STAT 110 A, Probability \& Statistics for Engineers I UCLA Statistics, Fall 2004

http://www.stat.ucla.edu/~dinov/courses_students.html

SOLUTION HOMEWORK 1

Section 2.9/ Problem \#29
a. $(5)(4)=20(5$ choices to select a president and 4 choices for a vice-president)
b. $(5)(4)(3)=60$
c. $\binom{5}{2}=\frac{5!}{2!3!}=10$
(Order is not important)
Section 2.9/ Problem \#33
a. $\binom{20}{5}=\frac{20!}{5!5!}=15,504$
b. $\binom{8}{4} \cdot\binom{12}{1}=840$
$\frac{\binom{8}{4}\binom{12}{1}}{\binom{20}{5}}=\frac{840}{15,504}=.0542$
$\frac{\binom{8}{4}\binom{12}{1}}{\binom{20}{5}}+\frac{\binom{8}{5}\binom{12}{0}}{\binom{20}{5}}=.0542+.0036$
Section 2.3/ Problem \#40
a. $\frac{12!}{(3!)^{4}}=369,600$
b. $\frac{4!}{369,600}=.00006494$

Section 2.4/ Problem \#45
a. $\mathrm{P}(\mathrm{A})=.15+.10+.10+.10=.45, \mathrm{P}(\mathrm{B})=.10+.15=.25, \mathrm{P}(\mathrm{A}$ and B$)=.10$
b.. $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=(\mathrm{A}$ and B$) / \mathrm{P}(\mathrm{B})=.10 / .25$ This restricts our attention to only the Black column, and asks what proportion are represented by $\mathrm{A} . \mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}(\mathrm{B}$ and A$) / \mathrm{P}(\mathrm{A})=$.10/.45 This restricts our attention to only the A row, and asks what proportion are represented by B.
c.The probability that A occurs given $\mathrm{C}=\mathrm{P}(\mathrm{A}$ and C$) / \mathrm{P}(\mathrm{C})=.15 / .30$. The probability that A occurs given $\mathrm{C}^{\prime}=\mathrm{P}(\mathrm{A}$ and C$) / \mathrm{P}\left(\mathrm{C}^{\prime}\right)=.15 / .70$. Note the probability that sum of A occurring over two conditions where the conditions completely specify the sample space is going to yield the same answer as the simple unconditional probability of A.
b. $P(A \mid C)=\frac{P(A \cap C)}{P(C)}=\frac{.200}{.500}=.400$

Problem 2.5/ \# 72
a. $P\left(O_{1} \cap O_{2}\right)=P\left(O_{1}\right) P\left(O_{2}\right)=(.44)(.44)=.1936$
b.
$P\left(A_{1} \cap O A_{2}\right)+P\left(B_{1} \cap B_{2}\right)+P\left(A B_{1} \cap A B_{2}\right)+P\left(O_{1} \cap O_{2}\right)=.42^{2}+.10^{2}+.04^{2}+.44^{2}=.3816$
Section 2.5/ \#75
a. $\mathrm{P}($ seam needs work $)=.14=1-\mathrm{P}($ seam doesn't need work $)=1-\mathrm{P}($ no rivets are defective $)=1-\mathrm{P}($ first isn't defective and second isn't defective and \ldots. twenty-fifth isn't defective $)=1-(1-q)^{\wedge 25}$ so $.86=(1-q)^{\wedge} 25,1-q=(.86)^{\wedge 1 / 25}$, and $q=1-(.86)^{\wedge 1 / 25}$
b. $10=1-(1-q)^{\wedge} 25$ and $(1-q)^{\wedge 25}=.90$ and $q=1-.99579$

Section 2.5/ \#77
Call the probability of the old failing independently $\mathrm{P}(\mathrm{A})$
Call the probability of the new failing independently $\mathrm{P}(\mathrm{B})$
Call the probability of them both failing together X

Then the probability that the old fails $=P(A)+X$
The probability of the new failing is $=P(B)+X$
They fail together with probability $[\mathrm{P}(\mathrm{A})+\mathrm{X}][\mathrm{P}(\mathrm{B})+\mathrm{X}]=(.10+\mathrm{X})(.05+\mathrm{X})$. Setting this equal to zero and solving for X yields the desired probability.

