STAT 110 A, Probability \& Statistics for Engineers I
 UCLA Statistics

http://www.stat.ucla.edu/~dinov/courses_students.html

SOLUTION HOMEWORK 3

http://www.stat.ucla.edu/~dinov/courses students.html

- (HW_3_1) [Sec. 3.1, \#4]

In my perusal of a zip code directory, I found no 00000 , nor did I find any zip codes with four zeros, a fact which was not obvious. Thus possible X values are $2,3,4,5$ (and not 0 or 1). $\mathrm{X}=5$ for the outcome $15213, \mathrm{X}=4$ for the outcome 44074, and $\mathrm{X}=3$ for 94322 .

- (HW_3_2) [Sec. 3.2, \#12]

(a) $p_{2}(x)$ is the acceptable probability function, because all the probabilities are between zero and one and if probabilities add up to 1 , whereas $p_{1}(x)$ and $p_{3}(x)$ are not acceptable because the summation of probabilities add up to a number which is less than one and greater than one respectively.
(b) $\mathrm{P}(2 \leq X \leq 4)=\mathrm{P}(\mathrm{X}=2)+\mathrm{P}(\mathrm{X}=3)+\mathrm{P}(\mathrm{X}=4)=0.5$
$\mathrm{P}(X \leq 2)=1-\mathrm{P}(\mathrm{X} \geq 3)=0.6$
$\mathrm{P}(\boldsymbol{X} \neq 0)=1-\mathrm{P}(\mathrm{X} \geq 1)=0.6$
(c) $p(x)=c(5-x)$, then $\sum p(x)=1$. Hence, $\sum c(5-x)=1$. This implies that $\mathrm{c}((5-0)+(5-1)+(5-2)+(5-3)+(5-4))=1$, that is $\mathrm{c}(15)=1$ and so $\mathrm{c}=1 / 15$.

- (HW_3_3)[Sec. 3.2, \#13]
a. $\mathrm{P}(\mathrm{X} \leq 3)=\mathrm{p}(0)+\mathrm{p}(1)+\mathrm{p}(2)+\mathrm{p}(3)=.10+.15+.20+.25=.70$
b. $\mathrm{P}(\mathrm{X}<3)=\mathrm{P}(\mathrm{X} \leq 2)=\mathrm{p}(0)+\mathrm{p}(1)+\mathrm{p}(2)=.45$
c. $\mathrm{P}(3 \leq \mathrm{X})=\mathrm{p}(3)+\mathrm{p}(4)+\mathrm{p}(5)+\mathrm{p}(6)=.55$
d. $\mathrm{P}(2 \leq \mathrm{X} \leq 5)=\mathrm{p}(2)+\mathrm{p}(3)+\mathrm{p}(4)+\mathrm{p}(5)=.71$
e. The number of lines not in use is $6-X$, so $6-X=2$ is equivalent to $X=4,6-X=3$ to $X=3$, and $6-X=4$ to X $=2$. Thus we desire $P(2 \leq X \leq 4)=p(2)+p(3)+p(4)=.65$
f. $6-\mathrm{X} \geq 4$ if $6-4 \geq \mathrm{X}$, i.e. $2 \geq \mathrm{X}$, or $\mathrm{X} \leq 2$, and $\mathrm{P}(\mathrm{X} \leq 2)=.10+.15+.20=.45$

- (HW_3_4)[Sec. 3.3, \#28]

a. $\mathrm{E}(\mathrm{X})=\sum_{x=0}^{4} x \cdot p(x)=(0)(.08)+(1)(.15)+(2)(.45)+(3)(.27)+(4)(.05)=2.06$
b. $\mathrm{V}(\mathrm{X})=\sum_{x=0}^{4}(x-2.06)^{2} \cdot p(x)=(0-2.06)^{2}(.08)+\ldots+(4-2.06)^{2}(.05)$

$$
=.339488+.168540+.001620+.238572+.188180=.9364
$$

c. $\sigma_{\mathrm{x}}=\sqrt{.9364}=.9677$
d. $\mathrm{V}(\mathrm{X})=\left[\sum_{x=0}^{4} x^{2} \cdot p(x)\right]-(2.06)^{2}=5.1800-4.2436=.9364$

- (HW_3_5)[Sec. 3.3, \#31]
a. $\quad E(X)=(13.5)(.2)+(15.9)(.5)+(19.1)(.3)=16.38$,
$\mathrm{E}\left(\mathrm{X}^{2}\right)=(13.5)^{2}(.2)+(15.9)^{2}(.5)+(19.1)^{2}(.3)=272.298$,
$\mathrm{V}(\mathrm{X})=272.298-(16.38)^{2}=3.9936$
b. $\quad E(25 \mathrm{X}-8.5)=25 \mathrm{E}(\mathrm{X})-8.5=(25)(16.38)-8.5=401$
c. $\quad \mathrm{V}(25 \mathrm{X}-8.5)=\mathrm{V}(25 \mathrm{X})=(25)^{2} \mathrm{~V}(\mathrm{X})=(625)(3.9936)=2496$
d. $E[h(X)]=E\left[X-.01 \mathrm{X}^{2}\right]=\mathrm{E}(\mathrm{X})-.01 \mathrm{E}\left(\mathrm{X}^{2}\right)=16.38-2.72=13.66$

