STAT 110 A, Probability \& Statistics for Engineers I UCLA Statistics

http://www.stat.ucla.edu/~dinov/courses_students.html

SOLUTION HOMEWORK 4

(HW_4_1) [Sec. 3.5, \#69]

a. With $\mathrm{S}=$ a female child and $\mathrm{F}=$ a male child, let $\mathrm{X}=$ the number of F 's before the $2^{\text {nd }} \mathrm{S}$. Then $\mathrm{P}(\mathrm{X}=\mathrm{x})=\mathrm{nb}(\mathrm{x} ; 2$, .5)
b. $\quad \mathrm{P}($ exactly 4 children $)=\mathrm{P}($ exactly 2 males $)$

$$
=n b(2 ; 2, .5)=(3)(.0625)=.188
$$

c. $\quad \mathrm{P}($ at most 4 children $)=\mathrm{P}(\mathrm{X} \leq 2)$

$$
=\sum_{x=0}^{2} n b(x ; 2, .5)=.25+2(.25)(.5)+3(.0625)=.688
$$

d. $E(X)=\frac{(2)(.5)}{.5}=2$, so the expected number of children $=E(X+2)$ $=\mathrm{E}(\mathrm{X})+2=4$
(HW_4_2) [Sec. 3.6, \#76]
a. $\quad \mathrm{P}(\mathrm{X}=1)=\mathrm{F}(1 ; 2)-\mathrm{F}(0 ; 2)=.982-.819=.163$
b. $\quad P(X \geq 2)=1-P(X \leq 1)=1-F(1 ; 2)=1-.982=.018$
c. $\quad \mathrm{P}\left(1^{\text {st }}\right.$ doesn't $\cap 2^{\text {nd }}$ doesn't $)=P\left(1^{\text {st }}\right.$ doesn't $) \cdot \mathrm{P}\left(2^{\text {nd }}\right.$ doesn't $)$

$$
=(.819)(.819)=.671
$$

(HW_4_3) [Sec. 4.1, \#2]

$F(x)=\frac{1}{10}$ for $-5 \leq x \leq 5$, and $=0$ otherwise
a. $\mathrm{P}(\mathrm{X}<0)=\int_{-5}^{0} \frac{1}{10} d x=.5$
b. $\mathrm{P}(-2.5<\mathrm{X}<2.5)=\int_{-2.5}^{2.5} \frac{1}{10} d x=.5$
c. $\mathrm{P}(-2 \leq \mathrm{X} \leq 3)=\int_{-2}^{3} \frac{1}{10} d x=.5$
d. $\left.\mathrm{P}(\mathrm{k}<\mathrm{X}<\mathrm{k}+4)=\int_{k}^{k+4} \frac{1}{10} d x=\frac{x}{10}\right]_{k}^{k+4}=\frac{1}{10}[(k+4)-k]=.4$
a)

b) $\left.=\int_{-\infty}^{\infty} f(x ; k, \theta) d x=\int_{\theta}^{\infty} \frac{k \theta^{k}}{x^{k+1}} d x=\theta^{k} \cdot\left(-\frac{1}{x^{k}}\right)\right]_{\theta}^{\infty}=\frac{\theta^{k}}{\theta^{k}}=1$
c) $\left.\mathrm{P}(\mathrm{X} \leq \mathrm{b})=\int_{\theta}^{b} \frac{k \theta^{k}}{x^{k+1}} d x=\theta^{k} \cdot\left(-\frac{1}{x^{k}}\right)\right]_{\theta}^{b}=1-\left(\frac{\theta}{b}\right)^{k}$
d) $\left.\mathrm{P}(\mathrm{a} \leq \mathrm{X} \leq \mathrm{b})=\int_{a}^{b} \frac{k \theta^{k}}{x^{k+1}} d x=\theta^{k} \cdot\left(-\frac{1}{x^{k}}\right)\right]_{a}^{b}=\left(\frac{\theta}{a}\right)^{k}-\left(\frac{\theta}{b}\right)^{k}$
e) $\left.\mathrm{E}(\mathrm{X})=\int_{\theta}^{\infty} x \cdot \frac{k \theta^{k}}{x^{k+1}} d x=k \theta^{k} \int_{\theta}^{\infty} \frac{1}{x^{k}} d x=\frac{k \theta^{k} x^{-k+1}}{-k+1}\right]_{\theta}^{\infty}=\frac{k \theta}{k-1}$
f) $E(X)=\infty$
g) $\mathrm{E}\left(\mathrm{X}^{2}\right)=k \theta^{k} \int_{\theta}^{\infty} \frac{1}{x^{k-1}} d x=\frac{k \theta^{2}}{k-2}$, so
$\operatorname{Var}(\mathrm{X})=\left(\frac{k \theta^{2}}{k-2}\right)-\left(\frac{k \theta}{k-1}\right)^{2}=\frac{k \theta^{2}}{(k-2)(k-1)^{2}}$
h) $\operatorname{Var}(\mathrm{x})=\infty$, since $\mathrm{E}\left(\mathrm{X}^{2}\right)=\infty$.

(HW_4_5) [Sec. 4.3, \#33]

a. $\mathrm{P}(\mathrm{X} \geq 10)=\mathrm{P}(\mathrm{Z} \geq .43)=1-\Phi(.43)=1-.6664=.3336$.
$\mathrm{P}(\mathrm{X}>10)=\mathrm{P}(\mathrm{X} \geq 10)=.3336$, since for any continuous distribution, $\mathrm{P}(\mathrm{x}=\mathrm{a})=0$.
b. $\mathrm{P}(\mathrm{X}>20)=\mathrm{P}(\mathrm{Z}>4) \approx 0$
c. $\mathrm{P}(5 \leq \mathrm{X} \leq 10)=\mathrm{P}(-1.36 \leq \mathrm{Z} \leq .43)=\Phi(.43)-\Phi(-1.36)=.6664-.0869=.5795$
d. $\mathrm{P}(8.8-\mathrm{c} \leq \mathrm{X} \leq 8.8+\mathrm{c})=.98$, so $8.8-\mathrm{c}$ and $8.8+\mathrm{c}$ are at the $1^{\text {st }}$ and the $99^{\text {th }}$ percentile of the given distribution, respectively. The $1^{\text {st }}$ percentile of the standard normal distribution has the value -2.33 , so $8.8-\mathrm{c}=\mu+(-2.33) \sigma=8.8-2.33(2.8) \Rightarrow \mathrm{c}=2.33(2.8)=6.524$.

(HW_4_6)[Sec. 4.3, \#42]

a. $\mathrm{P}(67 \leq \mathrm{X} \leq 75)=\mathrm{P}(-1.00 \leq \mathrm{Z} \leq 1.67)=.7938$
b. $\mathrm{P}(70-\mathrm{c} \leq \mathrm{X} \leq 70+\mathrm{c})=P\left(\frac{-c}{3} \leq \mathrm{Z} \leq \frac{c}{3}\right)=2 \Phi\left(\frac{c}{3}\right)-1=.95 \Rightarrow \Phi\left(\frac{c}{3}\right)=.9750$

$$
\frac{c}{3}=1.96 \Rightarrow c=5.88
$$

c. $\quad 10 \cdot \mathrm{P}(\mathrm{a}$ single one is acceptable $)=7.935$
d. $\mathrm{p}=\mathrm{P}(\mathrm{X}<73.84)=\mathrm{P}(\mathrm{Z}<1.28)=.9$, so $\mathrm{P}(\mathrm{Y} \leq 8)=\mathrm{B}(8 ; 10, .9)=.264$

