The strength of the relationship between x and y can be measured
using >
Total SS

which gets closer to 1 as the relationship gets stronger.

3. Useresidual plotsto check for nonnormdity, inequality of
variances, and an incorrectly fit model.

4. Significance tests for the partial regression coefficients can be
performed using the Student’st test witherrordf=n-k-1:

11



Basic Concepts

| 5. Confidenceintervals can be generated by

computer to estimate the average value of y, E(y),
for given values of x;, X,, ..., %. Computer-
generated prediction intervals can be used to
predict a particular observation y for given value
of Xy, Xy, ..., X FOr given X;, X,, ..., X, prediction
intervals are always wider than confidence
intervals.

| Basic Concepts— Model Building |

1. The number of termsin aregression model cannot exceed
| the number of observationsin the data set and should be
considerably less!

2. To account for acurvilinear effect in aquantitative variable, use
a second-order polynomial model. For acubic effect, use athird-
order polynomia model.

3. To add aqualitative variable with k categories, use (k — 1)
dummy or indicator variables.

4. There may be interactions between two qualitative variables or
between a quantitative and a qualitative variable. Interaction terms
are entered as X, .

. Compare models using R%(adj).

12



